苏教版完整版新精选小学五年级下册数学应用题含答案

更新时间:2023-03-19 20:17:01 阅读量: 人文社科 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

苏教版完整版新精选小学五年级下册数学应用题含答案

一、苏教小学数学解决问题五年级下册应用题

1.一个真分数的分子、分母同时减去一个相同的非零自然数,用字母表示这两个分数,比较与的大小(b>a>n>0)。得到的分数的大小会改变吗?

(1)举例:的分子、分母同时减去1后是,那么 ________ (填“>”“<”或者“=”)

的分子、分母同时减去3后是,那么 ________ (填“>”“<”或者“=”)

我的举例:________

通过举例得到的结论: ________

(2)请你用举例的方法再来判断(y>x,m≠0,y≠0)

2.修一条千米长的公路,第一天修了全长的,第二天比第一天多修了全长的。第二天修了全长的几分之几?还剩下全长的几分之几没有修?

3.新华书店新到了三百本多本书打算分发给各个学校,每18本捆成一捆少1本;每24本捆成一捆也少1本。这批书共有多少本?

4.长75厘米、宽60厘米的长方形纸,要把它裁成同样大小的正方形,边长为整厘米,且没有剩余,裁成的正方形边长最大是多少厘米?至少可以裁成多少个这样的正方形?5.下面是某市一个月天气变化情况统计图。

(1)多云的天数是晴天的几分之几?

(2)阴天的天数是这个月总天数的几分之几?

6.把45厘米、60厘米的两根彩带剪成长度一样的短彩带且没有剩余。

(1)每根短彩带最长是多少厘米?

(2)一共可以剪成多少段?

7.填出下面加法算式中的六个质数。

8.某校五年级一共有四个班,每班的学生在31人至39人之间。

(1)在一次捐书活动中,五(1)班捐助的书占总数的,五(2)班捐的书占总数的,

五(3)班捐的书占总数的。五(4)班捐助的书占总数的几分之几?

(2)在一次学农活动中,把五年级四个班所有的学生平均分成8个组,或者平均分成12个组,都恰好分完没有剩余。五年级四个班一共有多少名学生?

9.五年级有48名同学报名参加义务劳动。老师让他们自己分成人数相等的若干小组,要求组数大于2,小于10。一共有几种分法?分别可以分成几组?(写出思考过程)10.甲、乙两数的最大公因数与最小公倍数的和为240,且甲数是它们的最大公因数的5倍,乙数为它们最大公因数的3倍。求甲、乙两数?

11.把一张长15厘米,宽9厘米的长方形纸裁成同样大的正方形,如果要求纸没有剩余,裁出的正方形边长最大是多少厘米?一共可以裁出多少个这样的正方形?(在图中画一画,再解答)

12.一个假分数的分子是55,把它化成带分数后,整数部分、分子、分母是三个连续的自然数,试确定这个带分数。

13.一个两位数,交换个位与十位上的数字所得的两位数仍是质数。这样的两位数有多少个?

14.体育课上,30名学生站成一排,按老师口令从左到右报数:1,2,3,4 (30)

(1)老师先让所报的数是2的倍数的学生去跑步,参加跑步的有多少人?

(2)让余下学生中所报的数是3的倍数的学生进行跳绳训练,参加跳绳的有多少人?(3)两批学生离开后,再让余下学生中所报的数是5的倍数的同学去器材室拿篮球,有几人去拿篮球?

(4)现在队伍里还剩多少人?

15.三个连续自然数的和是72,这三个自然数分别是多少?如果是三个连续偶数,这三个数又分别是多少?

16.池塘里有鸭子40只,比岸上鸭子只数的3倍少2只,岸上有多少只鸭子?(用方程

解答)

17.胜利小学体操队有80人,比舞蹈队的2.1倍少4人。舞蹈队有多少人?(用方程解)18.把50克糖溶解在300克水中化成糖水,糖的重量是水的几分之几?糖占糖水的几分之几?(结果化成最简分数)

19.修一条长5km的路,第一天修了全程的,第二天修了全程的,还剩下全程的几分之几没有修?

