A Solution to Symmetric Teleparallel Gravity
更新时间:2023-07-22 23:08:01 阅读量: 实用文档 文档下载
- 阿根廷推荐度:
- 相关推荐
Teleparallel gravity models, in which the curvature and the nonmetricity of spacetime are both set zero, are widely studied in the literature. We work a different teleparallel theory, in which the curvature and the torsion of spacetime are both constrained
ASolutiontoSymmetricTeleparallelGravity
Muza erADAK
DepartmentofPhysics,FacultyofArtsandSciences,
PamukkaleUniversity,
arXiv:gr-qc/0412007v1 2 Dec 200420100Denizli,Turkeymadak@pamukkale.edu.tr¨OzcanSERTDepartmentofPhysics,FacultyofArtsandSciences,PamukkaleUniversity,20100Denizli,Turkeyosert@pamukkale.edu.trFebruary7,2008AbstractTeleparallelgravitymodels,inwhichthecurvatureandthenonmetricityofspacetimearebothsetzero,arewidelystudiedintheliterature.Weworkadi erentteleparallelthe-ory,inwhichthecurvatureandthetorsionofspacetimearebothconstrainedtozero,butthenonmetricityisnonzero.Afterreformulatingthegeneralrelativityinthisspacetimewe ndasolutionandinvestigateitssingularitystructure.
1Introduction
Einstein’sgeneralrelativityprovidesanelegant(pseudo-)Riemannianformulationofgravitationintheabsenceofmatter.Inthevariationalapproach,Einstein’s eldequationsareobtainedbyconsideringvariationsoftheEinstein-HilbertactionwithrespecttothemetricanditsassociatedLevi-Civitaconnectionofthespacetime.Thatis,theabsenceofmattermeansthattheconnectionismetriccompatibleandtorsionfree,asituationwhichisnaturalbutnotalwaysconvenient.AnumberofdevelopmentsinphysicsinrecentyearssuggestthepossibilitythatthetreatmentofspacetimemightinvolvemorethanaRiemannianstructureTheoriesofgravitybasedonthegeometryofdistantparallelismarecommonlycon-sideredastheclosestalternativetothegeneralrelativity(GR)theory.Teleparallelgravitymodelspossessanumberofattractivefeaturesbothfromthegeometricalandphysicalview-points.TeleparallelismnaturallyariseswithintheframeworkofthegaugetheoryofthegroupofgeneralcoordinatetransformationswhichunderliesGR.Accordingly,theenergy-momentumcurrentrepresentsthemattersourceinthe eldequationsoftheteleparallelgravity.
Sincegaugetheoriesseemimportantforthedescriptionoffundamentalinteractionsitap-pearsnaturaltoexploitanygaugestructurepresentintheoriesofgravity.Di erentauthors,
Teleparallel gravity models, in which the curvature and the nonmetricity of spacetime are both set zero, are widely studied in the literature. We work a different teleparallel theory, in which the curvature and the torsion of spacetime are both constrained
however,adoptdi erentcriteriainordertodeterminewhatpropertiesatheoryshouldpossessinorderforittoqualifyasagaugetheory.WetakethegravitationalgaugegrouptobethelocalLorentzgroup[7].
Inthispaperwewillstudyagravitymodelinaspacetimewhosecurvatureandtorsionarebothzero,butthenonmetricityisnonzero.Thereisafewworkintheliteratureaboutgravitymodelsinthiskindofspacetimes;theso-calledsymmetricteleparallelgravity[8].
