Hydrothermal Surface-Wave Instability and the Kuramoto-Sivashinsky Equation
更新时间:2023-07-23 23:34:01 阅读量: 实用文档 文档下载
- hydrothermal推荐度:
- 相关推荐
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrotherma
4
9
9
1
n
a
J
4
1
v
1
1
4
9
/
lo
s
-
tt
a
:pv
i
X
r
aHYDROTHERMALSURFACE-WAVEINSTABILITYANDTHEKURAMOTO-SIVASHINSKYEQUATIONR.A.Kraenkel,J.G.PereiraInstitutodeF´ sicaTe´oricaUniversidadeEstadualPaulistaRuaPamplona14501405-900S aoPauloSP–BrazilM.A.MannaLaboratoiredePhysiqueMath´ematiqueUniversit´edeMontpellierII34095MontpellierCedex05–FranceAbstractWeconsiderasystemformedbyanin niteviscousliquidlayerwithacon-stanthorizontaltemperaturegradient,andabasicnonlinearbulkvelocitypro le.Inthelimitoflong-wavelengthandlargenondimensionalsurfaceten-sion,weshowthathydrothermalsurface-waveinstabilitiesmaygiveriseto
disturbancesgovernedbytheKuramoto-Sivashinskyequation.Apossible
connectiontohot-wireexperimentsisalsodiscussed.
TypesetusingREVTEX
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrotherma
I.INTRODUCTION
Thermocapillarydynamicsinthintwo-dimensionalliquidlayers,andinparticulartheconvectiveinstabilitiesofsuch owshavebeenasubjectofmuchinterest[1,2].Whentheupperfreesurfaceofaplanarliquid,boundedbelowbyarigidplateandabovebyaninterfacewithapassivegas,issubmittedtoatemperaturegradient,acorrespondinggradientinthesurfacetensionwillappearwhichwillproducemotioninthebulk uid.Ifaverticaltemperaturegradientisappliedtoabasicstaticstate,convectivemotionsetsin,aphenomenoncalledMarangoniconvection.However,ahorizontaltemperaturegradientmayalsogiverisetoinstabilities,providedthebasicstateisnotstatic[1].Thesearethesocalledhydrothermalinstabilities,whichareacouplede ectproducedbybothtemperatureandvelocitygradients.SmithandDavis[1,2]identi edtwosuchinstabilities,whichmanifestthemselvesintheformofconvectionandsurface-wavemotion.
Ourconcerninthisletterwillbethestudyofthehydrothermalsurface-waveinstability.IthasbeenshowninRef.[1]thatitispossibletohavesuchinstabilitiescharacterizedbyazerowave-number,providedthebasicunderlying owisanonlinearreturn ow.Thelongwavelenghtnatureoftheinstabilityallowsustobroachtheproblembyalong-waveperturbativeanalisys,wherenonlinearitymaybetakenintoaccount.ByusingthereductiveperturbationmethodofTaniuti[3],wewillshowthat,inthelimitoflargenondimensionalsurfacetension,thewavesoriginatedbythisinstabilityturnouttobegovernedbytheKuramoto-Sivashinskyequation[4,5].Thisequationhasalreadybeenderivedindi erentphysicalcontexts[6].Inparticularithasbeenobtainedastheequationgoverningpertur-bationsfromareferencePoiseuille owofa lmlayeronaninclinedplane[7],alsointhespeci climitoflargenondimensionalsurfacetension[8].However,inthiscase,theinsta-bilityunderconsiderationwashydrodynamicalinnature,andnothydrothermal,asisthecaseconsideredinthepresentwork.
Thebasicinterestoftheresultspresentedinthisworkisconcernedwithrecentex-perimentalevidencesfortheexistenceofsurfacehydrothermalwaves.Forexample,ithas
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrotherma
beenreportedintheliteraturetheobservationofsuchwavesinacylindricalcontainer[9].Moreover,hot-wireexperimentsperformedrecently[10,11]haveindicatedthepresenceofpropagativepatterns.Inthe nalsection,wewillspeculateonapossibleconnectionbetweenourresultsandtheseexperiments.
