基因工程 期末复习题及答案

更新时间:2023-12-22 18:04:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

名词解释:基因工程:是以分子遗传学理论为基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因(即DNA 分子),按照人们预先设计的蓝图,在体外构建重组DNA 分子,然后导入活细胞,有目的改造生物原有的遗传特性,获得新品种,生产新产品,或是研究基因的结构和功能.同裂酶(isoschizomers)(同切点酶):有一些来源不同的限制酶识别的是同样的核苷酸靶序列,这类酶特称为同裂酶.同尾酶(isocaudamer):与同裂酶对应的一类限制性内切酶,它们虽然来源不同,识别的靶序列也各不相同,但都能产生相同的粘性末端,特称为同尾酶. 星号活性(star activity):在“非最适的”反应条件下(包括高浓度的核酸内切限制酶、高浓度的甘油、低离子强度、用Mn2+取代Mg2+以及高pH值等等),有些限制性核酸内切酶识别序列的特异性便会发生“松动”,从其“正确”识别序列以外的其它位点切割DNA分子.这种特殊的识别能力,通常叫做星号活性,以EcoRI*表示.测序酶是经修饰过的T7噬菌体DNA聚合酶,是采用缺失的方法,从外切核酸酶结构域中除去28个氨基酸,这样使得T7DNA聚合酶完全失去了3′-5′外切酶活性,只有5′-3′聚合酶活性,而且聚合能力提高了3-9倍,测序时常用此酶.限制性内切酶也是一种水解酶,主要从细菌中分离得到.在细菌体内的作用是水解“入侵

”的外源DNA 序列而保护自身DNA.水解后产生的DNA 产物是带有5′-P和3′-OH的.限制性核酸内切酶:是一类能识别和切割双链DNA 分子中特定碱基顺序的核酸水解酶.限制-修饰系统:指一定类型的细菌可以通过限制性酶的作用,破坏入侵的外源DNA(如噬菌体DNA等),使得外源DNA对生物细胞的入侵受到限制; 而生物细胞(如宿主)自身的DNA分子合成后,通过修饰酶的作用,在碱基中特定的位置上发生了甲基化而得到了修饰,可免遭自身限制性酶的破坏,这样形成的就是限制-修饰系统.限制性片段长度多态性(RFLP) 当DNA序列的差异发生在限制性内切酶的识别位点时,或当DNA片段的插入、缺失或重复导致基因组DNA经限制性内切酶酶解后,其片段长度的改变可以经过凝胶电泳区分,出现的这种DNA多态性称RFLP.载体(vector):在基因操作中携带外源基因进入受体细胞的工具.克隆载体:主要用于扩增或保存DNA片段,是最简单的载体.穿梭载体:能在两类不同宿主中复制、增值和选择的载体.表达载体是可携带外源基因进入宿主细胞进行复制并进行转录、翻译的载体.YAC 人工染色体载体是利用酿酒酵母的染色体的复制元件构建的载体,其工作环境也是在酿酒酵母中.YAC基本特点:YAC 载体为能够满足自主复制、染色体在子代细胞间的分离及保持染色体稳定的需要,必须含有以下元件:端粒重复序列(telomeric repeat,TEL):定位于染色体末端一段序列,用于保护线状的DNA不被胞内的核酸酶降解,以形成稳定的结构.着丝粒(centromere , CEN):有丝分裂过程中纺锤丝的结合位点,使染色体在分裂过程中能正确分配到子细胞中.在YAC中起到保证一个细胞内只有一个人工染色体的作用.自主复制序列(autonomously replication sequences,ARS):一段特殊的序列,含有酵母菌中DNA进行双向复制所必须的信号.细菌人工染色体载体(Bacterial artificial chromosom

