Accurate and efficient gesture spotting via pruning and subgesture reasoning
更新时间:2023-06-09 21:33:01 阅读量: 实用文档 文档下载
- accurate推荐度:
- 相关推荐
Abstract. Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting a
AccurateandE cientGestureSpottingvia
PruningandSubgestureReasoning
JonathanAlon,VassilisAthitsos,andStanSclaro
ComputerScienceDepartment
BostonUniversity
Boston,MA02215,USA
Abstract.Gesturespottingisthechallengingtaskoflocatingthestartandendframesofthevideostreamthatcorrespondtoagestureofinter-est,whileatthesametimerejectingnon-gesturemotionpatterns.Thispaperproposesanewgesturespottingandrecognitionalgorithmthatisbasedonthecontinuousdynamicprogramming(CDP)algorithm,andrunsinreal-time.Tomakegesturespottinge cientapruningmethodisproposedthatallowsthesystemtoevaluatearelativelysmallnum-berofhypothesescomparedtoCDP.Pruningisimplementedbyasetofmodel-dependentclassi ers,thatarelearnedfromtrainingexamples.Tomakegesturespottingmoreaccurateasubgesturereasoningprocessisproposedthatmodelsthefactthatsomegesturemodelscanfalselymatchpartsofotherlongergestures.Inourexperiments,theproposedmethodwithpruningandsubgesturemodelingisanorderofmagnitudefasterand18%moreaccuratecomparedtotheoriginalCDPalgorithm.1Introduction
Manyvision-basedgesturerecognitionsystemsassumethattheinputgesturesareisolatedorsegmented,thatis,thegesturesstartandendinsomereststate.Thisassumptionmakestherecognitiontaskeasier,butatthesametimeitlimitsthenaturalnessoftheinteractionbetweentheuserandthesystem,andthereforenegativelya ectstheuser’sexperience.Inmorenaturalsettingsthegesturesofinterestareembeddedinacontinuousstreamofmotion,andtheiroccurrencehastobedetectedaspartofrecognition.Thisispreciselythegoalofgesturespotting:tolocatethestartpointandendpointofagesturepattern,-monapplicationsofgesturespottingincludecommandspottingforcontrollingrobots[1],televisions[2],computerapplications[3],andvideogames[4,5].Arguably,themostprincipledmethodsforspottingdynamicgesturesarebasedondynamicprogramming(DP)[3,6,7].Findingtheoptimalmatchingbetweenagesturemodelandaninputsequenceusingbrute-forcesearchwouldinvolveevaluatinganexponentialnumberofpossiblealignments.Thekeyad-vantageofDPisthatitcan ndthebestalignmentinpolynomialtime.Thisis ThisresearchwassupportedinpartthroughU.S.grantsONRN00014-03-1-0108,NSFIIS-0308213andNSFEIA-0202067.
Abstract. Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting a
10
20
30
40
50677 (5S)
750 (5E)807 (6S)873 (6E)1020304050677 (5S)
750 (5E)807 (6S)873 (6E)
(a)(b)(c)
Fig.1.Pruning(a,b):exampledynamicprogrammingtableformatchinginputstream(xaxis)toamodelgestureforthedigit“6”(yaxis).Likelyobservationsarerepresentedbyblackcellsinthetable(a).Thecellsremainingafterpruning(b).Inthisexample87%ofthecells(showninwhite)werepruned.Subgesturereasoning(c):examplefalsedetectionofthedigit“5”,whichissimilartoasubgestureofthedigit“8”.
achievedbyreducingtheproblemof ndingthebestalignmenttomanysubprob-lemsthatinvolvematchingapartofthemodeltopartsofthevideosequence.Themainnoveltyofourmethodisapruningtechniquethateliminatestheneedtosolvemanyofthesesubproblems.Asaresult,gesturespottingandrecog-nitionbecomebothfasterandmoreaccurate:fasterbecauseasmallernumberofhypothesesneedtobeevaluated;moreaccuratebecausemanyofthehy-pothesesthatcouldhaveledtofalsematchesareeliminatedatanearlystage.InFigure1(b)thenumberofhypothesesevaluatedbytheproposedalgorithmisproportionaltothenumberofblackpixels,andthenumberofhypothesesthatareevaluatedbyastandardDPalgorithmbutareprunedbytheproposedalgorithmisproportionaltothenumberofwhitepixels.