2Mathematicalpreliminaries
Spacetimeisdenotedbythetriple{M,g, }whereMisa4-dimensionaldi erentiablemani-fold,equippedwithaLorentzianmetricgwhichisasecondrank,covariant,symmetric,non-degeneratetensorand isalinearconnectionwhichde nesparalleltransportofvectors(ormoregenerallytensorsandspinors).Withanorthonormalbasis{Xa},
g=ηabea eb,a,b,···=0,1,2,3(1)
whereηab=( ,+,+,+)istheMinkowskimetricand{ea}istheorthonormalco-frame.Thelocalorthonormalframe{Xa}isdualtotheco-frame{ea};
beb(Xa)=δa.(2)
ThemanifoldMisorientedwiththevolume4-form
1=e0∧e1∧e2∧e3(3)
where denotestheHodgemapanditisconvenienttoemployinthefollowingthegradedinterioroperator Xa≡ a:
b aeb=δa.(4)
Inaddition,theconnection isspeci edbyasetofconnection1-formsΛab.Inthegaugeapproachtogravityηab,ea,Λabareinterpretedasthegeneralizedgaugepotentials,whilethecorresponding eldstrengths;thenonmetricity1-forms,torsion2-formsandcurvature2-formsarede nedthroughtheCartanstructureequations
2Qab:= Dηab=Λab+Λba,
Ta:=Dea=dea+Λab∧eb,
Rab:=DΛab:=dΛab+Λac∧Λcb(5)(6)(7)
wheredandDdenotetheexteriorderivativeandthecovariantexteriorderivative,respectively.These eldstrengthssatisfytheBianchiidentities1
DQab=1
1SinceQab=1
Teleparallel gravity models, in which the curvature and the nonmetricity of spacetime are both set zero, are widely studied in the literature. We work a different teleparallel theory, in which the curvature and the torsion of spacetime are both constrained
Thelinearconnection1-formscanbedecomposeduniquelyasfollows[9],[10]
Λab=ωab+Kab+qab+Qab
whereωabaretheLevi-Civitaconnection1-formsthatsatisfy
dea+ωab∧eb=0,
Kabarethecontortion1-formssuchthat
Kab∧eb=Ta,
andqabaretheanti-symmetrictensor1-formsde nedby
qab= ( aQbc)∧ec+( bQac)∧ec.
Intheabovedecompositionthesymmetricpart
Λ(ab)=Qab
whiletheanti-symmetricpart
Λ[ab]=ωab+Kab+qab.(16)(15)(14)(13)(12)(11)
Itiscumbersometotakeintoaccountallcomponentsofnonmetricityingravitationalmodels.Thereforewewillbecontentwithdealingonlywithcertainirreduciblepartsofittogainphysicalinsight.TheirreducibledecompositionsofnonmetricityinvariantundertheLorentzgrouparesummarilygivenbelow[10].Thenonmetricity1-formsQabcanbesplitintotheirtrace-free
Qab+1
Qab=0.Letusde ne
Λb:= a
Qab∧ea),Θ:=eb∧Θb, a:=Θa 1
(3)
(4)Qab=Qab=321(ea∧ b+eb∧ a)2ηabΛ)(20)(21)
Teleparallel gravity models, in which the curvature and the nonmetricity of spacetime are both set zero, are widely studied in the literature. We work a different teleparallel theory, in which the curvature and the torsion of spacetime are both constrained
3Symmetricteleparallelgravity
Inthesymmetricteleparallelgravity(STPG)[8],wehavetwogeometricalconstraints
Rab=dΛab+Λac∧Λcb=0(24)
Ta=dea+Λab∧eb=0.(25)
Theseequationsmeanthatthereisadistantparallelism,buttheanglesandlengthsmaychangeduringaparalleltransport.
Intheliteraturetherearemanyworksonteleparallelgravitymodels[2]-[6]inwhichcon-straintsaregiven
Rab=0,Qab=0.(26)
Onetrivialsolutionto(26)isηab=( ,+,+,+)andΛab=0.Thentheorthonormalco-frame{ea}isleftoverastheonlydynamicalvariable.WecallsuchachoiceWeitzenb¨okgauge.ThisgaugecannotbeasolutiontoSTPGbecauseofequations(24)and(25)sincewhenwesetηab=( ,+,+,+)andΛab=0thisgiveriseidenticallytoea=dx a:theso-calledMinkowskigauge[8].
NowwegiveabriefoutlineofGR.GRiswrittenin(pseudo-)Riemannianspacetimeinwhichtorsionandnonmetricityarebothzero,i.e.,connectionisLevi-Civita.Einsteinequationcanbewritteninthefollowingform
Ga:= 1
2Rea=κ τa(28)
whereGaisEinsteintensor3-form,Rab(ω)isRiemanniancurvature2-form,(Ric)a= bRba(ω)isRiccicurvature1-form,R= a(Ric)aisscalarcurvature,τaisenergy-momentum3-formandκiscouplingconstant.