20.人们知道废电池对环境和人类的危害,同学们为保护环境,举行收集废电池的活动。甲组7人收集了6千克,乙组8人收集了7千克,丙组6人收集了5千克。哪个小组平均每人收集的电池多?写出主要理由。

21.一个养殖场一共养鸡680只,其中母鸡的只数是公鸡的2.4倍。公鸡和母鸡各有多少只?

22.把长16米和40米的两根绳子截成同样长的小段,没有剩余。每段最长是多少?共截成了多少段?

23.一辆汽车从甲地开往乙地,平均每小时行驶60km。这辆汽车到达乙地后又以90千米时的速度返回甲地,往返一次共用2.5小时。求甲、乙两地间的路程。

24.暑假期间,小林每6天游泳一次,小军每8天游泳一次。7月31日两人在游泳池相遇,八月几日他们又再次相遇?

25.有三张正方形纸,边长分别是6分米、18分米和24分米。如果想裁剪成长4分米、宽3分米的长方形小纸片,且没有剩余。选择裁剪哪张正方形纸比较合适,能够裁剪成多少张小长方形纸片?

26.“植树节”到了,有25个小伙伴要分成甲、乙两个组去植树,如果甲队人数为奇数,那么乙队人数为奇数还是偶数?如果有1人请假未到,这时甲队人数为偶数,那么乙队人数呢?

27.已知一包糖果不足50颗,平均分给12个人正好分完,平均分给16个人也正好分完,这包糖果共有多少颗?

28.有两根钢丝,长度分别是12cm、18cm。现在要把他们截成长度相同的小段,但每一根都不能剩余,每小段最长多少米?一共可以截成多少段?

29.35名学生分成甲、乙两队。如果甲队人数为偶数,乙队人数为奇数还是偶数?如果甲队人数为奇数呢?

30.矫正与反思

A杯:把4克糖溶解在16克水中化成糖水;

B杯:把5克糖溶解在22克水中化成糖水。

这两杯糖水,哪一杯会更甜?

(1)请你在上面正确的做法后面()里打√。

(2)你喜欢谁的做法?请你解释其思路。

31.成渝高速路长330千米,一辆大客车从重庆开往成都,一辆小轿车同时从成都开往重庆.2小时在途中相遇,已知小轿车的速度是大客车的1.2倍.两车每小时各行多少千米?32.一(1)班有男生24人,女生16人。现在要把男生、女生分别分成若干个小组,要使每组的人数相同,每组最多有多少人?

33.南湖小区准备修建一个长4m,宽2.5m,高3.6m的长方体小型蓄水池。

(1)给这个蓄水池的地面铺正方形地砖,要使铺的地砖都是整块,地砖的边长最长是多少?一共需要这样的地砖多少块?

(2)在蓄水池的四壁上贴2.4米高的瓷砖,需要多少平方米的瓷砖?

34.甲、乙、丙三人到图书馆去借书,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果4月25日他们三人在图书馆相遇,那么下一次都到图书馆是几月几日?

35.学校环形跑道长480米,笑笑和淘气从跑道的同一地点同时出发,都按顺时针方向跑,经过30分钟,笑笑第一次追上淘气。淘气的速度是230米/分,笑笑每分跑多少米?(列方程解答)

36.用长5厘米、宽4厘米的长方形,照下图的样子拼成正方形。拼成的正方形的边长最小是多少厘米?需要几个这样的长方形?

37.如图,已知正方形的面积为20平方厘米,求阴影部分的面积。

38.甲、乙两人到体育馆健身,甲每6天去一次.乙每9天去一次,如果6月5日他们两人在体育馆相遇。

(1)那么下一次两人都到体育馆的时间是几月几日?