es,BACs):是基于大肠杆菌的F质粒构建的、高通量底拷贝的质粒载体.卸甲载体:将Ti质粒上的T-DNA的致瘤基因全部去掉,仅保留其两边界即与T-DNA转移所必需的25bp序列而构建成的载体.一元载体:含目的DNA的中间表达载体与改造后的受体(Ti质粒)通过同源重组所产生的一种复合型载体.双元载体:是指由两个分别含有T-DNA和vir区的相容性突变Ti质粒构成的系统.Ti质粒(tumor inducing plasmid)是根癌农杆菌中发现的可引起植物产生冠瘿瘤的质粒.T-DNA区: 即转移DNA,能转移并整合在植物细胞核基因组上的、决定植物形成冠瘿瘤的一段DNA.LTS和RTS对于T-DNA的转移和整合是不可缺少的.α-互补;指 lacZ 基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β-半乳糖苷酶(β-galactosidase,由 1024个氨基酸组成)阴性的突变体之间实现互补.探针(probe):指用于检测特定基因或转录产物存在或表达的DNA、RNA或瓜核酸序列.这些序列在使用之前需标记.基因探针:指用于检测特定基因或转录产物存在或表达的DNA、RNA或寡核苷酸序列,这写序列在使用之前,需要进行标记.COS位点:当λDNA进入细菌细胞后,便迅速粘性末端配对形成双链环状DNA分子,这种粘性末端结合形成的双链区域叫做COS位点.凝胶阻滞试验:(gel retardation assay):又叫DNA迁移率变动试验(EMSA),是用于体外研究DNA与蛋白质相互作用的一种特殊的凝胶电泳技术.盒式诱变(cassette mutagenesis):就是用一段人工合成具有突变序列的DNA片段,取代野生型基因中的相应序列.这就好象用各种不同的盒式磁带插入收录机中一样,故而称合成的片段为“盒”,这种诱变方式为盒式诱变.酵母双杂交体系( Yeast two-hybrid system):也叫相互作用陷阱(interaction trap),是20世纪90年代初发展起来的分离新基因的新方法,可用于分离能与靶蛋白相互作用的基因,也是直接在细胞内检测蛋白-蛋白交互作用的灵敏度很高的遗传学新工具.酵母单杂交体系(yeast one-hybrid system)常用于研究DNA-蛋白质间的相互作用.酵母单杂交体系可识别稳定结合于DNA上的蛋白质,可在酵母细胞内研究真核DNA-蛋白质间的相互作用,并通过筛选DNA文库直接获得靶序列相互作用蛋白的编码基因.也可用于分析鉴定细胞中转录调控因子与顺式作用元件相互作用.cDNA末端的快速扩增 / RACE (rapid amplification of cDNA ends)是用于从已知cDNA片段扩增全长基因的方法,它根据已知序列设计基因片段内部特异引物,由该片段向外侧进行PCR扩增得到目的序列.用于扩增5?端的方法称为5?RACE,用于扩增3?端的称为3?RACE.基因文库:是指利用重组DNA技术将生物细胞的染色体DNA所有片段随机地连接在基因载体上,然后转移到适当的寄主中,通过细胞增殖而构成各种片段的无性繁殖系.这种包含某种生物全部基因的一系列无性繁殖系称为该种生物的基因文库.(分为:基因组文库和cDNA文库.)cDNA文库:将一种生物mRNA,经反转录产生cDNA,以cDNA构建的克隆群体叫做该种生物的cDNA文库.cDNA差示分析法(representational difference analysis,RDA)是利用PCR能以指数形式扩增双链DNA模板,而仅以线

性形式扩增单链模板的特性,通过降低cDNA群体复杂性和更换cDNA两端接头等方法,特异性的扩增目的基因片断.融合基因:是指应用DNA 体外重组技术构建的一类具有来自两个或两个以上的不同基因核苷酸序列的新型基因.

抑制性消减杂交(Suppression Subtractive hybddization,SSH):是一种比较和分离不同细胞或同一细胞在不同状态下差异表达基因的方法.转化(transformation):把重组质粒DNA导入受体细胞(大肠杆菌、酵母、动植物细胞等),使其遗传性状改变的过程. 感受态(competence):作为受体细胞的细菌经一定处理 (如冰冷的CaCl2溶液)后处于易于接受外源DNA的状态.衔接物是指人工合成的由10~12nt组成的、具有一个或数个在其要连接到的DNA上并不存在的限制性内切酶识别位点的平末端的双链寡核苷酸短片段. DNA接头(人工接头)是指人工合成的含有限制酶识别顺序的核苷酸片段.转化子(transformant):经转化获得外源遗传物质/DNA的细胞:是向有功能缺陷的细胞补充相应功转染(transfection)把重组的噬菌体或病毒导入受体细胞的过程.选择(selection)是指通过某种外来附加压力(或因素)的辨别作用,呈现具有重组DNA分子的特定克隆类型的一种方法.筛选(screening)是指通过某种特定的方法,从被分析的细胞群体或基因文库中,鉴定出真正具有所需要重组DNA分子的特定克隆的过程.沉默子(silencer):是参与基因表达负调控的一种元件(降低转录效率的一段DNA)绝缘子(insulator):既是基因表达的调控元件也是一种边界元件.绝缘子本身对基因的表达既没有正效应,也没有负效应,其作用只是不让其他调控元件对基因的活化效应或失活效应发生作用.衰减子(attenuator):衰减发生处的一种内部终止子序列.衰减子结构本身不能实现衰减作用,必须借助核糖体与前导序列的结合来发挥其作用. 终止子(terminator):为转录提供终止信号的一段DNA序列,是基因表达的顺式负调控元件.电转化法(electroporation)也叫电穿孔法或电击法,是一种将极性分子穿过细胞膜导入细胞的一种物理方法,在这个过程中一个较大的电脉冲短暂破坏细胞膜的脂质双分子层,从而允许DNA等分子进入细胞.菌落原位杂交:将菌落或噬菌斑转到固相膜上,原位裂解细胞后使核酸固定在膜上,然后与探针杂交.目的基因:指那些已被或者准备要被分离、改造、扩增或表达的特定基因或DNA 片段.报告基因:是指编码产物能够被快速测定、常用于判断外源基因是否成功地导入受体细胞(器官或组织),是否表达的一类特殊用途的基因.

