激光焊接

更新时间:2024-05-19 19:26:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

激光焊接

激光焊接是利用高能量密度的激光束作为热源的一种高效精密焊接方法。激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。

我国的激光焊接处于世界先进水平,具备了使用激光成形超过12平方米的复杂钛合金构件的技术和能力,并投入多个国产航空科研项目的原型和产品制造中。 2013年10月,中国焊接专家获得了焊接领域最高学术奖--布鲁克奖。

激光焊接的技术原理

激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。

激光器分类

用于焊接的主要有两种激光, 即CO2 激光和Nd:YAG激光。CO2 激光和Nd: YAG激光都是肉眼不可见红外光。Nd: YAG激光产生的光束主要是近红外光,波长为1. 06 Lm, 热导体对这种波长的光吸收率较高,对于大部分金属, 它的反射率为20% ~ 30%。只要使用标准的光镜就能使近红外波段的光束聚焦为直径0. 25 mm。CO2 激光的光束为远红外光, 波长为10. 6Lm, 大部分金属对这种光的反射率达到80% ~ 90%,需要特别的光镜把光束聚焦成直径为0. 75 - 0. 1mm。Nd: YAG激光功率一般能达到4 000~ 6 000W左右, 现在最大功率已达到10 000W。而CO2 激光功率却能轻易达到20 000W甚至更大。

工艺参数

(1)功率密度。 功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在10^4~10^6W/CM^2。

(2)激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。

(3)激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。

(4)离焦量对焊接质量的影响。 激光焊接通常需要一定的离焦量,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离焦平面与焊接平面距离相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现部分汽化,形成高压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。

(5)焊接速度。焊接速度的快慢会影响单位时间内的热输入量,焊接速度过慢,则热输入量过大,导致工件烧穿,焊接速度过快,则热输入量过小,造成工件焊不透。

焊接特性

属于熔融焊接,以激光束为能源,冲击在焊件接头上。

激光束可由平面光学元件(如镜子)导引,随后再以反射聚焦元件或镜片将光束投射在焊缝上。

激光焊接属非接触式焊接,作业过程不需加压,但需使用惰性气体以防熔池氧化,填料金属偶有使用。

激光焊接设备和产品 激光焊接设备和产品 (17张)

激光焊可以与MIG焊组成激光MIG复合焊,实现大熔深焊接,同时热输入量比MIG焊大为减小。

发展过程

世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒 所产生,因受限于

晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达10^6瓦,但仍属于低能量输出。

使用钕(ND)为激发元素的钇铝石榴石晶棒(Nd:YAG)可产生1---8KW的连续单一波长光束。YAG激光,波长为1.06uM,可以通过柔性光纤连接到激光加工头,设备布局灵活,适用焊接厚度0.5-6mm。

使用CO2为激发物的CO2激光(波长10.6uM),输出能量可达25KW,可做出2mm板厚单道全渗透焊接,工业界已广泛用于金属的加工上。

20世纪80年代中期,激光焊接作为新技术在欧洲、美国、日本得到了广泛的关注。1985年德国蒂森钢铁公司与德国大众汽车公司合作,在Audi100车身上成功采用了全球第一块激光拼焊板。90年代欧洲、北美、日本各大汽车生产厂开始在车身制造中大规模使用激光拼焊板技术。无论实验室还是汽车制造厂的实践经验,均证明了拼焊板可以成功地应用于汽车车身的制造。

激光拼焊是采用激光能源,将若干不同材质、不同厚度、不同涂层的钢材、不锈钢材、铝合金材等进行自动拼合和焊接而形成一块整体板材、型材、夹芯板等,以满足零部件对材料性能的不同要求,用最轻的重量、最优结构和最佳性能实现装备轻量化。在欧美等发达国家,激光拼焊不仅在交通运输装备制造业中被使用,还在建筑业、桥梁、家电板材焊接生产、轧钢线钢板焊接(连续轧制中的钢板连接)等领域中被大量使用。

世界著名的激光焊接企业有瑞士Soudonic公司、法国阿赛洛钢铁集团、德国蒂森克虏伯集团TWB公司、加拿大Servo-Robot公司、德国Precitec公司等。