(2)如果丙6月5日也去了体育馆,他每4天去一次,他们三人下一次都到体育馆的时间是几月几日?

39.一次数学竞赛共有20道题,做对一道题得5分,做错或不做一道题倒扣3分,刘冬考了52分,刘冬做对了几道题。

40.车站的4路电车每隔8分钟发一趟车,5路电车每隔12分钟发一趟车。上午8时整4路电车和5路电车同时出发,再过多长时间两车又同时从车站出发?是几时几分?

【参考答案】***试卷处理标记,请不要删除

一、苏教小学数学解决问题五年级下册应用题

1.(1)>;>;的分子、分母同时减2后是,那么 > ;>

(2)解:我的举例:的分子、分母同时加2后是,那么<;

所以<。

【解析】【解答】解:(1)举例:的分子、分母同时减去1后是,那么>;

的分子、分母同时减去3后是,那么>;

我的举例:的分子、分母同时减2后是,那么 > ;

通过举例得到的结论:>。

【分析】通过举例的方法,比较两个分数的大小,再根据比较的结果,找出规律,据此解答。

2.第二天:+

=+

=;

剩下:1--

=-

=;

答:第二天修了全长的;还剩下全长的没有修。

【解析】【分析】第二天修了全长的几分之几=第一天修的全长的几分之几+ 第二天比第一天多修了全长的几分之几;还剩下全长的几分之几没有修=1-第一天修的全长的几分之几-第二天修了全长的几分之几,代入数值计算即可。

3.解:18=2×3×3

24=2×2×2×3

所以它们的最小公倍数是2×2×2×3×3=72

72的倍数有72、144、216、288、360、432等

360-1=359(本)

答:这批书共有359本。

【解析】【分析】此题主要考查了最小公倍数的应用,先把18和24分别分解质因数,然后求出它们的最小公倍数,根据条件“ 新华书店新到了三百本多本书”可知,把它们的最小公倍数分别扩大1倍、2倍、3倍……,找出符合条件的三百多的数,最后用这个数减去1即可得到这批书的本数,据此解答。

4.解:75=3×5×5

60=2×2×3×5

75与60的最大公因数是3×5=15

75×60÷(15×15)

=4500÷225

=20(个)

答:正方形的边长是15厘米。至少可以裁成20个这样的正方形。

【解析】【分析】此题主要考查了最大公因数的应用,要求把长方形纸裁成同样大小的正方形,边长为整厘米,且没有剩余,要求裁成的正方形边长最大是多少厘米?就是求长与宽的最大公因数,据此利用分解质因数的方法,求出长与宽的最大公因数,就是裁成的正方形最大边长;

要求至少可以裁成多少个这样的正方形?依据长方形的面积÷小正方形的面积=可以裁的个数,据此列式解答。

5.(1)解: 9÷10=

答:多云的天数是晴天的。

(2)解: 7÷(10+7+5+9)

=7÷31

=

答:阴天的天数是这个月总天数的。

【解析】【分析】(1)根据题意可知,多云的天数÷晴天的天数=多云的天数是晴天的几分之几,据此列式计算;

(2)根据题意可知,阴天的天数÷这个月的总天数=阴天的天数占这个月总天数的几分之几,据此列式解答。

6.(1)解:45=5×3×3

60=2×5×2×3

45和60的最大公因数是5×3=15,每根短彩带最长是15厘米。

答:每根短彩带最长是15厘米。

(2)解:45÷15+60÷15

=3+4

=7(段)

答:一共可以剪成7段。

【解析】【分析】(1)根据条件“ 把45厘米、60厘米的两根彩带剪成长度一样的短彩带且没有剩余”可知,要求每根短彩带最长是多少,就是求45和60的最大公因数,据此解答;

(2)根据题意,每根彩带的长度÷每根短彩带最长的长度=每根彩带可以剪的段数,然后相加即可。

7.解:936+287=1223或936+387=1323或936+587=1523或936+787=1723,

所以;