报告基因与选择基因的区别:选择基因往往要与外界存在的筛选压力如抗生素等相互作用,以筛选出被转化的细胞;而报告基因是提供一种快速测定外源基因是否成功导入的检测手段,它的应用不依赖于外界选择压力的存在. 原位PCR:是指对组织、细胞中特异DNA或RNA进行扩增,然后再用原位杂交对扩增产物进行定量分析的一种方法.转基因动物:指用人工的方法将外源基因导入动物受精卵或早期胚胎细胞,使外源基因与动物本身的基因组整合,并随细胞的分裂而增殖,从而将外源基因稳定地遗传给下一代的工程化动物.基因工程疫苗:疫苗一般是由灭活或减毒的病原体做成的可预防相应病原物引起疾病的药物, 通过接种人或动物在其体内建立抗感染免疫反应而产生保护作用. 将基因工程技术应用于疫苗生产所得的疫苗即为基因工程疫苗.亚克隆:对已经获得的目的DNA片段进行重新克隆,即将已克隆的DNA片段从一载体向另一载体的转移的过程.目的在于对目的DNA进行进一步分析,或者进行重组改照等.核酸疫苗:核酸疫苗又称基因疫苗或DNA疫苗,是利用基因重组技术将编码抗原的基因装入载体,然后直接导入动物体内,通过机体细胞的转录系统合成蛋白,产生的蛋白作为抗原诱导免疫系统产生免疫应答,即通过细胞和体液免疫反应产生抗体,从而达到预防和治疗疾病的目的.动物生物反应器:从转基因动物体液或血液中收获基因产物即是所谓的动物生物反应器质粒的不相容性:两个质粒在同一宿主中不能共存的现象.他们常常共用同一个复制系统.转化:指将质粒DNA或以它为载体构建的重组质粒导入受体细胞中的过程.转染把重组的噬菌体或病毒导入受体细胞的过程.基因治疗能基因,以纠正或补偿其基因缺陷,达到治疗目的的方法.转座子标签技术/T-DNA标签技术:当转座子或T-DNA转入生物基因组,整合到染色体上的时候,有可能是插入到染色体上的某个基因中,这时会破坏该基因的结构,从而引起表型变异,把变异个体的DNA提取出来,构建成基因组文库,再用转座子或T-DNA为模板制备探针,克隆出该突

第一章1.基因克隆.基因操作.基因重组.基因工程的概念及其相互关系?基因克隆:在一定程度上等同于基因分离.基因工程:通过基因操作来定向改变或修饰生物体或人类自身,并具有明确应用目的活动称为基因工程.基因操作:对基因进行分离.分析.改造.检测.表达.重组和转移等操作的总称.基因重组:不同来源DNA分子通过共价连接(磷酸二酯键)而组合成新的DNA分子的过程.关系:基因工程是通过基因重组实现的,但基因重组并不都是严格意义上的基因工程,基因重组是基因操作范畴的概念,包括实验研究和生物技术的基因重组事件,而基因工程则专指为实践应用而进行的重组事件.2.试述基因工程技术的发展给人类带来的影响?①.在工业领域的应用(第四次工业大革命)②.在农业领域的应用③.在医药领域的应用(第二次医学大革命)3.试述基因工程技术的发展方向?生物的遗传改良,生物反应器.基因治疗和基因疫苗等.4.简述基因工程的基本过程?①.提取目的基因②.目的基因与运载体结合③.将目的基因导入受体细胞④.目的基因的检测和表达

