2018年湖北省咸宁市中考数学试卷
更新时间:2023-03-08 04:43:02 阅读量: 初中教育 文档下载
2018年湖北省咸宁市中考数学试卷
一、选择题(每题只有一个正确选项,本题共8小题,每题3分,共24分) 1.(3.00分)(2018?咸宁)咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是( )
A.1℃ B.﹣1℃ C.5℃ D.﹣5℃
2.(3.00分)(2018?咸宁)如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于( )
A.120° B.110° C.100° D.70°
3.(3.00分)(2018?咸宁)2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP约123500000000元,增速在全省17个市州中排名第三,将123500000000用科学记数法表示为( )
A.123.5×109 B.12.35×1010 C.1.235×108 D.1.235×1011
4.(3.00分)(2018?咸宁)用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( )
A.主视图和左视图相同 C.左视图和俯视图相同
B.主视图和俯视图相同 D.三种视图都相同
5.(3.00分)(2018?咸宁)下列计算正确的是( ) A.a3?a3=2a3
B.a2+a2=a4 C.a6÷a2=a3
D.(﹣2a2)3=﹣8a6
6.(3.00分)(2018?咸宁)已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是( )
第1页(共31页)
A.x1+x2=1 B.x1?x2=﹣1
C.|x1|<|x2| D.x12+x1=
7.(3.00分)(2018?咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为( )
A.6 B.8 C.5 D.5
8.(3.00分)(2018?咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分; ②乙走完全程用了32分钟; ③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米 其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上) 9.(3.00分)(2018?咸宁)如果分式
有意义,那么实数x的取值范围是 .
10.(3.00分)(2018?咸宁)因式分解:ab2﹣a= .
11.(3.00分)(2018?咸宁)写出一个比2大比3小的无理数(用含根号的式子表示) .
第2页(共31页)
12.(3.00分)(2018?咸宁)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是 .
13.(3.00分)(2018?咸宁)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为 m(结果保留整数,≈1.73).
14.(3.00分)(2018?咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为 .
15.(3.00分)(2018?咸宁)按一定顺序排列的一列数叫做数列,如数列:,,,
,…,则这个数列前2018个数的和为 .
16.(3.00分)(2018?咸宁)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论: ①AD=CD;
②∠ACD的大小随着α的变化而变化; ③当α=30°时,四边形OADC为菱形; ④△ACD面积的最大值为
a2;
第3页(共31页)
其中正确的是 .(把你认为正确结论的序号都填上).
三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)
17.(8.00分)(2018?咸宁)(1)计算:(2)化简:(a+3)(a﹣2)﹣a(a﹣1). 18.(7.00分)(2018?咸宁)已知:∠AOB. 求作:∠A'O'B',使∠A'O′B'=∠AOB
(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D; (2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′;
(3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′; (4)过点D′画射线O′B',则∠A'O'B'=∠AOB. 根据以上作图步骤,请你证明∠A'O'B′=∠AOB.
﹣
+|
﹣2|;
19.(8.00分)(2018?咸宁)近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表. 使用次数 人数
0 11 1 15 2 23 第4页(共31页)
3 28 4 18 5 5
(1)这天部分出行学生使用共享单车次数的中位数是 ,众数是 ,该中位数的意义是 ;
(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数) (3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?
20.(8.00分)(2018?咸宁)如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),直线y=﹣x+与边AB,BC分别相交于点M,N,函数y=(x>0)的图象过点M.
(1)试说明点N也在函数y=(x>0)的图象上;
(2)将直线MN沿y轴的负方向平移得到直线M′N′,当直线M′N′与函数y═(x>0)的图象仅有一个交点时,求直线M'N′的解析式.
21.(9.00分)(2018?咸宁)如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E. (1)求证:DE是⊙O的切线; (2)若AB=25,BC=
,求DE的长.
22.(10.00分)(2018?咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.
第5页(共31页)
甲种客车 30 300 乙种客车 42 400 载客量/(人/辆) 租金/(元/辆) 学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为 辆;
(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由. 23.(10.00分)(2018?咸宁)定义:
我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”. 理解:
(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);
(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.
求证:BD是四边形ABCD的“相似对角线”;
(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2
,求FH的长.
24.(12.00分)(2018?咸宁)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C. (1)求抛物线的解析式;
(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐
第6页(共31页)
标为m,PQ与OQ的比值为y,求y与m的数关系式,并求出PQ与OQ的比值的最大值;
(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC的值最大时,求点M的坐标.
第7页(共31页)
2018年湖北省咸宁市中考数学试卷
参考答案与试题解析
一、选择题(每题只有一个正确选项,本题共8小题,每题3分,共24分) 1.(3.00分)(2018?咸宁)咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是( )
A.1℃ B.﹣1℃ C.5℃ D.﹣5℃
【分析】根据题意列出算式,再利用减法法则计算可得. 【解答】解:这一天的温差是2﹣(﹣3)=2+3=5(℃), 故选:C.
