数字图像处理-第五章3 (2)
更新时间:2023-05-19 01:48:01 阅读量: 实用文档 文档下载
Chapter 5 Discrete Image Transform5.1 Fundamental Concept 5.2 Cosine Transform 5.3 Rectangular Wave Transform 5.4 Principle-Component Analysis and K-L Transform 5.5 Wavelet Transform
5.1 Fundamental Concept5.1.1 One-Dimensional Discrete Linear Transform
Definition. if x is an N 1 vector and T is an N N matrix, then y Tx defines a linear transform of the vector x. The matrix T is also called the kernal matrix of the transform. Example: the rotation of a vector in a two-dimensional coordinate system. y1 cos y sin 2 sin x1 x cos 2
Inversion: the original vector can be recovered by the inverse transform x T 1 y provided that T is nonsingular.
5.1.2 1D discrete orthogonal transform Unitary matrix (酉矩阵): n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩 阵(Unitary Matrix)。 一个简单的充分必要判别准则是: 方阵U的共扼转置乘以U等于单位阵,则U是酉矩阵。酉矩阵 的逆矩阵与其伴随矩阵相等。
5.1.2 1D discrete orthogonal transform
Unitary transform: y Tx If T is a unitary matrix, then T 1 T * , and TT * T * T I。 Orthogonal transform: If T is a real transform, then the unitary transform is an orthogonal one. T 1 T ,TT I。
Orthogonal basis: each line of the orthogonal matrix T is called its orthonormal basis. This means that any N-by-1 sequence can be viewed as representing a vector from the origin to a point in N-dimensional space. The orthonormal basis are orthogonal to each other.
In summary, a unitary linear transform generates y, a vector of N transform coefficients, each of which is computed as the inner product of the input vector x with one of the rows of the transform matrix T.The forward transform: The inverse transform:
y Txx T 1 y
5.1.3 Two-Dimensional Discrete Linear Transform
The general linear transform that takes the N N matrix F into the transformed N N matrix G is G u , v x, y, u , v F x, y x 0 y 0 N 1 N 1
0 u, v N 1
is the kernal function of the transform, which is a N 2 N 2 block matrix having N rows of N blocks, each of which is an N N matrix. The blocks are indexed by u , v and the elements of each block by x, y.
Separatable: If the kernal function can be separated into the product of rowwise and columnwise component functions. For some (u,v), x, y, u , v Vc y, v Vr x, u then the transform is called separable. It means that it can be carried out in two steps__ N 1 G u , v Vc y, v f x, y Vr x, u x 0 y 0 G Tc ' FTr 'N 1
Vr(x u)
Vc(y v) Tr
Example : 2D function e , x and y takes 0,1. 1 轾0 x2 + y 2 x2 y2 2 犏 e e 2 2 犏 the matrix is 犏 1 . But e = e e 2,
- 1 犏 2 e e 犏 臌 0 轾 1 e 犏 轾 0 2 犏 which is equal to 犏 e . 1 ×e 犏 犏 e 2 臌 犏 臌
x2 + y 2 2
Symmetric: If the two component functions are identical, the transfrom is also called symmetric. N 1 G V y, v f x, y V x, u TFT x 0 y 0 It is a unitary transform if T is a unitary matrix, called the kernal matrixN 1
of the transform. The inverse transform is F T 1GT 1 T * GT *
Orthogonal Transformations: A unitary matrix with real elements is orthogonal. F = T 'GT ' If T is a symmetric matrix, as is often the case, then the forward and inverse transforms are identical, so that G = TFT and F = TGT
5.1.4 Basis Functions And Basis Images
The rows of the kernal matrix of a unitary transform are a set of basis in N -dimensional vector space. TT * I Normally the entire set is derived from the same basic function form. The inverse two-dimensional transform can be viewed as reconstructing the image by summing a set of properly weighted basis images. F x, y ' u , v, x, y G u , v u 0 v 0 N 1 N 1
Each element in the transform matrix, G, is the coefficient by which the corresponding basis image is multiplied in the summation.