第二章1.切口平移标记DNA前,用DNaseI处理DNA时应注意什么?应注意Mg2+离子浓度和处理时间及温度.2.DNA聚合酶有哪些类型,各有什么活性?①.E.coliDNApolI 5’-3’DNA聚合酶活性.5’-3’DNA外切酶活性.3’-5’DNA外切酶活性②.E.coliDNApolI大片段(Klenow酶)5′→3′DNA聚合酶活性.3′→5′外切酶活性③.T4噬菌体DNApol5′→3′DNA聚合酶活性(与Klenow酶相似)3′→5′外切酶活性(Klenow酶×200):在无dNTP时只有该活性.常用于填平dsDNA的3′缩进末端及水解dsDNA的3′突出末端④.T7噬菌DNApol及测序酶5′→3′DNA聚合酶活性

.3′→5′外切酶活性(Klenow酶×1000)⑤.耐热DNA聚合酶在高温下仍具活性的DNA聚合酶⑥.反转录酶(依赖于RNA的DNApol)5’→3’DNA聚合酶活性(需Mg2+)RNaseH活性(5’→3’及3’→5’RNA外切核酸酶活性)⑦.末端转移酶(terminaltransferase)不依赖于模板的DNA聚合酶,在二价阳离子存在下,催化dNTP加在DNA分子的3′-OH端. 3.生产限制性内切酶的细菌如何保护自己的DNA不被降解?通过限制与修饰系统保护自己的DNA不被降解.不同种的细菌或不同的细菌菌株具有的限制酶和修饰酶组成的限制与修饰系统.修饰的本质是通过甲基化酶将DNA中某些碱基进行甲基化修饰,由于宿主自身DNA上的这些位点进行了修饰,限制酶就不能进行切割.由于外来的DNA在相应的碱基上没有被甲基化,宿主的限制酶通过对该位点的识别来分辨敌我,并将入侵的外来DNA分子降解掉.所以DNA限制作用和修饰作用为细胞提供了保护.4.按适当的顺序,列出将一种mRNA的cDNA克隆到表达载体所用到的酶有哪些?①反转录酶以mRNA为模板复制出单链cDNA;②DNA聚合酶以单链cDNA为模板合成双链DNA;③S1核酸酶切割双链DNA形成平末端;④用限制性内切酶切割载体;⑤用DNA连接酶将cDNA插入载体.5.某学生在用EcoRI切割外源DNA片段时出现了星号活性,分析可能的原因?(1)高甘油含量(>5%,v/v);(2)限制性内切核酸酶用量过高(>100U /ugDNA);(3)低离子强度(<25mmol/

L);(4)高pH(8.0以上);(5)含有有机溶剂,如DMSO,乙醇等;(6)有非Mg2+的二价阳离子存在(如Mn2+,

Cu2+,C02+,Zn2+等).6.为什么反转录酶在聚合反应中会出错?因为反转录酶无3′→5′外切酶校正作用,在高浓度的dNTP和Mn2+存在时错误率为1/500b;7.Mn2+.Mg2+对DNaseI的活性有什么影响?

DNaseI在基因工程中有什么作用?在Mg2+存在下,独立作用于每条DNA链,且切割位点随机;在Mn2+存在下,可在两条链大致同一位置切割dsDNA,产生平末端或1~2nt突出的DNA片段.切口平移标记时在dsDNA上产生随机切口;在闭环DNA上引入单切口;在DNA酶足迹法中分析蛋白/DNA复合物;去除RNA样品中的DNA.8.限制性内切酶反应的影响因素:1.酶的纯度:不应存在其他的酶污染2.DNA的纯度:限制性核酸内切酶消化DNA底物的反应效率,在很大程度上是取决于所使用的DNA本身的纯度.污染在DNA制剂中的某些物质,例如蛋白质、酚、氯仿、酒精、乙二胺四乙酸(EDTA)、SDS(十二烷基硫酸钠)、以及高浓度的盐离子等,都有可能抑制限制性核酸内切酶的活性.3. DNA的甲基化程度:限制性核酸内切酶是原核生物限制—修饰体系的组成部分,因此识别序列中特定核苷酸的甲基化作用,便会强烈地影响酶的活性.为避免产生这样的问题在基因克隆中使用的是失去甲基化酶/M- 的E.coli 菌株制备质粒DNA.9.克服星号活性的方法:维持反应体系适当的离子强度、较低的温度或酶浓度,尽可能缩短反应时间或DNA 样品的重新处理等.

10.DNA连接酶:作用:催化dsDNA分子中相邻碱基的5?-P与3?-OH间连接成磷酸二酯键1)大肠杆菌DNA连接酶:作用:只能催化黏性末端间的连接,需NAD+提供能量.

