2019年黄冈中学九年级数学适应性考试
更新时间:2024-01-27 09:57:01 阅读量: 教育文库 文档下载
- 2019年黄冈中学分数线推荐度:
- 相关推荐
2018年黄冈中学九年级数学适应性考试
(满分:120分 时间:120分钟)
一、选择题(本题共8小题,每小题3分,共24分. 在每小题给出的四个选项中,只有一项符合题目要求) 1、-25的相反数是( ) A.
B.
C.-25 D.25
2、国家统计局统计资料显示,2013年第一季度我国国内生产总值为31355.55亿元,用科学记数法表示为( )元.(用四舍五入法保留3个有效数字)
A.31355.5×108 B.3.14×1013 C.3.14×1012 D.3.13×1012 3、如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )
A.50° B.60° C.70° D.80° 4、下列运算正确的是( ) A.a2·a3=a6 B.
C.(-3a2b)2=6a4b2 D.a5÷a3+a2=2a2
5、由七个大小相同的正方体组成的几何体如图所示,则它的左视图是( )
A. B. C. D.
(β-1)的值等于( ) 6、设方程x2+x-2=0的两个根为α,β,那么(α-1)
A.-4 B.-2 C.0 D.2
7、如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM∶OD=3∶5.则AB的长是( )
A.2cm B.3cm C.4cm D.
,∠AOC=60°,垂直8、如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0)
于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),N则能大致反映S与t的函数关系的图象是( )
A. B. C. D.
二、填空题(本题共7个小题,每小题3分,共21分.只要求填写最后的结果) 9、化简
的结果是__________.
10、分解因式:a3-4a2+4a__________.
11、一个圆锥形零件,高为8cm,底面圆的直径为12cm,则此圆锥的侧面积是__________.
12、市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛. 在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是__________.
平均数 方差 甲 8.2 2.1 乙 8.0 1.8 丙 8.0 1.6 丁 8.2 1.4 13、如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则
的值为__________.
14、如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O2在x轴正半轴上,
1x1,2x2,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P(、在反比例函数y1)P(y2)
的图象上,则y1+y2=__________.
15、过平行四边形ABCD的对角线交点O作直线m,分别交直线AB于点E,交直线CD于点F,若AB=4,AE=6,则DF=__________.
三、解答题(本题共9个小题,共75分.解答应写出文字说明、证明过程或推演步骤)
(6分)解不等式组16、.
(7分)如图,四边形DBCF中,∠F=90°,DF∥BC,CE⊥BD于E交FD的延长线于A,BD=17、
2DF,CF=CE. (1)求证:DF=DE.
(2)求证:四边形ABCD是菱形.
(6分)我国是世界上严重缺水的国家之一为了倡导“节约用水从我做起”,小刚在他所在班的5018、
名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图:
(1)求这10个样本数据的平均数、众数和中位数;
(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t的约有多少户?
(7分)小明和小丽想利用摸球游戏来决定谁去参加学校举办的歌咏比赛,游戏规则是:在一个不透19、
明的袋子里装有除数字以外其他均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和奇数,则小明去参赛;否则小丽去参赛. (1)用树状图或列表法求出小明参赛的概率; (2)你认为这个游戏公平吗?请说明理由.
(8分)某道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施20、
工多用30天完成此项工程.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
(2)若甲工程队独做a天后,再由甲、乙两工程队合作_________天(用含a的代数式表示)可完成此项工程;
(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元? (7分)如图,AB是⊙O的直径,AC和BD是它的两条切线,DO平分∠BDC. 21、
(1)求证:CD是⊙O的切线; (2)若AC=2,BD=3,求AB的长.
(7分)如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞22、
机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了12千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.
(12分)小张投资开办了一个学生文具店.该店在开学前8月31日采购进一种今年新上市的文具袋.23、9月份(9月1日至9月30日)进行30天的试销售,购进价格为20元/个.销售结束后,得知日销售量y(个)与销售时间x(天)之间有如下关系:y=-2x+80(1≤x≤30,且x为整数);又知销售价格z(元/个)与销售时间x(天)之间的函数关系满足如图所示的函数图象. (1)直接写出z关于x的函数关系式;
(2)求出在这30天(9月1日至9月30日)的试销中,日销售利润W(元)与销售时间x(天)之间的函数关系式;
(3)“十一”黄金周期间,小张采用降低售价从而提高日销售量的销售策略.10月1日全天,销售价格比9月30日的销售价格降低a%而日销售量就比9月30日提高了6a%(其中a为小于15的正整数),日销售利润比9月份最大日销售利润少569元,求a的值. (参考数据:502=2500,512=2601,522=2704)
(15分)已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的24、
正半轴上,A(0,2),B(-1,0).