【解析】【分析】由竖式加法算式可以知道,每个位置的质数只能是一位数,而10以内的质数有:2、3、5、7,然后再把每个质数代入算式进行验证。

8.(1)解:1- - - =

答:五(4)班捐助的书占总数的。

(2)解:8、12的最小公倍数是24,24÷4=6,31~39之间是6的倍数的是36,所以平均每班36人,一共有:36×4=144(人)

答:五年级四个班一共有144名学生。

【解析】【分析】(1)把捐赠书的总数看作单位“1”,用1-五(1)班占的分率-五(2)班占的分率-五(3)班占的分率=五(4)班占总数的几分之几。

(2)五年级四个班所有的学生人数,既能够整除8,又能够整除12,说明五年级四个班的总人数是8和12的公倍数,先找出8和12的最小公倍数,再算4个班,平均每个班的人数,而每班的学生在31人至39人之间,接着具体确定平均每个班的具体人数是多少,就可以确定总人数了。

9.解:48=1×48=2×24=3×16=4×12=6×8,

因为组数大于2,小于10,一共有4种分法,①分成3组,每组16人,②分成4组,每组12人,③分成6组,每组8人,④分成8组,每组6人。

答:有4种分法,分别可以分成3组、4组、6组和8组。

【解析】【分析】根据题意可知,先求出48的因数,然后根据条件“ 分成人数相等的若干小组,要求组数大于2,小于10 ”可知,2<组数<10,据此找出合适的分组方法。10.解:设甲、乙两数的最大公因数是d,则甲=5d,乙=3d,甲、乙两数的最小公倍数是5d×3d÷d=15d。

所以15d+d=240,即d=15。

甲=15×5=75,乙=3×15=45。

【解析】【分析】设甲、乙两数的最大公因数是d,根据甲数是它们的最大公因数的5倍,乙数为它们最大公因数的3倍,可知甲=5d,乙=3d,

甲、乙两数的最小公倍数就是5d和3d的最小公倍数15d;

甲、乙两数的最大公因数与最小公倍数的和为240,可知等量关系是:甲、乙两数的最大公因数+最小公倍数=240,根据等量关系列方程,根据等式性质解方程;

甲数=最大公因数×5倍,乙数=最大公因数×3倍,据此求甲、乙两数。

11.如图:

15和9的最大公因数是3,所以裁出的正方形边长最大是3厘米;

15÷3=5(块)

9÷3=3(块)

5×3=15(块)

答:裁出的正方形边长最大是3厘米,一共可以裁出15个这样的正方形.

【解析】【分析】15和9的最大公因数就是裁出的正方形最大的边长;计算出长和宽分别可以裁几块,它们的积就是可以裁出的最多数。

12.解:55+1=56

7×8=56

7-1=6

所以这个分数是。

【解析】【分析】因为整数部分、分子、分母是三个连续的自然数,所以如果这个分数分子加上1,即可以化成整数。先让假分数的分子加上1,然后利用乘法口诀,写成相邻两个数的乘积,较大的数是带分数的分母,较小的数是带分数的分子,较小的数减1就是带分数的整数部分。

13.解:这样的两位数有 11,13,31,17,71,37,73,79,97 ,共9个。

答:这样的两位数有9个。

【解析】【分析】一个数,如果只有1和它本身两个因数,这样的数叫做质数,据此解答。

14.(1)解:30÷2=15(人)

答:参加跑步的有15人。

(2)解:余下的数是1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,其中3的倍数有:3,9,15,21,27,共5人。

答:参加跳绳的有5人。

(3)解:余下的数是1,5,7,11,13,17,19,23,25,29,其中5的倍数有:5,25,共2人。

答:有2人去拿篮球。

(4)解:30-15-5-2=8(人)

答:现在队伍里还剩8人。

【解析】【分析】(1)2的倍数都是偶数,30个数中,有15个奇数,15个偶数;