2)T4噬菌体DNA连接酶:作用:催化黏性末端或平末端间的连接,连接反应需ATP.11.脱氧核糖核酸酶(DNase I):为内切核酸酶,可优先从嘧啶核苷酸的位置水解ds DNA或ss DNA.在Mg2+存在下,独立作用于每条DNA链,且切割位点随机;在Mn2+存在下,可在两条链大致同一位置切割dsDNA,产生平末端或1~2nt突出的DNA片段. 作用:切口平移标记时在dsDNA上产生随机切口;在闭环DNA上引入单切口;在DNA酶足迹法中分析蛋白/DNA复合物;去除RNA样品中的DNA.12.如何制备平末端?(工具酶:T4聚合酶,Klenow片段)当3?端突出,5?端凹时,不加dNTP,用T4聚合酶的3′→5′外切酶活性,切去3?端;当5?端突出,3?凹时,加T4聚合酶或Klenow片段和dNTP,补平5?端对应的3?端.13.如何利用T4 DNA聚合酶进行双链DNA的3? 末端标记:利用T4 DNA pol的3? →5?外切核酸酶活性在无dNTP的条件下切割dsDNA,产生5?突出端,然后加入放射性标记的dNTP,利用其聚合酶活性进行填补合成,得到两端的3?端都是带标记的dsDNA.14.S1核酸酶:是一种单链核酸酶,降解DNA或RNA.作用:主要用于去除DNA片段粘末端而产生平端;打开ds cDNA合成中产生的发夹结构.S1核酸酶作图法,在测定杂交核酸分子(DNA:DNA或DNA:

RNA)的杂交程度、RNA分子定位,确定真核基因中内含子的位置、内含子与外显子剪切位点的定位、转录起始位点与终止位点的测定中,S1核酸酶都是十分有效的工具.

15.反转录酶(依赖于RNA的DNA pol)1)5?→3?DNA聚合酶活性(需Mg2+):底物为RNA或DNA模板及带有3?-OH 的RNA引物或DNA引物.2)RNase H活性(5?→3’及 3?→5’ RNA外切核酸酶活性) : 能持续地特异地降解RNA/DNA杂交体中的RNA .3)主要用途:将mRNA反转录成 cDNA.注: 无3′→5′外切酶校正作用,在高浓度的dNTP和Mn2+存在时错误率为1/500b;为防新合成的DNA提前终止,反应需高浓度的dNTP;该酶可用于单链复制也可合成双链(自身序列为引物但效率低).16.分子杂交时探针的标记法答:A末端标记:①3?末端标记:利用末端转移酶,不依赖于模板的DNA聚合酶,在二价阳离子存在下,催化dNTP加在DNA分子的3′-OH 端.即用标记的NTP、dNTP或ddNTP来标记DNA片段的3′末端.②5?末端标记:T4多核苷酸激酶催化ATP的γ-磷酸基转移到DNA或RNA的5?-OH末端,使已经脱磷酸化的5?末端重新磷酸化.当过量ADP存在时,DNA分子的5?-P转移给ADP,而脱磷酸化的DNA分子再从γ-32P的ATP中获得γ-32P基团,重新磷酸化的DNA分子即获得了32P同位素标记,此反应过程需Mg2+.B均匀标记:①切口平移法:用DNA酶Ⅰ对DNA分子产生随意的切口,利用4种dNTP中的一种标记,加入DNA聚合酶Ⅰ,利用5?-3?外切酶活性从断裂处的5?端除去一个核苷酸,再利用它的5?-3?聚合酶活性讲带标记的dNTP连接到断裂处的3?端.由于DNA聚合酶Ⅰ不能使断裂处的5?-P和3?-OH形成磷酸二酯键重新连接,随着反应进行形成带标记的探针.②随机引物法:利用随机的寡核苷酸引物

与变性的dsDNA模板随机退化,在存在标记的dNTP的情况下用Klenow酶进行延伸,产生均匀标记探针.第三章1.质粒的基本特性: 1)质粒的复制:只能在宿主细胞中进行复制2)质粒的拷贝数:拷贝数相对稳定,分为严谨型与松驰型3)质粒的不相容性:两个质粒在同一宿主中不能共存的现象称质粒的不相容性(incompatibility),源于共用同一复制系统. 4)转移性:质粒具转移性是指在自然条件下,很多质粒可以通过称为细菌接合的作用转移到新宿主内.不含tra基因的质粒则不具备转移性.2.质粒载体的构建:1)选择合适的复制起始位点 (松散型质粒复制起始位点);2)缩短长度:切去不必要片段,提高转化宿主细胞的效率,提高外源DNA片段的装载量;3)增加或减少酶切位点:单一酶切位点数量越多越便于多种类型末端的DNA插入;或在特定部位组装MCS;4)加入合适的选择标记.3.野生型λ噬菌体必须经过改造才适用于基因克隆的载体:(5个Eco RI和7个Hind III酶切位点;1/2为非必需基因,该区段缺少或在此段插入外源DNA片段将不影响λ噬菌体的增殖:作为基因工程载体的一个重要依据)λ噬菌体只有进入裂解循环,才能大量扩增.因此,λ噬菌体只有在特定的E.coli中烈性生长,才能用作载体.这就决定了λ噬菌体载体必须含有裂解生长所必需的基因或DNA片段.去掉一部分对裂解生长非必需的DNA片段后,可用来装载外源DNA片段.4.用SalⅠ切割从噬菌体J2分离的DNA时,得到8个片段,分别是1.3.2.8.3.6.5.3.7.