II.MATHEMATICALFORMULATION
Weconsidera uidlayerofheightd,boundedbelow,atz=0,byarigidperfectlyinsulatingplate,andabove,aty=d+η(x,t),byafreedeformablesurfaceincontactwithapassivegasofnegligibledensityandviscosity.Theliquidischaracterizedbyadensityρ,thermalconductivityk,thermaldi usivityκ,unitthermalsurfaceconductanceh,anddynamicviscosityµ.TothefreesurfaceweassociateasurfacetensionT,whichwillbeassumedtodependonthelocaltemperatureθaccordingtothelinearlaw
T=T0 γ(θ θ0),(1)
whereγisapositiveconstant,andT0,θ0arereferencevaluesforsurfacetensionandtem-perature,respectively.
Wewillbeconcernedwithe ectscomingfromthermocapillarityonly.Thereforewewillneglectgravity.Thisisagoodapproximationforathinenoughlayer,oralayerinamicrogravityenvironment.Theequationsgoverningthe uidmotionarewrittenas:
ux+wz=0,(2)
ρ(ut+uux+wuz)= px+µ(uxx+uzz),(3)
ρ(wt+uwx+wwz)= pz+µ(wxx+wzz),(4)
θt+uθx+wθz=κ(θxx+θzz),(5)
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrotherma
wherethesubscriptsdenotepartialdi erentiation,uandware,respectively,thexandzcomponentsofthevelocity,andpisthepressure.Ontheupperfreesurface,theseequationsaresubjecttothefollowingboundaryconditions
ηt+uηx=w,
p
(6)ηxx,(7)
(8)2µN32µ1 (ηx)[uz+wx]+2µηx(wz+ux)=N[Tx+ηxTz],
ηxθx+θz=h
2.
Equation(6)isthekinematicboundarycondition,Eqs.(7)and(8)representthenormalandtangentialstressbalanceattheupperfreesurface,andEq.(9)istheequalityoftheheat uxattheinterface,whereθ∞isthetemperatureatz→∞.Onthelowerplate,theboundaryconditionsare
u=w=θz=0,
whichcharacterizesthenoslipandzeroheat uxconditions.
Perturbationtheorywillbeperformedonabasicstateofthesystem,de nedbyimposingtothein niteliquidlayeraconstanthorizontaltemperaturegradient
dθb(10)
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrotherma
temperature,γβastheunitofpressure,andT0astheunitofsurfacetension.Inthisprocessthefollowingdimensionlessnumbersappear:
R=ργβd2
ρκ,B=hd
µ2,
whereRistheReynoldsnumber,σisthePrandtlnumber,BistheBiotnumber,andSisthesurfacetensionnumber.Inaddition,wehavealsotheMarangoninumberM,whichisde nedbyM=Rσ.
Thebasicstate,fromwhichwewillconsidersmalldisturbances,isthereturn owsolutiontotheEqs.(2-10)which,inthelimitS→∞,isgivenby:
ub=3
2
pb=
z3 (12a)wb=0;
161 z4 1
4Sx3+R
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrotherma
III.PERTURBATIONTHEORY
Letusconsiderthefollowingperturbationstothebasicstate:
u=ub+ (u0+ u1+....),(13a)
w= 2(w0+ w1+...),(13b)
p=pb+ (p0+ p1+...),(13c)
θ=θb+ (θ0+ θ1+...),(13d)
η=ηb+ (η0+ η1+...),
where isasmallparameter.Next,weintroducetheslowvariablesaccordingto
ξ= (x ct),(13e)(14)
τ= 2t,(15)
andwesupposethattheperturbationsdependon(x,t)through(ξ,τ)only.Wenowmakemoreprecisethemeaningoflargealbeit niteforS,byassumingthat
S= 2
S~O( 0).