paringthematchingscoresandusingclassspeci cthresholds,asistypicallydone[3,6],isofteninsu cientforpickingouttherightmodel.Weproposeidentifying,foreachgestureclass,thesetof“subgesture”classes,i.e.,thesetofgesturemodelsthataresimilartosubgesturesofthatclass.Whileagestureisbeingperformed,itisnaturalforthesesubgestureclassestocausefalsealarms.Forexample,intheonlinedigitrecognitionexampledepictedinFigure1(c),thedigit“5”maybefalselydetectedinsteadofthedigit“8”,because“5”issimilartoasubgestureofthedigit“8”.Theproposedsubgesturereasoningcanreliablyrecognizeandavoidthebulkofthosefalsealarms.
2RelatedWork
Gesturespottingisaspecialcaseofthemoregeneralpatternspottingproblem,wherethegoalisto ndtheboundaries(startpointsandendpoints)ofpatternsofinterestinalonginputsignal.Patternspottinghasbeenappliedtodi erenttypesofinputincludingtext,speech[8],andimagesequences[6].
Abstract. Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting a
Therearetwobasicapproachestodetectionofcandidategestureboundaries:thedirectapproach,whichprecedesrecognitionofthegestureclass,andthein-directapproach,wherespottingisintertwinedwithrecognition.Methodsthatbelongtothedirectapproach rstcomputelow-levelmotionparameterssuchasvelocity,acceleration,andtrajectorycurvature[5]ormid-levelmotionpara-meterssuchashumanbodyactivity[9],andthenlookforabruptchanges(e.g.,zero-crossings)inthoseparametersto ndcandidategestureboundaries.
Intheindirectapproach,thegestureboundariesaredetectedusingtherecog-nitionscores.Mostindirectmethods[3,7]arebasedonextensionsofDynamicProgramming(DP)algorithmsforisolatedgestures(e.g.,HMMs[10]andDTW
[11]).Inthosemethods,thegestureendpointisdetectedwhentherecognitionlikelihoodrisesabovesome xedoradaptive[3]threshold,andthegesturestartpointcanbecomputed,ifneeded,bybacktrackingtheoptimalDPpath.Onesuchextension,continuousdynamicprogramming(CDP),wasproposedbyOka
[7].InCDP,aninputsequenceismatchedwithagesturemodelframe-by-frame.Todetectacandidategesture,thecumulativedistancebetweenthemiscom-paredtoathreshold.
Afteraprovisionalsetofcandidateshasbeendetected,asetofrulesisappliedtoselectthebestcandidate,andtoidentifytheinputsubsequencewiththegestureclassofthatcandidate.Di erentsetsofruleshavebeenproposedintheliterature:peak ndingrules[6],spottingrules[12],andtheuserinteractionmodel[13].
Oneproblemthatoccursinpracticebutisoftenoverlookedisthefalsede-tectionofgesturesthataresimilartopartsofotherlongergestures.Toaddressthisproblem[3]proposedtwoapproaches.Oneislimitingtheresponsetimebyintroducingamaximumlengthofthenongesturepatternthatislongerthanthelargestgesture.Another,istakingadvantageofheuristicinformationtocatchone’scompletionintentions,suchasmovingthehandoutofthecamerarangeorfreezingthehandforawhile.The rstapproachrequiresaparametersetting,andthesecondapproachlimitsthenaturalnessoftheuserinteraction.Wepro-poseinsteadtoexplicitlymodelthesubgesturerelationshipbetweengestures.Thisisamoreprincipledwaytoaddresstheproblemofnestedgestures,whichdoesnotrequireanyparametersettingorheuristics.
3GestureSpotting
Inthissectionwewillintroducethecontinuousdynamicprogramming(CDP)algorithmforgesturespotting.Wewillthenpresentourproposedpruningandsubgesturereasoningmethodsthatresultinanorderofmagnitudespeedupand18%increaseinrecognitionaccuracy.