4.7.6.8.1和11.4kb.但是,用SalⅠ切割从被感染的寄主细胞中分离到的J2噬菌体DNA时,只得到7个片段,分别是:1.3.2.8.7.4.7.

6.8.1.8.9和11.4kb.根据这些结果,你得到哪些信息?(1)J2噬菌体是一种双链线性的DNA分子;(2)基因组全长是47.5kb;(3)进入宿主后成环状;(4)5.3和3.6kb的片段分别位于线性DNA的两端.5.从噬菌体MS2中提取出来的裸露染色体可以感染大肠杆菌的原生质球(去除胞壁的细菌),这会产生和具感染能力的噬菌体一样的噬菌体颗粒.如果染色体先用RNA酶处理,就失去感染能力;如果标记感染的RNA,在子代中不出现标记.解释这些现象.MS2噬菌体的染色体为单链(+)RNA,它的复制过程如下:(1)以(+)链作为模板合成一个碱基互补的(-)链;(2)以这条(-)链作为模板合成大量的(+)病毒链.原始的(+)链被完全保留.相应的酶是RNA复制酶,它是MS2一个基因的产物.6.以置换型λ噬菌体作为载体进行克隆时,为什么说能够形成噬菌斑的就一定是重组体?改造的置换型噬菌体载体,重组人外源片段之后,总体积不能超过λ基因组的105%,不能少于λ基因组的75%.以置换型λ噬菌体DNA作为载体,首先要分离左.右两臂同外源DNA重组.如果没有外源片段,仅是两臂连接,长度短于λ基因组的75%,不能被包入噬菌体颗粒,就不能感染寄主,也就不能形成噬菌斑.如果插入了外源片段后,总长度超过丸基因组105%后,也不能包入噬菌体颗粒,自然不能形成噬菌斑.

7.某同学计划以细菌质粒DNA为载体克隆一个编码大鼠生长激素的基因,并转化到细菌中进行表达.运用所学知识,请帮该同学分析一下在实验中可能遇到哪些问题?要使动物中编码激素的基因在大肠杆菌中表达,通常遇到的问题有:(1)细菌的RNA聚合酶不能识别真核生物的启动子.(2)大多数真核基因有内含子,这些内含子在转录后从前体mRNA中被切除而形成成熟mRNA.细菌细胞没有这样的机制来去除内含子.(3)有些真核生物的蛋白质是通过前体分于加工而来的,例如胰岛素就是通过加工去除前体分子内部的33个氨基酸残基而来,剩下的两段肽链分别形成胰岛素的a.b链.(4)产生的真核生物的蛋白质产物可以被细菌的蛋白酶所识别和降解.

8.以Ecoli为例,表达载体比克隆载体多了哪些功能原件,各有什么生物学功能?(1)启动子转录是由RNA聚合酶在启动子部位启动RNA转录的过程.(2)终止子转录启动以后的转录过程并不是永无止境的,会受到模板DNA序列结构的影响,当遇到经环结构时转录便会终止,或遇到ρ因子介导的终止信号转录也会终止.(3)核糖体结合位点转录出来的mRNA可在宿主细胞的翻译机器作用下翻译出目的蛋白.9.简述利用YAC克隆载体构建基因文库的原理.当用BamHⅠ切割成线状后,就形成了一个微型酵母染色体,包含染色体复制的必要顺式元件,如ARS.着丝粒和位于两端的端粒.当再用EcoRⅠ或SmaⅠ切割抑制基因sup4内部的位点后形成染色体的两条臂,与外源大片段DNA在该切点相连就形成一个大型人工酵母染色体,通过转化进入到酵母菌后可象染色体一样复制,并随细胞分裂分配到子细胞中去,达到克隆大片段DNA的目的.装载了外源DNA片段的重组子导致sup4插入失活,从而形成红色菌落;而载体自身连接后转入到酵母细胞后形成白色菌落.这些红色的装载了不同外源DNA片段的重组酵母菌菌落的群体就构成了YAC文库.