Weareable,atthispoint,toobtainanorderbyordersolutiontotheproblembyintegrationsinthezvariable.Ateachorder,thebulkequationsandtheboundaryconditionsatthebottomyieldu,w,θ,pintermsofthreearbitraryfunctions,whichwillbedeterminedintermsofη0bytheboundaryconditionsattheupperfreesurface.However,aswehavefourequations,acompatibilityconditionwillariseateachorder.Explicitly,atorder 0,weget:
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrotherma
u0= 3
4
θ0=Rσ z2η0ξ;1(17b)z3
2B
S
2.(18)
Atthenextorder,therelevantsolutionsare
u1=RS
160 z 5z54 η0ξξ+6Rzη0ξξξξ 3z2
4η1ξ+1
4η0η0ξ+RS
4η1ξ+1
4 σ2 η0ξξ+2Rη0ξξξξ.(21)
SubstitutingintoEq.(20),weobtainanevolutionequationforη0:
η0τ 5
4B+1S
S= 2Sandη0= 1η,
Eq.(22)reads
ηt+c 5
4B+
13Rηxxxx=0.(23)
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrotherma
De ninganew eldby
ζ=c 5
1
4B+3Rζxxxx=0.(24)
Byasimplerescalingofvariables,thisequationcanbewrittenas
ζt+ζζx+ζxx+ζxxxx=0,(25)
whichistheKuramoto-Sivashinsky(KS)equationinitsstandardform[4,5].
ThelinearanalysisperformedbySmithandDavis[1]canberecoveredfromEq.(24)ifweneglectthenonlinearterm,andtake
ζ~exp[ (αx ωt)].
Thisleadstothedispersionrelation
ω= α2R σ
10 α4S
S,weobtainthecriticalReynoldsnumber
Rσ 1
c= 3 10 1
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrotherma
bythecoexistenceofcoherentspatialstructureswithtemporalchaos[14].Inparticular,thesearchforabetterunderstandingofthelongwavelengthpropertiesoftheKSequationhasbeenintensivelypursuedlately[15].Anditispreciselyinthelong-wavelimitthatwehaveobtainedtheKSequationasgoverninghydrothermalsurface-waveinstabilitiesinathinviscouslayerof uidwithhorizontaltemperatureandvelocitygradients,andinthelimitoflargenondimensionalsurface-tension.Thisresultcouldpossiblybeconnectedtoarecentexperiment[9]whichhasbeenperformedtostudythefeaturesofhydrothermalwavesappearingwhenacylindricalliquidlayerislaterallyheated.Theexistenceofhydrothermalwaveinstabilitieshasbeenobservedexperimentally,andtheresultswerefoundtopartiallyagreewiththeprevioustheoreticalpredictionsofSmithandDavis[1].Ifwebelievethat,despitethedi erenceinthegeometrytheresultspresentedinRef.[9]cansomehowbeconsideredasanapproximationtothetheoreticalpredictions,thenthelong-wavedynamicsofthefreesurfacedescribedbytheKSequationshouldplayaroleintheexplanationofthepropagativepatternsobservedinthiskindofexperiment.
Atlast,wewouldliketospeculateonapossibleconnectionbetweentheresultsobtainedinthisletterandhot-wireexperiments[10,11].Theseexperimentsconsistofahotwireplacedhorizontallyjustbelowafreesurfaceofa uid.Aboveacertaincriticalvalueoftheelectricalpowersuppliedtothehotwire,propagatingpatternsareobserved.Theexistenceofbothhorizontaltemperaturegradientsandabasicvelocity ow,asthe uidisconvecting,makescontactwiththetheoreticalsettinginwhichhydrothermalwavesshowup.Ofcourse,thisisnotenoughtoensurethattheaboveresultscanhaveanimmediateapplicationtothehot-wireexperiments.However,sincethesystemunderconsiderationherepresentssimilaritieswiththeabovementionedexperiments,theycouldhelptoelucidatethephysicalmechanismresponsiblefortheobservedpropagativepatterns.Theideatomimicfeaturesofaconvecting uidbyatwo-dimensionalsystemwithavelocitygradienthasbeenexaminedbyRoz`e[16],basedondataofanexperimentwithamuchshorterwire[17].However,thisapproach,whichusedalinear owpro leandlinearizedequations,turnedouttoberatherdisappointing.Infact,asshowninRef.[1],thereisnolong-waveinstabilityinthiscase.
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrotherma
Onlywhenanonlinearreturn owsolutionissupposed,whichisindeedmoreappropriateforaclosedsystem,long-wavehydrothermalphenomenaappear.Therefore,wethinkitwouldbeinterestingtoreexaminetheideasproposedinRef.[16]forthehotwireprobleminthelightofthepresentresults.