3.1ContinuousDynamicProgramming(CDP)
LetM=(M1,...,Mm)beamodelgesture,inwhicheachMiisafeaturevectorextractedfrommodelframei.Similarly,letQ=(Q1,...,Qj,...)beacontinuous
Abstract. Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting a
streamoffeaturevectors,inwhicheachQjisafeaturevectorextractedfrominputframej.Weassumethatacostmeasured(i,j)≡d(Mi,Qj)betweentwofeaturevectorsMiandQjisgiven.CDPcomputestheoptimalpathandtheminimumcumulativedistanceD(i,j)betweenthemodelsubsequenceM1:iandtheinputsubsequenceQj :j,j ≤j.Severalwayshavebeenproposedintheliteraturetorecursivelyde nethecumulativedistance.Themostpopularde nitionis:
D(i,j)=min{D(i 1,j),D(i 1,j 1),D(i,j 1)}+d(i,j).(1)Forthealgorithmtofunctioncorrectlythecumulativedistancehastobeinitializedproperly.Thisisachievedbyintroducingadummygesturemodelgframe0thatmatchesallinputframesperfectly,thatis,DM(0,j)=0forallj.Initializingthiswayenablesthealgorithmtotriggeranewwarpingpathateveryinputframe.
IntheonlineversionofCDPthelocaldistanced(i,j)andthecumulativedistanceD(i,j)neednotbestoredasmatricesinmemory.Itsu cestostoreforeachmodel(assumingbacktrackingisnotrequired)twocolumnvectors:thecurrentcolumncoljcorrespondingtoinputframej,andthepreviouscolumncolj 1correspondingtoinputframej 1.EveryvectorelementconsistsofthecumulativedistanceDofthecorrespondingcell,andpossiblyotherusefuldatasuchasthewarpingpathlength.
3.2CDPwithPruning(CDPP)
TheCDPalgorithmevaluatesEq.1foreverypossibleiandj.Akeyobservationisthatformanycombinationsofiandj,eitherthefeature-baseddistanced(i,j)orthecumulativedistanceD(i,j)canbesu cientlylargetoruleoutallalign-mentsgoingthroughcell(i,j).Ourmaincontributionisthatwegeneralizethispruningstrategybyintroducingasetofbinaryclassi ersthatarelearnedfromtrainingdatao ine.Thoseclassi ersarethenusedtoprunecertainalignmenthypothesesduringonlinespotting.Inourexperiments,thispruningresultsinanorderofmagnitudespeedup.
TheproposedpruningalgorithmisdepictedinAlgorithm1.Theinputtothealgorithmisinputframej,inputfeaturevectorQj,asetofmodeldependentclassi ersCi,andtheprevioussparsecolumnvector.Theoutputisthecurrentsparsecolumnvector.
Theconceptofmodeldependentclassi ersCithatarelearnedfromtrainingdatao ine,andareusedforpruningduringonlinespottingisnovel.Di erenttypesofclassi erscanbeusedincluding:subsequenceclassi ers,whichprunebasedonthecumulativedistance(orlikelihood);transitionclassi ers,whichprunebasedonthetransitionprobabilitybetweentwomodelframes(orstates);andsingleobservationclassi ers,whichprunebasedonthelikelihoodofthecurrentobservation.Inourexperimentsweusesingleobservationclassi ers:
+1ifd(i,j)≤τ(i)Ci(Qj)=,(2) 1ifd(i,j)>τ(i)
Abstract. Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting a
input:inputframej,inputfeaturevectorQj,classi ersCi,and
previoussparsecolumnvector<indj 1,listj 1>.
output:currentsparsecolumnvector<indj,listj>.
1i=1;
2ptr=indj 1(0);
3whilei≤mdo
4ifCi(Qj)==+1then
5nl=newelement;//nlwillbeappendedtoendoflistj
6nl.D=min{indj(i 1).D,indj 1(i 1).D,indj 1(i).D}+d(i,j);7nl.i=i;
8append(listj,nl);
9indj=&listj(i);//&istheaddress-ofoperator,asinC
10i=i+1;
11else
//previouscolumnempty
12ifisempty(listj 1)then
13break;
14ifindj 1(i)==NULLthen
15whileptr→next!=NULLandptr→next→i≤ido
16ptr=ptr→next;
17end
//reachedtheendofpreviouscolumn
18ifptr→next==NULLthen
19break;
20i=ptr→next→i;
21else
22i=i+1;
23end
24end
25end
Algorithm1:TheCDPPalgorithm.whereeachτ(i)de nesadecisionstumpclassi erformodelframei,andis
estimatedasfollows:themodelisaligned,usingDTW,withallthetrainingexamplesofgesturesfromthesameclass.Thedistancesbetweenobservationiandalltheobservations(inthetrainingexamples)whichmatchobservationiaresaved,andthethresholdτ(i)issettothemaximumdistanceamongthosedistances.Settingthethresholdsasspeci edguaranteesthatallpositivetrain-ingexampleswhenembeddedinlongertestsequenceswillbedetectedbythespottingalgorithm.