(1)求过A、B、C三点的抛物线的解析式和对称轴;
(2)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标;
(3)在抛物线对称轴上,是否存在这样的点M,使得△MPC为等腰三角形(P为上述(2)问中使S最大时的点)?若存在,请直接写出点M的坐标;若不存在,请说明理由;
(4)设点M是直线AC上的动点,试问:在平面直角坐标系中,是否存在位于直线AC下方的点N,使得以点O、A、M、N为顶点的四边形是菱形?若存在,求出点N的坐标;若不存在,说明理由.
1、D 2、C 3、C 4、D 5、B 6、C 7、C 8、A
提示:过A作AH⊥x轴于H, ∵OA=OC=4,∠AOC=60°, ∴OH=2, 由勾股定理得:
①当0≤t≤2时,ON=t,
,
,
;
②2<t≤4时,ON=t,故选A. 9、x
10、a(a-2)2 11、60πcm2 12、丁 13、
.
14、
解析:∵⊙O1过原点O,⊙O1的半径O1P1,∴O1O=O1P1. ∵⊙O1的半径O1P1与x轴垂直,点P1(x1,y1)在反比例函数∴x1=y1,x1y1=1.∴x1=y1=1.
∵⊙O1与⊙O2相外切,⊙O2的半径O2P2与x轴垂直, 设两圆相切于点A,∴AO2=O2P2=y2,OO2=2+y2. ∴P2点的坐标为:(2+y2,y2). ∵点P2在反比例函数∴(2+y2)·y2=1,解得:
.
的图象上,
(不合题意舍去).
的图象上,
15、2或10
解析:E点可能在A点的两边,即在AB的延长线上(图1), 或在BA的延长线上(图2) 图1中,DF=AE-AB=2; 图2中,DF=CC+CF=
.
16.解:由①得,x<5. 由②得,x≥2.
∴原不等式组的解集为2≤x<5.
(1)∵CE⊥BD,∴∠DEC=90°, 17.证明:
∴∠DEC=∠F=90°. 在Rt△DFC和Rt△DEC中, DC=DC,CF=CE,
∴Rt△DFC≌Rt△DEC(HL). ∴DF=DE.
(2)∵BD=2DF,DF=DE, ∴DE=BE,
又∵CE=CE,∠DEC=∠BEC=90°, ∴Rt△DEC≌Rt△BEC(SAS). ∴BC=CD,∠BCE=∠DCE.
又∵DF∥BC,∴∠BCE=∠DAC=∠DCE. ∴AD=BC=CD,而AD//BC,
∴四边形ABCD为平行四边形,而BC=CD, ∴四边形ABCD为菱形.
(1)观察条形图,可知这组样本数据的平均数是: 18.解:
∴这组样本数据的平均数为6.8(t).
∵在这组样本数据中,6.5出现了4次,出现的次数最多, ∴这组数据的众数是6.5(t).
,
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是6.5,有 ∴这组数据的中位数是6.5(t).
(2)∵10户中月均用水量不超过7t的有7户,有
.
.
∴根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7t的约有35户.
(1)根据题意可列树状图如下: 19.解:
从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种.
(2)不公平.
∵小明参赛的概率是P(和为奇数)
,小丽参赛的概率是P(和为偶数)
,
.
,∴不公平.
(1)设乙独做x天完成此项工程,则甲独做(x+30)天完成此项工程. 20.解: 由题意得:
整理得:x2-10x-600=0 解得:x1=30,x2=-20.
经检验:x1=30,x2=-20都是分式方程的解,但x2=-20不符合题意,舍去. ∴x=30. ∴x+30=60.
答:甲、乙两工程队单独完成此项工程各需要60天、30天.
(2)设甲独做a天后,甲、乙再合做天,可以完成此项工程.
(3)由题意得:解得:a≥36.
答:甲工程队至少要独做36天后,再由甲、乙两队合作完成剩下的此项工程,才能使施工费不超过64万元.
21.1)证明:过O点作OE⊥CD,垂足为E,
∵BD是切线, ∴OB⊥DB,
∵DO平分∠BDC,OE⊥CD, ∴OA=OE, ∴CD是⊙O的切线.
(2)解:过C点作CF⊥BD,垂足为F, ∵AC,CD,BD都是切线, ∴AC=CE=2,BD=DE=3, ∴CD=CE+DE=5,
∵∠CAB=∠ABD=∠CFB=90°, ∴四边形ABFC是矩形,
∴BF=AC=2,DF=BD﹣BF=1,
在Rt△CDF中,CF2=CD2﹣DF2=52-12=24,
.
22.解:过C作CE⊥AD于E
在△ABD中,∠ABD=90°,∠BAD=30°,AB=12,
.