ForthesymmetricteleparallelequivalentofEinsteinequationwe rstdecomposenon-Riemanniancurvature2-form(7)via(11)asfollows,withKab=0
Rab(Λ)=Rab(ω)+D(ω)(qab+Qab)+(qac+Qac)∧(qcb+Qcb)(29)whereD(ω)isthecovariantexteriorderivativewiththeLevi-Civitaconnection.AftersettingRab(Λ)=0weobtainthesymmetricteleparallelequivalentof(27)
Ga:=1
Teleparallel gravity models, in which the curvature and the nonmetricity of spacetime are both set zero, are widely studied in the literature. We work a different teleparallel theory, in which the curvature and the torsion of spacetime are both constrained
equationseasily,theinvariantdescriptionprovidesthecorrectunderstandingofthephysicalcontentsofasolution.
Sincemetricandconnectionareindependentquantitiesinnon-Riemannianspacetimes,wehavetopredictseparatelyappropriatecandidatesforthem.Thereforewe rstwritealineelementinordertodeterminethemetric.Wenaturallystartdealingwiththecaseofsphericalsymmetryforrealisticsimplicity,
g= F2dt2+G2dr2+r2dθ2+r2sin2θd 2
whereF=F(r)andG=G(r).Aconvenientchoiceforatetradreads
e0=Fdt,
1
1
Gr)e,1(31)(32)cotθe1=Gdr,e2=rdθ,e3=rsinθd .Inaddition,forthenon-RiemannianconnectionwechooseΛ12= Λ21=
FG1e,1e3,1Λ23= Λ32= G)e1,Λ11=
)e1,Λ22=others=0.G
Thesegaugecon gurations(32)and(33)satisfytheconstraintequationsRab(Λ)=0,0.OnecancertainlyperformalocallyLorentztransformationΛ33=
ea→Labeb,Λab→LacΛcdL 1db(33)Ta(Λ)=(34)+LacdL 1cb
whichyieldstheMinkowskigaugeΛab=0.Thismaymeanthatweproposeasetofconnectioncomponentsinaspecialframeandcoordinatewhichseemscontrarytothespiritofrelativitytheory.Howeverinphysicallynaturalsituationswecanchooseareferenceandcoordinatesystematourbestconvenience.
Wededucefromequations(32)-(33)
ω01=
Q00=FF′′rG
r1(1 e2,1ω13= 1(1 1re3r(1 1
(35)
whosecomponentsreadexplicitly
Zerothcomponent
Firstcomponent
Secondcomponentothers=0.FGGGWhenweput(35)into(30)weobtain,withτa=0 bc bfcbfcdq+2ωf∧q+qf∧q∧(ea∧eb∧ec)=0 2(G 1)′ r2G22F′r2G2rFG2
F′+(G 1)′ e1∧e2∧e3=0e0∧e2∧e3=0e0,q12= 1)e2,q13=1r 1)e3,(36)(37)(38) (F′G 1)′
+FGrGe0∧e1∧e2=0.(40)
Teleparallel gravity models, in which the curvature and the nonmetricity of spacetime are both set zero, are widely studied in the literature. We work a different teleparallel theory, in which the curvature and the torsion of spacetime are both constrained
Thenfrom(37)and(38)
G(r)=1/F(r)(41)
andfrom(39)and(40)
F2(r)=1 C
e10,R02(ω)=F′
rFG2e30,
R12(ω)(G 1F)′G=rGe31,R23(ω)=1
G2)e32.(43)
ThusthequadraticinvariantoftheRiemanniancurvaturereads
R)∧ Rab(ω)= 2 (F′G 1)′ 2 (G 1)′
ab(ωrFG2+4r2 1 1
r61(44)
andthespacetimegeometryisnaturallycharacterizedbythequadraticinvariantofthenon-metricity
Qab∧ Qab= F′
r 1 1
4r3(r C) 3C
r2 1 1 C
Teleparallel gravity models, in which the curvature and the nonmetricity of spacetime are both set zero, are widely studied in the literature. We work a different teleparallel theory, in which the curvature and the torsion of spacetime are both constrained
r=C.Sincewearedealingwithsymmetricteleparallelgravity,itisnecessaryalsotoanalyzethebehaviorofnonmetricity.Asseenfrom(45),thenonmetricityinvariantdivergesnotonlyattheoriginr=0,butalsoattheSchwarzschildhorizonr=C.ThehorizonisaregularsurfacefromtheviewpointoftheRiemanniangeometry,butitissingularfromtheviewpointofsymmetricteleparallelgravity.WeintendtoclarifythegeometricalandphysicalmeaningofthesingularitiesinSTPGbyinvestigatingmattercouplingtoSTPGinaseparatepaper.Acknowledgement
ThisworkissupportedbytheScienti cResearchProject(BAP)2002FEF007,PamukkaleUniversity,Denizli,Turkey.