10.BAC克隆载体有哪些显著的优点?BAC载体的低拷贝性可以避免嵌合体的产生,并且还可以减少外源基因的表达产物对宿主细胞的毒副作用.BAC载体可以通过α-互补的原理筛选含有插入片段的重组子,并设计了用于回收克隆DNA的NotI酶切位点和用于克隆DNA片段体外转录的SP6启动子和T7启动子.BAC与YAC和PAC相似,没有包装限制,因此可接受基因组DNA大小也没有固定的限制.

11.何为α-互补,如何利用α-互补来筛选插入了外源DNA的重组质粒?a-互补是指lacZ基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的b-半乳糖苷酶阴性的突变体之间实现互补.a-互补是基于在两个不同的缺陷b-半乳糖苷酶之间可实现的功能互补而建立的.将缺失编码第11-41位氨基酸的β-半乳糖苷酶基因称为lacZΔM15基因而将半乳糖苷酶基因(lacZ)的调控序列和编码β-半乳糖苷酶N端140个氨基酸的序列称为LacZ'.这两个基因的产物单独存在时都无酶学活性,但混合在一起时却有酶学活性.所以在载体上加lacZ'/(MSC),并在受体菌中引入lacZΔM15即可实现a-互补.IPTG是lac操纵子的诱导物,底物X-gal被b-半乳糖苷酶分解后可以产生兰色产物,使菌落呈现兰色.如果质粒载体中插入了外源DNA,lacZ'的产物则不能与lacZΔM15的产物实现a-互补,在IPTG诱导下不能产生有活性的b-半乳糖苷酶,

菌落便不可能呈现兰色.白色菌落便是含有插入了外源DNA的重组质粒.因此可利用菌落颜色变化来筛选插入了外源DNA的重组质粒.15.Ti质粒为什么可以作为植物的表达载体:T-DNA区只存在于植物细胞核中,占Ti质粒DNA总长度的10%左右,而且已知植物冠瘿瘤细胞中冠瘿碱的合成和不依赖于植物激素的生长能力,都是由编码在T-DNA上的基因控制的.显而易见,根瘤土壤杆菌通过Ti质粒的转化作用实现了植物基因的遗传转移,所以Ti质粒有可能用作植物基因克隆的载体.

12.核酸分子标记的方法,各有何特点1)放射性标记.是最早使用的核酸分子标记,检测灵敏度高,但因为有放射性,对操作人员危害大.2)非放射性标记,包括生物素和地高辛.使用安全、方便,标记的探针可保存并可重复使用、便于控制显色反应、显色后的杂交膜可长期保存、杂交信号的灰度明显(特别是菌落杂交中易于辨别真假阳性).但其检测灵敏度不够高,而且杂交膜不易二次或多次杂交.12.一个具有卡那霉素(Kan)和氨苄青霉素(Amp)抗性基因的质粒,BglII酶切位点在Ampr基因中.将BglII酶切质粒DNA和BglII酶切的果蝇(Drosophil

