二次根式的知识点汇总

更新时间:2023-05-25 04:44:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

sdf

二次根式的知识点汇总

知识点一:二次根式的概念

形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

知识点二:取值范围

1.二次根式有意义的条件:由二次根式的意义可知,当a≧0

时,有意义,是二次根式,所以

要使二次根式有意义,只要使被开方数大于或等于零即可。

2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0

时,没有意义。

知识点三:二次根式()的非负性

()表示a 的算术平方根,也就是说,(

)是一个非负数,即0()。

注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,

所以非负数(

)的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方

根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

知识点四:二次根式()的性质

()

文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,.

1

sdf

知识点五:二次根式的性质

文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:

1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a

本身,即

;若a是负数,则等于a的相反数-a,即;

2、中的a的取值范围可以是任意实数,即不论a 取何值,一定有意义;

3、化简时,先将它化成,再根据绝对值的意义来进行化简。

知识点六:与的异同点

1、不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表

示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的,,而

2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.

2

本文来源:https://www.bwwdw.com/article/s4t4.html

Top