Inordertomaximizee ciencywechoseasparsevectorrepresentationthatenablesfastindividualelementaccess,whilekeepingthenumberofoperationsproportionaltothesparsenessoftheDPtable(thenumberofblackpixelsinFig.1(b)).Thesparsevectorisrepresentedbyapair<ind,list>,whereindisavectorofpointersofsizem(themodelsequencelength),andisusedtoreference
Abstract. Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting a
elementsofthesecondvariablelist.Thevariablelistisasinglylinkedlist,whereeachlistelementisapairthatincludesthecumulativedistanceD(i,j)andtheindexiofthecorrespondingmodelframe.ThelengthoflistcorrespondstothenumberofblackpixelsinthecorrespondingcolumninFig.1(b).
WenotethatintheoriginalCDPalgorithmthereisnopruning,onlylines5-10areexecutedinsidethewhileloop,andiisincrementedby1.Incontrast,inCDPPwhenevertheclassi eroutputs 1andahypothesisisprunedtheniisincrementedbyano set,suchthatthenextvisitedcellinthecurrentcolumnwillhaveatleastoneactiveneighborfromthepreviouscolumn.
Algorithm1isinvokedseparatelyforeverygesturemodelMg.Forillustrationpurposesweshowitforasinglemodel.Afterthealgorithmhasbeeninvokedforthecurrentinputframejandforallthemodels,theend-pointdetectionalgorithmofSec.3.3isinvoked.
3.3GestureEndPointDetectionandGestureRecognition
Theproposedgestureendpointdetectionandgesturerecognitionalgorithmcon-sistsoftwosteps:the rststepupdatesthecurrentlistofcandidategesturemodels.Thesecondstepusesasetofrulestodecideifagesturewasspotted,i.e.,ifoneofthecandidatemodelstrulycorrespondstoagestureperformedbytheuser.Theendpointdetectionalgorithmisinvokedonceforeachinputframej.Inordertodescribethealgorithmwe rstneedthefollowingde nitions:–Completepath:alegalwarpingpathW(M1:m,Qj :j)matchinganinputsubsequenceQj :jendingatframejwiththecompletemodelM1:m.–Partialpath:alegalwarpingpathW(M1:i,Qj :j)thatmatchesaninputsubsequenceQj :jendingatthecurrentframejwithamodelpre xM1:i.–Activepath:anypartialpaththathasnotbeenprunedbyCDPP.–Activemodel:amodelgthathasacompletepathendinginframej.–Firingmodel:anactivemodelgwithacostbelowthedetectionacceptancethreshold.
–Subgesturerelationship:agestureg1isasubgestureofgestureg2ifitisproperlycontaineding2.Inthiscase,g2isasupergestureofg1.
Atthebeginningofthespottingalgorithmthelistofcandidatesisempty.Then,ateveryinputframej,afteralltheCDPcostshavebeenupdated,thebest ringmodel(ifsuchamodelexists)isconsideredforinclusioninthelistofcandidates,andexistingcandidatesareconsideredforremovalfromthelist.Thebest ringmodelwillbedi erentdependingonwhetherornotsubgesturereasoningiscarriedout,asdescribedbelow.Foreverynewcandidategesturewerecorditsclass,theframeatwhichithasbeendetected(ortheendframe),thecorrespondingstartframe(whichcanbecomputedbybacktrackingtheoptimalwarpingpath),andtheoptimalmatchingcost.Thealgorithmforupdatingthelistofcandidatesisdescribedbelow.Theinputtothisalgorithmisthecurrentlistofcandidates,thestateoftheDPtablesatthecurrentframe(theactivemodelhypothesesandtheircorrespondingscores),andthelistsofsupergestures.
Abstract. Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting a
Theoutputisanupdatedlistofcandidates.Stepsthatinvolvesubgesturerea-soningareusedinthealgorithmCDPPwithsubgesturereasoning(CDPPS)only,andaremarkedappropriately.
1.Findall ringmodelsandcontinuewithfollowingstepsifthelistof ringmodelsisnonempty.
2.CDPPSonly:conductsubgesturecompetitionsbetweenallpairsof ringmodels.Ifa ringmodelg1isasupergestureofanother ringgesturemodelg2thenremoveg2fromthelistof ringmodels.Afterallpairwisecom-petitionsthelistof ringmodelswillnotcontainanymemberwhichisasupergestureofanothermember.