【点评】本题主要考查有理数的减法,解题的关键是掌握有理数的减法法则.
2.(3.00分)(2018?咸宁)如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于( )
A.120° B.110° C.100° D.70°
【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.
【解答】解:如图,∵∠1=70°, ∴∠3=180°﹣∠1=180°﹣70°=110°, ∵a∥b,
∴∠2=∠3=110°. 故选:B.
第8页(共31页)
【点评】本题利用平行线的性质和邻补角的定义,熟练掌握性质和概念是解题的关键.
3.(3.00分)(2018?咸宁)2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP约123500000000元,增速在全省17个市州中排名第三,将123500000000用科学记数法表示为( )
A.123.5×109 B.12.35×1010 C.1.235×108 D.1.235×1011
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:123500000000=1.235×1011, 故选:D.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.(3.00分)(2018?咸宁)用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( )
A.主视图和左视图相同 C.左视图和俯视图相同
B.主视图和俯视图相同 D.三种视图都相同
【分析】分别得出该几何体的三视图进而得出答案.
第9页(共31页)
【解答】解:如图所示:
,
故该几何体的主视图和左视图相同. 故选:A.
【点评】本题考查了三视图的知识,正确把握三视图的画法是解题关键.
5.(3.00分)(2018?咸宁)下列计算正确的是( ) A.a3?a3=2a3
B.a2+a2=a4 C.a6÷a2=a3
D.(﹣2a2)3=﹣8a6
【分析】根据同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方逐一计算可得.
【解答】解:A、a3?a3=a6,此选项错误; B、a2+a2=2a2,此选项错误; C、a6÷a2=a4,此选项错误; D、(﹣2a2)3=﹣8a6,此选项正确; 故选:D.
【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方运算法则.
6.(3.00分)(2018?咸宁)已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是( ) A.x1+x2=1 B.x1?x2=﹣1
C.|x1|<|x2| D.x12+x1=
【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.
第10页(共31页)
【解答】解:根据题意得x1+x2=﹣=﹣1,x1x2=﹣,所以A、B选项错误; ∵x1+x2<0,x1x2<0,
∴x1、x2异号,且负数的绝对值大,所以C选项错误; ∵x1为一元二次方程2x2+2x﹣1=0的根, ∴2x12+2x1﹣1=0,
∴x12+x1=,所以D选项正确. 故选:D.
【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.
7.(3.00分)(2018?咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为( )
A.6 B.8 C.5 D.5
【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得. 【解答】解:如图,延长AO交⊙O于点E,连接BE,
则∠AOB+∠BOE=180°, 又∵∠AOB+∠COD=180°, ∴∠BOE=∠COD, ∴BE=CD=6,
第11页(共31页)
∵AE为⊙O的直径, ∴∠ABE=90°, ∴AB=故选:B.
【点评】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.
8.(3.00分)(2018?咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分; ②乙走完全程用了32分钟; ③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米 其中正确的结论有( )
=
=8,
A.1个 B.2个 C.3个 D.4个
【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题. 【解答】解:由图可得,
甲步行的速度为:240÷4=60米/分,故①正确,
乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误, 乙追上甲用的时间为:16﹣4=12(分钟),故③错误,
乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误, 故选:A.
【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题
第12页(共31页)
需要的条件,利用数形结合的思想解答.
二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)
9.(3.00分)(2018?咸宁)如果分式≠2 .
【分析】根据分式有意义的条件可得x﹣2≠0,再解即可. 【解答】解:由题意得:x﹣2≠0, 解得:x≠2, 故答案为:x≠2.
【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
10.(3.00分)(2018?咸宁)因式分解:ab2﹣a= a(b+1)(b﹣1) . 【分析】首先提取公因式a,再运用平方差公式继续分解因式. 【解答】解:ab2﹣a, =a(b2﹣1), =a(b+1)(b﹣1).
【点评】本题考查了提公因式法与公式法分解因式,关键在于提取公因式后要进行二次因式分解,因式分解一定要彻底,直到不能再分解为止.
11.(3.00分)(2018?咸宁)写出一个比2大比3小的无理数(用含根号的式子表示) .
<3,这样就可得
有意义,那么实数x的取值范围是 x【分析】先利用4<5<9,再根据算术平方根的定义有2<到满足条件的无理数. 【解答】解:∵4<5<9, ∴2<即
<3,
为比2大比3小的无理数.
.
第13页(共31页)
故答案为
【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.
12.(3.00分)(2018?咸宁)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是
.
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案. 【解答】解:根据题意,画树状图如下:
共有9种等可能结果,其中两次摸出的小球标号相同的有3种结果, 所以两次摸出的小球标号相同的概率是=, 故答案为:.