(2)求参加跳绳的人数就是求30以内的奇数中,3的倍数有几个;

(3)求去拿篮球的人数就是求余下的数中,5的倍数有几个;

(4)总人数-参加跑步的人数-参加跳绳的人数-去拿篮球的人数=现在队伍里还剩人数。15.解:设三个连续自然数分别是a-1,a,a+1。

a-1+a+a+1=72,

3a=72

a=24,

所以三个自然数分别是23,24,25。

设三个连续偶数分别是b-2,b,b+2。

b-2+b+b+2=72,

3b=72

b=24,

所以三个连续偶数分别是22,24,26 。

答:这三个自然数分别是23,24,25。如果是三个连续偶数,这三个数又分别是22,24,26 。

【解析】【分析】三个连续自然数之间相差1,三个连续偶数之间相差2,据此解答。16.解:设岸上有x只鸭子,

答:岸上有14只鸭子。

【解析】【分析】设岸上有x只鸭子,根据“岸上鸭子的只数×倍数-池塘的鸭子比岸上的鸭子3倍少的只数=池塘鸭子的只数”即可列出方程,求解即可得出答案。

17.解:设舞蹈队有x人。

2.1x-4=80

2.1x=84

x=40

答:舞蹈队有40人。

【解析】【分析】本题可以设舞蹈队有x人,题中存在的等量关系是:舞蹈队队的人数×体操队的人数是舞蹈队的倍数-少的人数=体操队的人数,据此代入数据和字母作答即可。

18.解:糖的重量是水的几分之几=50÷300=;

糖占糖水的几分之几=50÷(50+300)=。

答:糖的重量是水的;糖占糖水的。

【解析】【分析】糖的重量是水的几分之几=糖的重量÷水的重量;糖占糖水的几分之几=糖的重量÷(糖的重量+水的重量),代入数值计算,并根据分数与除法的关系以及分数的基本性质计算即可。

19.解:1--

=1--

=

答:还剩下全程的。

【解析】【分析】还剩下全程的几分之几=1-第一天修了全程的几分之几-第二天修了全程的几分之几,代入数值计算即可。

20.解:甲:6÷7= (千克/人)

乙:7÷8= (千克/人)

丙:5÷6= (千克/人)

>>

答:乙小组平均每人收集的电池多。

【解析】【分析】根据题意可知,分别用除法求出每个小组平均每人收集的电池质量,然后对比即可解答。

21.解:设公鸡有x只,则母鸡有2.4x只,

x+2.4x=680

3.4x=680

3.4x÷3.4=680÷3.4

x=200

母鸡:200×2.4=480(只)

答:公鸡有200只,母鸡有480只。

【解析】【分析】此题主要考查了列方程解决问题,设公鸡有x只,则母鸡有2.4x只,公鸡的只数+母鸡的只数=养殖场一共养鸡的只数,据此列方程解答。

22.解:16=2×8,40=5×8,

所以每段最长是8厘米,

(16+40)÷8=56÷8=7(段)

答:每段最长是8厘米,共截成了7段。

【解析】【分析】16和40的最大公因数是截取的最长的长度,两条绳子的长度和÷8米=截成的段数。

23.解:设去时时间为x小时,则返回时间为(2.5-x)小时,

60x=90×(2.5-x)

60x=90×2.5-90x

60x+90x=90×2.5-90x+90x

150x=225

150x÷150=225÷150

x=1.5

1.5×60=90(千米)

答:甲、乙两地间的路程是90千米。

【解析】【分析】此题主要考查了列方程解决问题,去时与返回时的路程不变,设去时时间为x小时,则返回时间为(2.5-x)小时,去时速度×去时用的时间=返回速度×返回用的时间,据此列方程解答,然后用速度×时间=路程,据此列式解答。