3.Findthebest ringmodel,i.e.,themodelwiththebestscore.
4.Forallcandidatesgiperformthefollowingfourtests:
(a)CDPPSonly:ifthebest ringmodelisasupergestureofanycandidate
githenmarkcandidategifordeletion.
(b)CDPPSonly:ifthebest ringmodelisasubgestureofanycandidategi
then agthebestmodeltonotbeincludedinthelistofcandidates.(c)Ifthescoreofthebest ringmodelisbetterthanthescoreofacandidate
giandthestartframeofthebest ringmodeloccurredaftertheendframeofthecandidategi(i.e.,thebest ringmodelandcandidategiarenon-overlapping,thenmarkcandidategifordeletion.
(d)Ifthescoreofthebest ringmodelisworsethanthescoreofacandidate
giandthestartframeofthebest ringmodeloccurredaftertheendframeofthecandidategi(i.e.,thebest ringmodelandcandidategiarenon-overlapping,then agthebest ringmodeltonotbeincludedinthelistofcandidates.
5.Removeallcandidatesgithathavebeenmarkedfordeletion.
6.Addthebest ringmodeltothelistofcandidatesifithasnotbeen aggedtonotbeincludedinthatlist.
Afterthelistofcandidateshasbeenupdatedthenifthelistofcandidatesisnonemptythenacandidatemaybe”spotted”,i.e.,recognizedasagestureperformedbytheuserif:
1.CDPPSonly:allofitsactivesupergesturemodelsstartedafterthecandi-date’sendframej .Thisincludesthetrivialcase,wherethecandidatehasanemptysupergesturelist,inwhichcaseitisimmediatelydetected.
2.allcurrentactivepathsstartedafterthecandidate’sdetectedendframej .
3.aspeci ednumberofframeshaveelapsedsincethecandidatewasdetected.Thisdetectionruleisoptionalandshouldbeusedwhenthesystemdemandsahardreal-timeconstraint.Thisrulewasnotusedinourexperiments.Onceacandidatehasbeendetectedthelistofcandidatesisreset(emptied),andallactivepathhypothesesthatstartedbeforethedetectedcandidate’sendframearereset,andtheentireprocedureisrepeated.Tothebestofourknowledgetheideaofexplicitreasoningaboutthesubgesturerelationshipbetweengestures,asspeci edinsteps2,4a,and4bofthecandidatesupdateprocedureandstep1oftheend-pointdetectionalgorithm,isnovel.
Abstract. Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting a
Fig.2.Palm’sGra tidigits
[14].
Fig.3.Examplemodeldigitsextractedusingacoloredglove.
4ExperimentalEvaluation
WeimplementedContinuousDynamicProgramming(CDP)[7]withatypicalsetofgesturespottingrules.Inparticular,weusedaglobalacceptancethresholdfordetectingcandidategestures,andweusedthegesturecandidateoverlapreasoningdescribedinSec.3.3.Thisisthebaselinealgorithm,towhichwecompareourproposedalgorithms.TheproposedCDPwithpruningalgorithm(CDPP),isimplementedasdescribedinSec.3.2,withthesamegesturespottingrulesusedinthebaselinealgorithm.Thesecondproposedalgorithm,CDPPwithsubgesturereasoning(CDPPS),includestheadditionalstepsmarkedinSec.3.3.
Wecomparethebaselinealgorithmandtheproposedalgorithmsintermsofe ciencyandaccuracy.Algorithme ciencyismeasuredbyCPUtime.Accuracyisevaluatedbycountingforeverytestsequencethenumberofcorrectdetectionsandthenumberoffalsealarms.Acorrectdetectioncorrespondstoagesturethathasbeendetectedandcorrectlyclassi ed.Agestureisconsideredtohavebeendetectedifitsestimatedendframeiswithinaspeci edtemporaltoleranceof15framesfromthegroundtruthendframe.Afalsealarmisagesturethateitherhasbeendetectedwithintolerancebutincorrectlyclassi ed,oritsendframeismorethan15framesawayfromthecorrectendframeofthatgesture.