【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
13.(3.00分)(2018?咸宁)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为 300 m(结果保留整数,≈1.73).
第14页(共31页)
【分析】在Rt△ABD中,根据正切函数求得BD=AD?tan∠BAD,在Rt△ACD中,求得CD=AD?tan∠CAD,再根据BC=BD+CD,代入数据计算即可. 【解答】解:如图,∵在Rt△ABD中,AD=90,∠BAD=45°, ∴BD=AD=110(m),
∵在Rt△ACD中,∠CAD=60°, ∴CD=AD?tan60°=110×
=190(m),
∴BC=BD+CD=110+190=300(m) 答:该建筑物的高度BC约为300米. 故答案为300.
【点评】此题考查了解直角三角形的应用﹣仰角俯角问题.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.
14.(3.00分)(2018?咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为 (﹣1,5) .
【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.
【解答】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′. ∵四边形OEFG是正方形,
∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH, 在△OGM与△EOH中,
∴△OGM≌△EOH(ASA)
第15页(共31页)
∴GM=OH=2,OM=EH=3, ∴G(﹣3,2). ∴O′(﹣,).
∵点F与点O关于点O′对称, ∴点F的坐标为 (﹣1,5). 故答案是:(﹣1,5).
【点评】考查了正方形的性质,坐标与图形性质,全等三角形的判定与性质,根据题意求得点G的坐标是解题的难点.
15.(3.00分)(2018?咸宁)按一定顺序排列的一列数叫做数列,如数列:,,,
,…,则这个数列前2018个数的和为
.
+
【分析】根据数列得出第n个数为
+
+
+…+
,据此可得前2018个数的和为
,再用裂项求和计算可得.
,
+…+
【解答】解:由数列知第n个数为则前2018个数的和为++=
+
+
+
+…+
﹣+
=1﹣+﹣+﹣+﹣+…+=1﹣=
,
.
故答案为:
第16页(共31页)
【点评】本题主要考查数字的变化类,解题的关键是根据数列得出第n个数为
,并熟练掌握裂项求和的方法.
16.(3.00分)(2018?咸宁)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论: ①AD=CD;
②∠ACD的大小随着α的变化而变化; ③当α=30°时,四边形OADC为菱形; ④△ACD面积的最大值为
a2;
其中正确的是 ①③④ .(把你认为正确结论的序号都填上).
【分析】①根据对称的性质:对称点的连线被对称轴垂直平分可得:OM'是AC的垂直平分线,再由垂直平分线的性质可作判断;
②作⊙O,根据四点共圆的性质得:∠ACD=∠E=60°,说明∠ACD是定值,不会随着α的变化而变化;
③当α=30°时,即∠AOD=∠COD=30°,证明△AOC是等边三角形和△ACD是等边三角形,得OC=OA=AD=CD,可作判断;
④先证明△ACD是等边三角形,当AC最大时,△ACD的面积最大,当AC为直径时最大,根据面积公式计算后可作判断. 【解答】解:①∵A、C关于直线OM'对称, ∴OM'是AC的垂直平分线, ∴CD=AD, 故①正确; ②连接OC,
第17页(共31页)
由①知:OM'是AC的垂直平分线, ∴OC=OA, ∴OA=OB=OC,
以O为圆心,以OA为半径作⊙O,交AO的延长线于E,连接BE,则A、B、C都在⊙O上, ∵∠MON=120°, ∴∠BOE=60°, ∵OB=OE,
∴△OBE是等边三角形, ∴∠E=60°,
∵A、C、B、E四点共圆, ∴∠ACD=∠E=60°, 故②不正确;
③当α=30°时,即∠AOD=∠COD=30°, ∴∠AOC=60°,
∴△AOC是等边三角形, ∴∠OAC=60°,OC=OA=AC, 由①得:CD=AD,
∴∠CAD=∠ACD=∠CDA=60°, ∴△ACD是等边三角形, ∴AC=AD=CD, ∴OC=OA=AD=CD, ∴四边形OADC为菱形; 故③正确;
④∵CD=AD,∠ACD=60°, ∴△ACD是等边三角形,
当AC最大时,△ACD的面积最大,
∵AC是⊙O的弦,即当AC为直径时最大,此时AC=2OA=2a,α=90°, ∴△ACD面积的最大值是:
AC2=
=
,
第18页(共31页)
故④正确,
所以本题结论正确的有:①③④ 故答案为:①③④.
【点评】本题是圆和图形变换的综合题,考查了轴对称的性质、四点共圆的性质、等边三角形的判定、菱形的判定、三角形面积及圆的有关性质,有难度,熟练掌握轴对称的性质是关键,是一道比较好的填空题的压轴题.
三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)
17.(8.00分)(2018?咸宁)(1)计算:(2)化简:(a+3)(a﹣2)﹣a(a﹣1).