a)DNA进行退火,然后转化大肠杆菌中,回答下列问题:①在培养基中需要加入哪种抗生素才能保证筛选出含有质粒的克隆?(卡那霉素)②在平板上生长的菌落是具有哪种抗生素抗性的?(卡那霉素)③DrosophilaDNA具有哪种表型?如何筛选具有这一表型的克隆?DrosophilaDNA具有卡那霉素抗性,没有氨苄青霉素抗性.可以将在卡那霉素培养基平板上的菌落影印到氨苄青霉素培养基平板上.能同时在两种培养基中生长的为含有空质粒的大肠杆菌,能在卡那霉素培养基平板上生长而不能在氨苄青霉素培养基平板上生长的为DrosophilaDNA的克隆. 14.酵母表达载体(均为E.coli和酵母菌的穿梭载体):细菌部分(原核构件):质粒Ori、特定的抗生素抗性基因(ampr、tetr).酵母部分(真核构件):与宿主互补的营养缺陷型基因(his3、leu2、trp1)或特定的抗生素抗性基因(Zeocinr)、编码特定蛋白(AOX1)的启动子和终止子序列16.哺乳动物表达载体的条件:①具有哺乳动物细胞的复制起始点,使表达载体能在细胞内复制,从而增加外源基因表达拷贝数;②具有可供选择的标记基因,筛选出转染有表达载体的转化克隆;③具有外源基因表达所必需的全部顺式结构,包括启动子、增强子、内含子剪切位点,转录终止子,多聚腺苷酸信号;④在启动子下游有多种单一内切酶位点,可供插入外源基因;⑤含有细菌质粒复制起点和抗性基因以便能在细菌中扩增和选择18.pBR322 质粒载体:特点:人工构建;带有多种抗药性标记;低Mr;高拷贝;外源DNA插入不影响复制功能的多种限制性核酸内切酶单切割位点.组成:pSF2124质粒Tn3的ampr;pSC101质粒的tetr;Col E1的派生质粒pMB1 的质粒ori19.pUC质粒载体:组成:pBR质粒的ori; ampr基因;lacZ′基因;位于lacZ′基因靠近5′-端的一段多克隆位点(MCS)区段.特点:更小的相对分子质量和更高的拷贝数;可用组织化学方法检测重组体(α-互补筛选);具有多克隆位点MCS区段,可把两种不同粘性末端的外源DNA片断直接克隆到上面20.以pB322质粒为载体,从四环素抗性基因(tetr)区克隆外源DNA时,可采用环丝氨酸富集法筛选重组体,请说明其基本原理和基本操作过程?答:基本原理:由于四环素的作用是抑制细菌蛋白质的合成,而不是杀死细菌;而氨基酸类似物环丝氨酸如果掺入蛋白质,则是致命的.因此再有四环素的条件下,环丝氨酸能够杀死tetr而不杀死tets的细菌.经过环丝氨酸处理后,存活的细胞中tets型得到很大的富集,而经过若干次连续处理,既能获得在基因内含有插入物的质粒的细胞.基本操作:①转化后有三种表型的细菌,其中只有一种是重组体AprTcs.②用重组DNA转化受体菌后,将受体菌培养在加有四环素和环丝氨酸的培养液中培养,此时只有非重组的双抗性菌可以生长,其他都被抑制.③由于有环丝氨酸的存在,AprTcs表型的菌生长到一定程度就会死亡.④由于四环素只有抑菌而无杀菌的作用,此时若解除四环素(离心洗涤),加入氨基苄青霉素继续培养,则可使重组体大量生长.第四章1.同其他蛋白酶相比,使用蛋白酶K的优点在哪里?蛋白酶K可以水解范围广泛的肽键,尤其适合水解羧基末端至芳香族氨基酸和中性氨基酸之间的肽键.可有效降解内源蛋白,能快速水解细胞裂解物中的DNase和RNase,常用于去除残留的酶类及样品中的蛋白质.在SDS和EDTA中仍保持高活性,可以同SDS和EDTA同时使用2.在提取过程中应如何避免大分子DNA的降解和断裂?1)添加酶抑制剂抑制核酸酶活性,如EDTA等,可以同Mg2+螯合,使核酸酶失去作用的辅助因子,而被抑制活性.2)温和操作. 3)加保护剂,如蔗糖可增加缓冲液的黏度,保护DNA不易断裂.3.用酚/氯仿抽提DNA时,通常要在氯仿或酚/氯仿中加入少许异戊醇,原因是什么?异戊醇是一种有机试剂,可以降低表面张力,从而减少气泡产生.另外,异戊醇有助于分相使离心后的上层含DNA的水相,中间的性变蛋白质相及下层有机溶剂相维持稳定.4、酚与氯仿联合使用的好处?原因是酚和水有一定程度的互溶,所以单独使用酚抽提DNA,最终不能除去酚,残留的酚会使起切割和连接作用的限制性内切核酸酶和连接酶变性.氯仿也是蛋白质变性剂,它不与水互溶,但是能够同苯酚互溶.这样,酚和氯仿联合使用,就可以带走残留的酚.

1.印迹分子杂交有哪些种类,并说明在什么情况下需要使用这些方法.答:Southern杂交是以DNA或RNA为探针,检测DNA链,用于外源基因整合的鉴定及分析.Northern杂交是以DNA或RNA为探针,检测RNA链,用于外源基因转录产物特异mRNA的检测.Western杂交是利用抗原与抗体的特异结合的原理检测外源基因表达产物特异蛋白质的生成2.基因定点诱变有哪些种类,各有何特点:基因定点突变(包括:盒式诱变、寡核苷酸引物诱变、PCR诱变:重叠延伸PCR和大引物PCR) (site-directed mutagenesi

s)是使已克隆基因或DNA片段中任何一个特定碱基发生取代、插入或缺失突变的过程.1)盒式诱变:简单易行,突变效率高,但在靶DNA区段的两侧需存在一对限制性内切核酸酸酶单切点2)寡核苷酸介导的定点诱变:寡核苷酸介导的定点诱变可以在任何感兴趣的位置加上限制性内切酶位点;能够把一个自然条件下从未被发现的突变精确放置在靶基因的特定

本文来源:https://www.bwwdw.com/article/s8p5.html

Top