24.解:6=2×3,8=2×2×2

6和8的最小公倍数是:2×2×2×3=24

7月31日再过24天是8月24日

答:8月24日他们又再次相遇。

【解析】【分析】6和8的最小公倍数就是他们再次相见隔的时间,据此解答。25.解:4和3的倍数有12、24、......;

所以选择裁剪边长是24分米的正方形纸比较合适,

能够裁剪成的张数:

(24÷4)×(24÷3)

=6×8

=48(张)

答:选择裁剪边长是24分米的正方形纸比较合适,能够裁剪成48张小长方形纸片。

【解析】【分析】正方形的边长如果是4和3的倍数,这样裁剪起来没有剩余,比较合适;

(正方形的边长÷4分米)×(正方形的边长÷3分米)=可以裁剪的个数。

26.解:25-奇数=偶数;

25-1=24,

24-偶数=偶数。

答:有25个小伙伴要分成甲、乙两个组去植树,如果甲队人数为奇数,那么乙队人数为偶数;如果有1人请假未到,这时甲队人数为偶数,那么乙队人数为偶数。

【解析】【分析】此题主要考查了奇数和偶数的应用,奇数-奇数=偶数,奇数-偶数=奇数,偶数-偶数=偶数,据此解答。

27.解:12=3×2×2;

16=2×2×2×2;

12和16的最小公倍数是2×2×3×2×2=48,这包糖果共有48颗。

答:这包糖果共有48颗。

【解析】【分析】此题主要考查了最小公倍数的应用,用分解质因数的方法求两个数的最小公倍数,先把每个数分别分解质因数,把这两个数公有的质因数和各自独有的质因数相乘,它们的乘积就是这两个数的最小公倍数,据此解答。

28.解:12=3×2×2,

18=2×3×3,

12和18的最大公因数是3×2=6,所以每小段最长是6米;

12÷6+18÷6

=2+3

=5(段)

答:每小段最长是6米,一共可以截成5段。

【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数;

然后用长÷每段的长度+宽÷每段的长度=一共可以截的段数,据此列式解答。

29.解:如果甲队人数为偶数,乙队人数为奇数;如果甲队人数为奇数,乙队人数为偶数。

【解析】【分析】奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数。据此作答即可。30.(1)

(2)解:我喜欢小华的做法,糖的质量÷糖水的质量=糖水的含糖量,哪个杯子中含糖量高,那个杯子中的糖水就甜。

【解析】【分析】糖的质量+水的质量=糖水的质量;糖的质量÷糖水的质量=糖水的含糖量;糖水的含糖量越高,糖水就越甜。

31.解:设大客车每小时行x千米,则小轿车每小时行1.2x千米。

(1.2x+x)×2=330

2.2x×2=330

4.4x=330

x=330÷4.4

x=75

75×1.2=90(千米)

答:大客车每小时行75千米,小轿车每小时行90千米。

【解析】【分析】本题属于相遇问题,等量关系:(大客车的速度+小客车的速度)×行驶时间=行驶路程,根据等量关系列方程,根据等式性质解方程。

32.解:24=3×2×2×2;

16=2×2×2×2;

24和16的最大公因数是2×2×2=8,每组最多有8人。

答:每组最多有8人。

【解析】【分析】根据题意可知,要求每组的人数相同,每组最多有多少人,就是求这两个数的最大公因数,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数。

33.(1)解:4m=40dm;2.5m=25dm,

因为40和25的最大公因数是5,所以地砖的边长最长是5dm,

所以一共需要这样的地砖的块数=(40÷5)×(25÷5)

=8×5

=40(块)

答:地砖的边长最长是0.5米;一共需要这样的地砖40块。

(2)解:需要瓷砖的面积=(4×2.4+2.5×2.4)×2

=(9.6+6)×2

=15.6×2

=31.2(平方米)