Toevaluateouralgorithmwehavecollectedvideoclipsoftwousersgesturingtendigits0-9insequence.ThevideoclipswerecapturedwithaLogitech3000Procamerausinganimageresolutionof240×320,ataframerateof30Hz.Foreachuserwecollectedtwotypesofsequencesdependingonwhattheuserwore:threecoloredglovesequencesandthreelongsleevessequences;(atotalofsixsequencesforeachuser).Themodeldigitexemplars(Fig.3)wereextractedfromthecoloredglovesequences,andwereusedforspottingthegesturesinthelongvideostreams.Therangeoftheinputsequencelengthsis[1149,1699]frames.
Abstract. Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting a
Therangeofthedigitsequencelengthsis[31,90]frames.Therangeofthe(inbetweendigits)non-gesturessequencelengthsis[45,83]frames.
Fortheglovesequencesthehandwasdetectedandtrackedusingtheglovecolordistribution.Fortheothersequencesthehandwasdetectedandtrackedusingcolorandmotion.Ahandmaskwascomputedusingskinandnon-skincolordistributions[15],andwasappliedtoanerrorresidualimageobtainedbyablock-basedoptical owmethod[16].Foreveryframewecomputedthe2Dhandcentroidlocationsandtheanglebetweentwoconsecutivehandlocations.Thefeaturevectors(MiandQj)usedtocomputethelocaldistanced(i,j)arethe2Dpositionsonly.Theclassi erusedforpruningwascombinationoftwoclassi ers:onebasedonthe2Dpositionsandtheotherbasedontheanglefeature.Thoseclassi ersweretrainedonthemodeldigitsintheo inestep.Toavoidoverpruningweadded20pixelstothethresholdsofallpositionclassi ersandanangleof25degreestoallangleclassi ers.
Fortheend-pointdetectionalgorithmwespeci edthefollowingsupergestureliststhatcapturethesubgesturerelationshipbetweendigits:“1”
“4”
“5”
“7”{“4”,“7”,“9”}{“2”,“5”,“6”,“8”,“9”}{“8”}{“2”,“3”,“9”}
TheexperimentalresultsaresummarizedinTable1.ForthebaselineCDPalgorithmweobtained47correctdetectionsand13falsematches.Forthepro-posedCDPPalgorithmwithoutsubgesturereasoningweobtained51correctdetectionsand9falsematches,and paredtoCDPPwithoutsubgesturereasoning,theproposedCDPPwithsubgesturereasoningcorrectedasingleinstanceofthedigit“3”initiallyconfusedasitscorrespondingsubdigit“7”,fourinstancesofthedigit“8”initiallyconfusedasitscorrespondingsubdigit“5”,andtwoinstancesofthedigit“9”initiallyconfusedasitscorrespondingsubdigit“1”.
MethodCDPCDPPCDPPS
FalseMatches1392
parisonofgesturespottingaccuracyresultsbetweenthebaselineandtheproposedgesturespottingalgorithms.Theaccuracyresultsaregivenintermsofcorrectdetectionratesandfalsematches.Thetotalnumberofgesturesis60.
Abstract. Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting a
InourexperimentsCDPPexecuted14timesfastercomparedtoCDPintermsofCPUtime,assumingfeatureextraction.Theoverallvision-basedrecog-nitionsystemrunscomfortablyinreal-time.