Each basis matrix is characterized by a horizontal and a vertical spatial frequency. The matrices shown here are arranged left to right and top to bottom in order of increasing frequencies.
5.2 Cosine Transform 5.2.1 One dimensional Discrete Cosine TransformAs we know, when f(x) is an even function , Fourier transform is only real. How about the Fourier transform if f(x) is not.
设一维离散序列f x , x 0,1, 2,
, N 1,以 1 2为中心反折,形成
N 至 1的序列, 与原序列合并形成2 N的偶序列。此时傅立叶变 换的核函数为e j 2 ux N 改变为e cos 2 x 1 u 2N 这时的变换就叫余弦变换 1 j 2 x u 2 N 2
按傅立叶变换性质, 虚部为0不进行运算, 核函数等价于
因此余弦正变换:F u f x cos 2 x 1 u 2N x 0 为保证每行正交向量模=1,对上式进行归一化处理,N 1
F Cf 1 1 1 f 0 F 0 1 2 4 6 F 1 8 8 8 8 8 8 8 f 1 real ( e ) real ( e ) real ( e ) real ( e ) f 2 F 2 F 3 f 3
F u a u f x cos 2 x 1 u 2N x 0N 1
1 当u 0时 N a u 2 当u 0时 N 余弦变换采用矩阵表示为FC Cf 其中核矩阵C中元素为Cu , x a u cos 2
x 1 u 2N
直流系数DC(u=0时),交流系数AC(其他)
c1 c C= 2 ... cn
余弦变换是正交变换,即 0, l k <cl ,ck >= 1, l k
因为余弦变换是傅立叶变换的特例,傅立叶 反变换的核矩阵即是W阵的共轭矩阵,对于 余弦变换共轭矩阵即等于本身,因此f C T FC
5.2.2、二维余弦变换 思想:如何形成二维偶函数?先水平做对折 镜象,然后再垂直做对折镜象。 偶对称偶函数: f x, y f 1 x, y f x, y f x, 1 y f 1 x, 1 y N 1 M 1
当x, y 0时 当x 0 y 0 当x 0 y 0 当x 0 y 0
2 x 1 u 2 y 1 v FC u , v a u a v f x, y cos cos 2 N 2 M x 0 y 0 它是可分离的,用矩阵表示为FC CfC T
5.2.3、余弦变换的性质* 1 T 1 余弦变换为实正交变换 C C , C C
2 离散序列的余弦变换是DFT的对称扩展形式; 3 和傅立叶变换相同,余弦变换也存在快速变换; 4 和傅立叶变换类似,余弦变换具有将高度相关数据能量集中的优势;
正在阅读:
数字图像处理-第五章3 (2)05-19
街道办事处工作总结暨2022年工作计划04-15
班级新鲜事作文400字03-13
关于端午节的英文演讲03-14
沪教版三年级下《几分之一》教学反思06-11
请相信友谊的力量作文550字07-15
《中国发展的历史性跨越》同步试题06-27
正交试验优选芩莲口服液中黄芩苷的提取工艺08-09
学校课题研究工作汇报材料11-16
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 图像处理
- 数字
- ansoft MAXWELL使用说明
- 护理管理学选择题精选资料教学总结
- 机械制造技术基础试题大全试题库(历年考题)(带答案)
- 土建施工员考试试题集
- 2016-2022年中国养老医药市场调查与市场前景预测报告
- 山东省建设工程评标专家招投标法规知识水平考试题库及答案
- 选修双曲线及其标准方程第二讲同步练习题
- Linux操作系统课程设计任务书2014(1)
- 半月谈2012年全年评论
- 太湖地区农业面源污染特征及控制途径
- 国家助学贷款还款流程
- 第1章:中间件技术介绍
- 湘西地区传统聚落空间特征浅析
- 高考冲刺动员大会教师代表发言稿.doc
- 政治体制改革的智慧
- 乳腺癌诊治新进展
- 2013年朝阳初三数学一模试题及答案
- 《国家宝藏》文案整理之一
- 21.1二重积分概念
- 乐曲硬件演奏电路设计