答:需要31.2平方米的瓷砖。

【解析】【分析】(1)将4m和2.5m转化成dm,即4m=40dm;2.5m=25dm,地砖的边长最长是40和25的最大公因数,40和25的最大公因数是5dm,所以一共需要地砖的块数=(蓄水池的长÷最大公因数)×(蓄水池的宽÷最大公因数),代入数值计算即可;(2)需要瓷砖的面积=(蓄水池的长×四壁贴瓷砖的高度+蓄水池的宽×四壁贴瓷砖的高度)×2,代入数值计算即可。

34.解:6、8、9的最小公倍数是72

4月25日+72天=7月6日

答:下一次都到图书馆是7月6日。

【解析】【分析】先求出6、8、9的最小公倍数,这就是再次相遇经过的天数,然后在4月25日的时间上加上这些天数即可。

35.解:设笑笑每分跑x米。

30x-230×30=480

30x-6900=480

30x-6900+6900=480+6900

30x=7380

x=246

答:笑笑每分跑246米。

【解析】【分析】此题主要考查了追及问题,可以列方程解答,设笑笑每分跑x米,笑笑跑的路程-淘气跑的路程=追及时相差的路程,据此列方程解答。

36.解:5×4=20(厘米)

(20÷5)×(20÷4)=4×5=20(个)

答:拼成的正方形的边长最小是20厘米,需要20个这样的长方形。

【解析】【分析】正方形的最小边长就是5和4的最小公倍数;5和4的最小公倍数除以5就是正方形的长处需要的长方形个数,5和4的最小公倍数除以4就是正方形的宽处需要的长方形个数,两个个数的积,就是需要的长方形个数。

37.解:设正方形的边长是r,则r2=20平方厘米,

空白部分的面积:

3.14×20×

=62.8×

=15.7(平方厘米)

阴影部分的面积:20-15.7=4.3(平方厘米)

答:阴影部分的面积是4.3平方厘米。

【解析】【分析】观察图可知,正方形的边长是圆的半径,设正方形的边长是r,则r2=20

平方厘米,要求空白部分的面积,依据公式:S=πr2×;然后用正方形的面积-空白部分的面积=阴影部分的面积,据此列式解答。

38.(1)解:6和9的最小公倍数是18,

6月5日向后推18天是6月23日。

答:下一次两人都到体育馆的时间是6月23日。

(2)解:4、6、9的最小公倍数是36,6月5日向后推36天是7月11日。

答:他们三人下一次都到体育馆的时间是7月11日。

【解析】【分析】(1)他们两人下一次都到体育馆经过的时间一定是6和9的最小公倍数,由此确定两个数的最小公倍数,在从6月5日向后推算时间即可;

(2)他们三人下一次都到体育馆经过的时间一定是4、6、9的最小公倍数,三个数的最小公倍数是36。6月是小月共30天,6月5日过25天是6月30日,再过11天就是7月11日。

39.解:设刘冬做对了x道题,则做错了(20-x)道题,可得

5x-3×(20-x)=52

5x-60+3x=52

8x-60+60=52+60

8x=112

8x÷8=112÷8

x=14

答:刘冬做对了14道题。

【解析】【分析】设刘冬做对了x道题,则做错了(20-x)道题,等量关系为“做对1道题的得分×做对的道数-做错一道题扣的分数×做错的道数=刘冬的得分”即可列出方程5x-3×(20-x)=52,根据方程的基本性质求解即可得出x的值。

40.解:8=2×2×2,12=2×2×3,

所以8和12的最小公倍数是:2×2×2×3=24,8时+24分=8时24分。

答:再过24分钟两车又同时从车站出发,是8时24分。

【解析】【分析】求两辆电车同时发车的两次之间的间隔时间就是两辆电车分别发车的间隔时间的最小公倍数;

第二次同时发车的时间=第一次同时发车的时间+两辆电车同时发车的两次之间的间隔时

间,据此代入数值解答即可。

本文来源:https://www.bwwdw.com/article/rvvj.html

Top