Insummary,wehavemadeinthisletteranonlinearanalysisofthelongwavelengthhy-drothermalinstabilities,whichcanbeconsideredasanextensionofaproblem rstdiscussedbySmithandDavis[1]inalinearapproximation.Wehaveshownthatthefree-surfacedy-namicsisgovernedbytheKuramoto-Sivashinskyequation,andthatthepreviousresultscanberecoveredfromoursasaparticularcase.
ACKNOWLEDGMENTS
Twooftheauthors(R.A.K.andJ.G.P.)wouldliketothankConselhoNacionaldeDesenvolvimentoCient´ coeTecnol´ogico(CNPq),Brazil,forpartialsupport.
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrotherma
REFERENCES
[1]M.K.SmithandS.H.Davis,J.FluidMech.132(1983)119;132(1983)145.
[2]S.H.Davis,Ann.Rev.FluidMech.19(1987)403.
[3]T.Taniuti,Suppl.Prog.Theor.Phys.55(1974)1.
[4]Y.KuramotoandT.Tzusuki,Prog.Theor.Phys.55(1976)356.
[5]G.I.Sivashinsky,ActaAstronautica6(1979)569.
[6]Forareview,see:B.Nicolaenko,PhysicaD20(1986)109.
[7]A.Pumir,P.MannevilleandY.Pomeau,J.FluidMech.135(1983)27.
[8]G.I.SivashinskyandDM.Michelson,Prog.Theor.Phys.63(1980)2112.
[9]A.B.Ezerskyetal.,Phys.Rev.E47(1993)1126.
[10]J.M.VinceandM.Dubois,Europhys.Lett.20(1992)505.
[11]J.Burgueteetal,Europhys.Lett.23(1993)401.
[12]A.SenandS.H.Davis,J.FluidMech.121(1982)163.
[13]R.ConteandM.Musette,J.Phys.A:Math.andGen.22(1989)169.
[14]P.Manneville,inMacroscopicModellingofTurbulentFlows,ed.byU.Frisch,J.B.
Keller,G.PapanicolaouandO.Pironneau,LectureNotesinPhysics,vol.230,(Springer,Berlin,1985).
[15]S.Zalesky,PhysicaD34(1989)427andreferencestherein;F.Hayot,C.Jayaprakash
andC.Josserand,Phys.Rev.E47(1993)911.
[16]C.Roz`e,Ph.D.Thesis.Universit´edeRouen,France,(1989).
[17]M.E.Weill,M.RhaziandG.Gouesbet,J.Physique(Paris)46(1985)1501.
- 1Modeling premixed combustion-acoustic wave interactions---A
- 2音频插件(Wave3.0)效果各种简介(下)
- 3A review of recent progress in coatings, surface modi中文翻
- 4Surface Pro 3 平板电脑 培训资料
- 5Surface Pro 3 平板电脑 培训资料
- 6Modeling premixed combustion-acoustic wave interactions---A review
- 7Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term
- 8Quasi-Spherical Gravitational Collapse in higher dimension and the effect of equation of st
- 9Surface mining subsidence control based on grouting-recovery
- 10Methane adsorption characteristics on coal surface above critical temperature
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Hydrothermal
- Instability
- Sivashinsky
- Kuramoto
- Equation
- Surface
- Wave
- 浅谈新形势下的城市配电网规划
- 如何给招聘方留下好印象
- 通风队青年文明号方案
- 交质监发774号公路水运工程监理信用评价办法
- 2013北京东城二模物理试题及答案
- 广州地铁价格一览表(2010)
- 远程教育学习指南
- 科目三(路考)一次通过经验总结
- 数控编程试题及答案
- 中考英语看图短文填空专项
- 关于电力配电系统中防雷与接地技术的探讨
- 家长批评孩子的十大技巧
- 武汉中商:第六届四次监事会决议公告 2010-08-23
- 日本留学:选择大学的十个要点
- 新编大学英语 1 Unit 4 背景知识之 Holloween
- 农村改革开放近40年以来的住房变化
- Shape analysis through predicate abstraction and model checking
- 设备科管理人员目标责任书
- 2009年11月企业人力资源管理师三级理论试卷
- NetApp统一存储技术优势分析