一元一次方程应用题归类练习
更新时间:2024-03-06 08:23:01 阅读量: 综合文库 文档下载
一元一次方程应用题归类练习
一、列方程解应用题的一般步骤(解题思路) (1)审题:找出等量关系.(2)设未知数(直接或者间接设).(3)列方程:(4)解方程: (5)检验,检验求出值是否是方程的解,是否符合实际。(6)写答(注意带上单位)
第一类、行程问题
常用的等量关系:1、甲、乙二人相向相遇问题
⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量 2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题
⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量
3、单人往返: ⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变
4、行船问题与飞机飞行问题:⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度 5、考虑车长的过桥或通过山洞隧道问题
将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。 6、时钟问题: ⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究
⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:① 时针的速度是0.5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒 一、一般行程问题(相遇与追击问题)
1、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,
那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。 解:等量关系 甲行的总路程+乙行的路程=总路程 (18千米)
2、某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,
可比预定时间晚到15分钟;求从家里到学校的路程有多少千米? 解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程
或者: ⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟 老师提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。
3、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,
t分钟后第一次相遇,t等于 分钟。
提醒:此题为环形跑道上,同时同地同向的追击问题(且为第一次相遇) 等量关系:快者跑的路程-慢者跑的路程=800 (俗称多跑一圈)
4、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经
过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米? 提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。 等量关系:快车行的路程+慢车行的路程=两列火车的车长之和
5、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是
26秒。⑴ 行人的速度为每秒多少米? ⑵ 这列火车的车长是多少米?
提醒:将火车车尾视为一个快者,则此题为以车长为提前量的追击问题。
等量关系: ① 两种情形下火车的速度相等 ② 两种情形下火车的车长相等
在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。
6、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带
上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗? (提示:此题为典型的追击问题)
7、一列火车长150米,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,到这列火车完全通过隧道所需时间是【 】 (A)60秒 (B)50秒 (C)40秒 (D)30秒
提醒:将车尾看作一个行者,当车尾通过600米的隧道再加上150米的车长时所用的时间,就是所求的完全通过的时间,
1
8、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在
火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。 解析:只要将车尾看作一个行人去分析即可,前者为此人通过300米的隧道再加上一个车长,后者仅为此人通过一个车长。此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。
9、两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车车长150米,已知当两车相向而行时,
快车驶过慢车某个窗口所用的时间为5秒。
⑴ 两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少?
⑵ 如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到 快车的车尾离开慢车的车头所需的时间至少是多少秒?
解析:① 快车驶过慢车某个窗口时:研究的是慢车窗口的人和快车车尾的人的相遇问题,此时行驶的路程和为快
车车长!
② 慢车驶过快车某个窗口时:研究的是快车窗口的人和慢车车尾的人的相遇问题,此时行驶的路程和为
慢车车长!
③ 快车从后面追赶慢车时:研究的是快车车尾的人追赶慢车车头的人的追击问题,此时行驶的路程和为
两车车长之和!
10、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还
快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时已过了3小时。 求两人的速度。
二、环行跑道与时钟问题:
11、在6点和7点之间,什么时刻时钟的分针和时针重合?
解析:6:00时分针指向12,时针指向6,此时二针相差180°,在6:00~7:00之间,经过x分钟当二针重
合时,时针走了0.5x°分针走了6x°以下按追击问题可列出方程,不难求解。
12、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几
分钟后二人相遇?若背向跑,几分钟后相遇?
提醒:此题为环形跑道上,同时同地同向的追击与相遇问题。
13、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵ 成平角;⑶成直角;
14、在8点和9点间,何时时钟分针和时针重合?何时时钟分针和时针成直角?何时时钟分针和时针成平角? 三、行船与飞机飞行问题:
15;一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时, 求两码头之间的距离。
16、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。
17、小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,
求该河的水流速度。
18、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度
为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。
第二类:工程问题
工程问题的基本等量关系:各部分工作量的和=总工作量1
19、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做, 还需要几天完成?
20、食堂存煤若干吨,原来每天烧煤4吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.
21、一水池,单开进水管3小时可将水池注满,单开出水管4小时可将满池水放完。现对空水池先打开进水管2小时,然后打开出水管,使进水管、出水管一起开放,问再过几小时可将水池注满?
22、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单
2
独做所需天数是乙队单独做所需天数的
:
2,问甲、乙两队单独做,各需多少天? 323.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。
第三类:和差倍分问题(生产、做工等各类问题): 24.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人
每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?
25.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?
26.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?
27.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?
28.为了搞好水利建设,某村计划修建一条长800米,横断面是等腰梯形的水渠.