【分析】(1)先化简二次根式、计算立方根、去绝对值符号,再计算加减可得; (2)先计算多项式乘多项式、单项式乘多项式,再合并同类项即可得. 【解答】解:(1)原式=2
﹣+|﹣2|;
﹣2+2﹣=;
(2)原式=a2﹣2a+3a﹣6﹣a2+a =2a﹣6.
【点评】本题主要考查实数和整式的混合运算,解题的关键是掌握二次根式的性质、立方根的定义及绝对值的性质、多项式乘多项式、单项式乘多项式的运算法则.
第19页(共31页)
18.(7.00分)(2018?咸宁)已知:∠AOB. 求作:∠A'O'B',使∠A'O′B'=∠AOB
(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D; (2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′;
(3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′; (4)过点D′画射线O′B',则∠A'O'B'=∠AOB. 根据以上作图步骤,请你证明∠A'O'B′=∠AOB.
【分析】由基本作图得到OD=OC=O′D′=O′C′,CD=C′D′,则根据“SSS“可证明△OCD≌△O′C′D′,然后利用全等三角形的性质可得到∠A'O'B′=∠AOB. 【解答】证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′, 在△OCD和△O′C′D′中
,
∴△OCD≌△O′C′D′, ∴∠COD=∠C′O′D′, 即∠A'O'B′=∠AOB.
【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了基本作图.
19.(8.00分)(2018?咸宁)近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.
第20页(共31页)
则∠ODC=∠CMO=∠OMN、MC=MO=MD, ∴sin∠ODC=sin∠OMN=又MO=MD,
∴当MD取最小值时,sin∠ODC最大, 此时⊙M与直线x=1相切,MD=2, MN=
=
, ),
)也符合题意;
)或(﹣1,﹣
).
=
,
∴点M(﹣1,﹣
根据对称性,另一点(﹣1,
综上所述,点M的坐标为(﹣1,
【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及相似三角形的判定与性质、三角形的外心、圆的有关性质等知识点.
第31页(共31页)
正在阅读:
2018年湖北省咸宁市中考数学试卷03-08
2018年大学生入党申请书2500字范文09-08
断路器有关的电气专业的技术答疑05-24
山东省2016年期货从业期货法律法规:竞业准则考试试题10-24
全国2011年7月高等教育自学考试 银行会计学试题07-11
八年级数学实数复习104-21
数学建模主要参考资料05-17
张明楷刑法观点汇总(草稿版)07-29
- 二甲基甲酰胺安全技术说明书
- 南邮计算机网络复习题
- 高分子物理实验指导书 - 图文
- 2009.9.25 莞惠环控专业施工图设计技术要求
- 学生工作简报
- 揭阳市斯瑞尔环境科技有限公司废酸综合利用项目可行性研究报告-广州中撰咨询
- 今日靓汤(佘自强)
- 奥数 - 二年级 - 数学 - 第三讲时间的教师版计算答案 - 图文
- 如何命制一份好的物理试卷
- 数据库开题报告
- 禁用未经批准或已经废止或淘汰技术的制度流程
- 大学英语(二)第2阶段测试题
- 湘教版一年级上册美术教案(全)
- (整套)学生顶岗(毕业)实习手册
- 高频 二极管包络检波 - 图文
- 2018届中考英语复习题型四任务型完形填空备考精编含解析 - 186
- 郑煤集团超化煤矿一采区开采设计 - 图文
- 财政学习题
- 摄影摄像复习资料
- SMC D-A93接线方式 - 图文
- 咸宁市
- 湖北省
- 数学试卷
- 中考
- 2018
- 黑龙江省哈尔滨市中考数学真题试题(含解析)
- 2018年贵州省黔西南州中考数学试卷及答案
- 龙岩市初中数学中考考纲总结2018
- 山东省济南市市中区2018届中考一模数学试题含答案
- 2018年中考数学二轮复习精练《统计与概率》(含答案)
- 徐州市2014年初中中考数学试卷含答案
- 2018年吉林省中考数学试题及参考答案(word解析版)
- 2018年湖北省襄阳市中考数学试卷及答案解析
- 2017年石家庄一模数学卷
- 2018年中考数学精品资料初中圆知识点总结
- 2018年辽宁省沈阳市中考数学试卷word版--考点
- 2018年江苏省徐州巿中考数学试卷
- 2018年长沙市中考数学试卷含参考解析
- 2018年甘肃省定西市中考数学试卷
- 2018年湖北省宜昌市中考数学试题
- 2015年重庆市中考一模数学试卷
- 新福建初中数学中考复习优化设计模拟预测第5课时 一次方程(组)(
- 2018年湖北省荆门市中考数学试卷
- 浙教版八年级下数学第六章《反比例函数》中考试题(选择题)——顾
- 2018中考数学一轮复习 习题分类汇编一(实数及其运算)