5ConclusionandFutureWork
Thispaperpresentedanovelgesturespottingalgorithm.Inourexperiments,thisnovelalgorithmisanorderofmagnitudefasterand18%moreaccuratecomparedtocontinuousdynamicprogramming.Ourcurrentworkexploresotherclassi ersthatcanbeusedforpruning.Inordertofurtherimproveoursystem’saccuracy,weplantoincorporateamodulethatcanmakeuseoftheDPalignmentinformationtoverifythatthecandidategesturethathasbeendetectedandrecognizedindeedbelongstotheestimatedclass.Thisiscommonlyknownasveri cationinwordspottingforspeech[8].Finally,ratherthanspecifyingthesubgesturerelationshipsmanuallyweplantolearnthemfromtrainingdata.References
1.Triesch,J.,vonderMalsburg,C.:Agestureinterfaceforhuman-robot-interaction.In:AutomaticFaceandGestureRecognition.(1998)546–551
2.Freeman,W.,Weissman,C.:Televisioncontrolbyhandgestures.TechnicalReport1994-024,MERL(1994)
3.Lee,H.,Kim,J.:AnHMM-basedthresholdmodelapproachforgesturerecognition.PAMI21(1999)961–973
4.Freeman,W.,Roth,M.:Computervisionforcomputergames.In:AutomaticFaceandGestureRecognition.(1996)100–105
5.Kang,H.,Lee,C.,Jung,K.:Recognition-basedgesturespottinginvideogames.PatternRecognitionLetters25(2004)1701–1714
6.Morguet,P.,Lang,M.:SpottingdynamichandgesturesinvideoimagesequencesusinghiddenMarkovmodels.In:ICIP.(1998)193–197
7.Oka,R.:Spottingmethodforclassi cationofrealworlddata.TheComputerJournal41(1998)559–565
8.Rose,R.:Wordspottingfromcontinuousspeechutterances.In:AutomaticSpeechandSpeakerRecognition-AdvancedTopics.Kluwer(1996)303–330
9.Kahol,K.,Tripathi,P.,Panchanathan,S.:Automatedgesturesegmentationfromdancesequences.In:AutomaticFaceandGestureRecognition.(2004)883–888
10.Starner,T.,Pentland,A.:Real-timeamericansignlanguagerecognitionfromvideo
usinghiddenMarkovmodels.In:SCV95.(1995)265–270
11.Darrell,T.,Pentland,A.:Space-timegestures.In:Proc.CVPR.(1993)335–340
12.Yoon,H.,Soh,J.,Bae,Y.,Yang,H.:Handgesturerecognitionusingcombined
featuresoflocation,angleandvelocity.PatternRecognition34(2001)1491–1501
13.Zhu,Y.,Xu,G.,Kriegman,D.:Areal-timeapproachtothespotting,representa-
tion,andrecognitionofhandgesturesforhuman-computerinteraction.CVIU85(2002)189–208
14.Palm:Gra ttialphabet.(/us/products/input/)
15.Jones,M.,Rehg,J.:Statisticalcolormodelswithapplicationtoskindetection.
IJCV46(2002)81–96
16.Yuan,Q.,Sclaro ,S.,Athistos,V.:Automatic2Dhandtrackinginvideosequences.
In:WACV.(2005)
正在阅读:
Accurate and efficient gesture spotting via pruning and subgesture reasoning06-09
蝉蛹营养价值没那么高05-16
本科法学专业罗马法教案04-30
2011年完成工业总产值1167305-03
工程质量承诺书09-06
职业生涯规划大赛策划06-11
社团活动总结优秀7篇03-26
小学一年级数学下册元角分练习题10-23
一年级上册数学第九十单元测试题06-03
经济学论文3000字09-20
- 1VIA MCE SoC New Product Planning PC06042007
- 2Cell Zooming for Cost-Efficient Green Cellular Networks
- 3A 20 mV Input Boost Converter With Efficient Digital Control
- 4Space-efficient terrain rendering using constrained Delaunay triangulation
- 5Belief–desire reasoning in the explanation of behavior,Do actions speak louder than words
- 6Electroless Ni–P coating on W–Cu composite via three diffe
- 7Belief–desire reasoning in the explanation of behavior,Do actions speak louder than words
- 8A Case-Based Reasoning Approach to Formulating University Timetables Using Genetic Algorith
- 9Increasing Network Lifetime Of An IEEE 802.15.4 Wireless Sensor Network By Energy Efficient
- 103 - Hardware - Verification - of - a - Hpyer-Efficient - Kasper - APEC - 2015 - 01 - 图文
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- subgesture
- efficient
- reasoning
- Accurate
- spotting
- gesture
- pruning
- via
- 西北大学经济学历年考研试题
- book7 unit4 sharing reading
- 围棋启蒙班教案之二--免费下载
- 2006年浙江省高二证书会考模拟试卷物理试卷
- 小学生演讲稿——我热爱花朵里的祖国
- 高考化学易错知识点汇编
- 北京市世青学校学生留学程序
- 危险化学品安全培训考试题
- 中层干部如何得到领导认可
- my,school高中英语作文带翻译-my school英语作文
- 钢丝钢丝绳钢绞线及相关标准汇编
- 办公室先进集体申报材料
- 基于RS与GIS的陇东黄土高原土地景观格局变化研究
- 1.4角平分线 教案(县级教案评比二等奖)
- 锂离子电池原理、不良项目及成因、涂布方法和充电
- 多油层复杂断块油藏开发层系细分研究
- 技术部管理评审输入报告
- 就业、劳动合同登记名册
- 09年教师资格考试之《教育学》模拟试题及答案三
- 音响噪音排除方法