References
[1]M.Adak,T.DereliandL.H.Ryder,Int.J.Mod.Phys.,D12,(2003),145.
(arXiv:gr-qc/0208042)
[2]K.HayashiandT.Nakano,Prog.Theor.Phys.,38,(1967),491.
[3]K.HayashiandT.Shirafuji,Phys.Rev.,D19,(1979),3524.
[4]Y.N.ObukhovandJ.G.Pereira,Phys.Rev.,D67,(2003),044016.
(arXiv:gr-qc/0212080)
[5]J.W.Maluf,Phys.Rev.,D67,(2003),108501.
(arXiv:gr-qc/0304005)
[6]H.I.Arcos,V.C.DeAndradeandJ.G.Pereira,Int.J.Mod.Phys.,D13,(2004),807.
(arXiv:gr-qc/0403074)
[7]I.M.Benn,T.DereliandR.W.Tucker,J.Phys.,A15,(1982),849.
[8]J.M.NesterandH.J.Yo,ChineseJ.Phys.,37,(1999),113.
(arXiv:gr-qc/9809049)
¨[9]T.Dereli,M.Onder,J.Schray,R.W.TuckerandC.Wang,Class.Quant.Grav.,13,
(1996),L103.
[10]F.W.Hehl,J.D.McCrea,E.W.MielkeandY.Ne’eman,Phys.Rep.,258,(1995),1.
正在阅读:
A Solution to Symmetric Teleparallel Gravity07-22
新视野大学英语(第三版)第一册读写教程课后习题答案01-30
乘法分配律案例05-23
3、3排列组合特殊问题解析01-02
外墙淋水试验方案√04-19
《爱在别乡的季节》观后感精选10篇12-12
音乐盒作文600字07-07
2015高三物理牛顿定律练习题06-15
大干一百天发言稿- 讲话稿-演讲稿09-07
- 1智慧交通解决方案 ITS Solution
- 2Final fate of spherically symmetric gravitational collapse of a dust cloud in Einstein-Gaus
- 3Discrete quantum gravity the Lorentz invariant weight for the Barrett-Crane model
- 4DELL Compellent Storage Solution 戴尔康贝存储方案 - 图文
- 5Evaluation of Removal Efficiency of Cobalt from Aqueous Solution Using Granular Activated Carbon
- 6Bear Solution 5005检测流程-读卡器检测流程
- 7西门子程控交换机 4000-Solution - 图文
- 8Non-polynomial splines approach to the solution of sixth-order boundary-value problems
- 9Children’s capacity to remember a novel problem and to secure its future solution (pages 26–33)
- 10雅思大作文批改之increase of anti-social behavior and a lack of respect to others的cause和solution
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Teleparallel
- Symmetric
- Solution
- Gravity
- 争做讲卫生、爱护环境的文明学生
- 土地征收法律意见书一则
- 基于Abaqus的燃油箱跌落模拟
- 在校大学生对辅导员工作满意度的调查
- 浅谈多媒体技术在高中思想政治课中的正确合理应用
- 2013年(行政类)安徽会计继续教育网上考试练习及答案(中华会计学习)
- 企业如何实现有效的集团管控?——最专业咨询公司集团管控项目纪实
- 女性:关爱乳房健康公益讲座(二)
- 乳制品生产许可证审查细则(2006)
- 中低频脉冲治疗仪固定装置的设计及应用
- 2014年1-6月山东省及全国精制食用植物油月度产量数据统计报告
- 空心板梁钢筋技术交底
- 一分钟经理 一分钟管理
- 上海市第十人民医院感染管理科
- 可行性方案评估-英文版
- 社会养老调查报告
- 幼儿园托班教案:白天和黑夜
- 泰兴市征收房屋重置价格、建筑等级标准
- 中医急症护理常规【精编版】
- 动物细胞培养和核移植技术