2
(1)设计横断面面积为1.6米,渠深1米,水渠的上口宽比渠底多0.8米,求水渠上口宽和渠底宽;
(2)某施工队承建这项工程,计划在规定的时间内完成,工作4天后,改善了设备,提高了工效,每天比原计划多挖水渠10米,结果比规定的时间提前2天完成任务,求计划完成这项工程需要的天数。 29.今年某校积极组织捐款支援灾区,某班55名同学共捐款500元,捐款情况如下表:
捐款(元) 人数 表中有两处看不清楚,请你帮助确定表中数据。.
30.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?
第四类,配套问题和劳力调配问题 31.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?
32.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
33:有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的 ,应从乙队调多少人到甲队? 34.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
35.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套? 36.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
37.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?
第五类,利润与利润率: 38.某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。问该文具的进价是每件多少元?
39.某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?
3
5 6 8 ■ 10 ■ 12 7
40.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
44、某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利10%,此商品的进价是多少元?
42、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?
43、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?
44、个体户小张,把某种商品按标价的九折出售,仍可获利20%,若按货物的进价为每件24元,求每件的标价是多少元?
45、一套家具按成本加6成定价出售,后来在优惠条件下,按照售价的72%降低价格售出可得6336元,求这套家具的成本是多少元?这套家具售出后可赚多少元?
第六类,数字问题: 46.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
47.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
48.将连续的奇数1,3,5,7,9…,排成如下的数表:(1)十字框中的五个数的平均数与15有什么关系?
(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.
第七类,几何问题: 49.在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?
50.将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。
2
51.将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm,问量筒中水面升高了多少cm?
第八类,方案设计,选择问题: 52.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行。受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了三种可行方案。方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天。你认为哪种方案获利最多?为什么
53.某市剧院举办大型文艺演出,其门票价格为:一等席300元/人,二等席200元/人,三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。
54.据《楚天都市报》消息,武汉市居民生活用水价格将进行自1999年以来的第四次调整,试行居民生活用水阶梯式计量水价.拟定城市居民用水户(户籍人口4人及以内)每月用水量在22立方米及以内的,为第一级水量基数,按调整后的居民生活用水价格收取;超过22立方米且低于30立方米(含30立方米)的部分为第二级水量基数,按调整后价格的1.5倍收取;超过30立方米的部分为第三级水量基数,按调整后价格的2倍收取.已知调整后居民生活用水价格由现行的每立方米1.51元拟上涨到1.96元.市民张先生一家三口人,他按自己家庭月均用水量计算了一下,按目前新价格,他一个月要缴纳74.48元水费.请问张先生一家月均用水量是多少立方米?和调整前比较,他家每月平均多缴纳多少元水费?
55.小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)
56.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。
4
乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。该班需球拍5副,乒乓球若干盒(不小于5盒)。问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?
57.某电信公司开设了甲、乙两种市内移动通信业务。甲种使用者每月需缴15元月租费,然后每通话1分钟, 再付话费0.3元; 乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元。若一个月内通话时间为x分钟, 甲、乙两种的费用分别为y1和y2元。(1)、试求一个人要打电话30分钟,他应该选择那种通信业务? (2)、根据一个月通话时间,你认为选用哪种通信业务更优惠?
第九类:其他问题:
1:比赛积分问题:
58、小明在一次篮球比赛中,共投中15个球(其中包括2分球和3分球),共得34分,则小明共投中2分球和3分球各多少个?
59.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛? 2:年龄问题:
60.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄
61:今年哥俩的岁数加起来是55岁。曾经有一年,哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟岁数的两倍.哥哥今年几岁? 3:比例问题:
62:一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
63:甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?
64:甲、乙两块合金,含银和铜的比分别是甲为4:3,乙为7:9,今从两块合金中各取多少千克,能得到含银84千克、含铜82千克的新合金? 4:古典数学:
65:100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。 66:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只? 5:浓度问题:
67:某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50%的硫酸多少千克?
68:今需将浓度为80%和15%的两种农药配制成浓度为20%的农药4千克,问两种农药应各取多少千克?
69:有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少? 6:储蓄问题
70:某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税) 7:设辅助未知数问题:
71.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票的,零售票每张16元,共售出零售票的一半,如果在六月份内,团体票按16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?
72. 现对某商品降价10%促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?
5
正在阅读:
一元一次方程应用题归类练习03-06
如何打造基层更具活力的党支部03-23
一千零一夜的好词好句02-21
评选县优秀教师先进事迹材料03-08
一位普通小学乡村教师的悼词03-11
小班幼儿常规培养策略07-07
最新北师大版初中九年级数学下册第12讲 二次函数的图象与性质中03-08
2012年青海省西宁市数学中考真题(word版含答案)07-21
客运站建设项目资金申请报告07-01
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 应用题
- 一次方程
- 一元
- 归类
- 练习