在△ABC中,∠BAC=60°,∠ABC=30°,AB=12, ∴∠ACB=90°,AC=ABsin30°=6.
在△ACE中,∠AEC=90°,∠CAE=60°-30°=30°,AC=6, ∴CE=ACsin30°=3,
在Rt△CDE中,∠CED=90°,CE=3,根据勾股定理有,
∴山头C、D之间的距离是
(1)由图象知,当1≤x≤20时,设z=kx+b, 23.解:则有:
,
千米
.
.
.
解得:,即,
当20<x≤30时z=45,
综上:.
(2)当1≤x≤20时,
当20<x≤30时,
W=yz-20y=45(-2x+80)-20(-2x+80) =-50x+2000, 即
.
(3)9月30日的价格为45元,日销售量为20个, 9月份当1≤x≤20时日销售利润为:
W=-x2+10x+1200=-(-x2-10x+25)+1225=-(x-5)2+1225, 当9月5日时利润最大为1225元.
当20<x≤30时,利润为W=-50x+2000,
当x增加时W减小,故为x=21时最大.最大日销售利润为950元, 综上9月份日销售利润最大为1225元.
由题意得45(1-a%)·20(1+6a%)-20×20(1+6a%)=1225-569, (1+6a%)[900(1-a%)-400]=656, (1+6a%)(900-9a-400)=656, (1+6a%)(500-9a)=656, 500-9a+30a-54a2%=656, 方程两边同乘以100得: 54a2-2100a+15600=0, 化简得9a2-350a+2600=0, a1=10,
答:a的值为10.
(1)∵A(0,2),B(-1,0),∴OA=2,OB=1. 24.解:
由Rt△ABC知Rt△ABO∽Rt△CAO,∴ ∴点C的坐标为(4,0).
设过A、B、C三点的抛物线的解析式为y=a(x+1)(x-4),
,即
,解得OC=4.
,
将A(0,2)代入,得2=a(0+1)(0-4),解得.
∴过A、B、C三点的抛物线的解析式为,即.
,∴抛物线的对称轴为.
(2)过点P作x轴的垂线,垂足为点H.
∵点P(m,n)在上,
.
,
,
.
∵S=m2+4m=-(m-2)2+4,∴当m=2时,S最大. 当m=2时, (3)存在. 设点
,
.∴点P的坐标为(2,3).
∵C(4,0), P(2,3),
,
,
.
分三种情况讨论:
①当点M是顶点时,PM= CM,即
,解得,
.
.
②当点C是顶点时,PC=CM,即,解得,.
.
③当点P是顶点时,PC= PM,即,解得,.
.
综上所述,当点M的坐标为△MPC为等腰三角形.
或或或或时,
(4)当OA为边时,MN//OA,ON=AO=2. 若MN在OA右侧时,则点N的坐标为
;
若MN在OA左侧时,则点N的坐标为.
当OA为对角线时,MN垂直平分OA,则点M的纵坐标为1,把y=1代入得x
=2,∴M(2,1). ∴N(-2,1).
综上所述,当点N的坐标为
或
或(-2,1).
正在阅读:
2019年黄冈中学九年级数学适应性考试01-27
我最崇敬的人作文02-04
《图形的放大和缩小》教学设计08-14
给妈妈洗脚作文350字06-12
调皮的我作文450字07-13
七夕节诗歌50句03-30
公司行政经理职责02-25
小学英语个人研修总结3篇03-13
“六个一”实践活动报告02-29
基于PLC的自来水厂净水处理控制系统设计05-15
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 黄冈
- 适应性
- 年级
- 数学
- 中学
- 考试
- 2019
- “极大规模集成电路制造装备及成套工艺”
- 酒店英语日常英语大1
- 商务礼仪试卷答案
- 泪的解放 - 读《查拉图斯特拉》有感
- wincc标准函数介绍
- 蛋白质及酶工程试验
- 最新汽车修理厂承包经营合同
- 河南许昌普高2017届高三下学期高考适应性测试(二模)文综历史试题(含答案)
- 2013年监理工程师《监理基本理论与法规》预测试卷一
- 编码器工作原理种类APC SPC
- H3C VCF纵向虚拟化技术架构
- 汽轮机本体检修(技师)
- 小学二年级数学上册期末试卷分析
- 基于单片机的太阳能热水器控制系统的设计毕业设计(论文) - 图文
- 新时代中国特色社会主义的政治宣言和行动纲领答案 得分100分
- 队列队形及基本体操
- 服务礼仪试卷(新)
- 3谈判文件
- 关于推进都市圈内城乡文化一体化发展的提案
- 格列佛游记章回问答题