中国的激光拼焊板技术应用刚刚起步,2002年10月25日,中国第一条激光拼焊板专业化商业生产线正式投入运行,由武汉蒂森克虏伯中人激光拼焊从德国蒂森克虏伯集团TWB公司引进。此后上海宝钢阿赛洛激光拼焊公司、一汽宝友激光拼焊有限公司等相继投产。

2003年,国外实现了A318铝合金下壁板结构双光束C02激光填丝焊和YAG激光填丝焊,它代替传统铆结构减轻了飞机机身重量的20%,同时也节约了20%的成本。巩水利认定激光焊接技术将对我国传统航空制造业改造升级产生重大意义。随后他立即申请多项相关预研课题,组织攻关团队,在国内率先将“双光束激光焊接”技术引入到课题研究中,并且从一开始就酝酿要将这项技术用到飞机制造中。中国专家团队向某飞机设计所交底初步技术,向他们推介双光束激光焊接的优越性和可行性。该设计所经多方考证和评估,毅然决定将该技术用于某飞机带筋壁板的制造,实现了最初要把“双光

束激光焊接”技术应用到飞机制造的目标,突破了轻质合金激光焊接填丝精度控制等关键技术,集成创新研制了双光束激光填丝复合焊接装置,建立了国内首个大功率双光束激光填丝焊接平台,实现了大型薄壁结构T型接头双光束双侧同步焊接,并首次成功应用于航空带筋壁板关键结构件的焊接制造中,在我国新型飞机研制中发挥了重要作用。

2003年 由华工激光提供的国内首台大型带材在线式焊接成套设备通过离线验收。该设备集激光切割、焊接和热处理于一身,使我国华工激光成为世界上第四家能够生产此类设备的企业。

2004年 华工激光法利莱“高功率激光切割,焊接及切焊组合加工技术与设备”项目获得国家科学技术进步二等奖,成为国内唯一具备该项技术与设备研制能力的激光企业。

随着工业激光产业的快速发展,市场对激光加工技术的要求越来越高,激光技术已从单一应用逐渐转向多元化应用,激光加工方面不再是单一的切割或者焊接,市场对激光加工要求切割和焊接一体化的需求也越来越多,激光切割和激光焊接的切焊一体化激光加工设备应运而生。

华工激光法利莱研究开发Walc9030切焊一体机,9×3米超大幅面,是目前世界最大幅面的激光切焊一体化设备。Walc9030是集成了激光切割与激光焊接功能于一体的大幅面切焊设备,设备具有专业的切割头和焊接头,两个加工头共用一个横梁,用数控技术保证其不会互相干涉,设备能够完成同时需要切割与焊接两道工序。先切后焊,先焊后切,激光切割、焊接轻松进行切换,一台设备,两种功能,而不用另外添置新的设备,为应用厂家节约了设备成本,提高了加工效率和加工范围,而且由于切焊一体,加工精度得到了完全的保障,设备性能高效稳定。 此外,它攻克了超大板材拼焊过程中板材易产生热变形和如何保持超长飞行光路稳定实现的难关,可以将两块长6米宽1.5米的平面板材一次性焊接完成,焊后表面光滑平整,无需其他后续加工。同时可以切割宽3米长度6米以上的20mm以下的板材,一次成型,无需二次位。

中科院沈阳自动化研究所与日本石川岛播磨重工株式会社进行国际合作,遵循国家引进消化后再创新的科技发展战略,攻克激光拼焊若干个关键技术,于2006年9月开发出国内第一套激光拼焊成套生产线,并成功开发了机器人激光焊接系统,实现了平面和空间曲线的激光焊接。

2013年10月,中国焊接专家获得了焊接领域最高学术奖--布鲁克奖。英国焊接研

究所(TWI)每年从来自120多个国家的4000余会员单位中推荐提名,最终将该奖项授予一位专家,以表彰其在焊接或连接科学技术与工业应用领域做出的卓越贡献。这次获奖不仅是对巩水利及其团队的认可,也是对中航工业推动材料连接技术进步的肯定。

优缺点 优点

(1)可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低;

(2)32mm板厚单道焊接的焊接工艺参数业经检定合格,可降低厚板焊接所需的时间甚至可省掉填料金属的使用;

(3)不需使用电极,没有电极污染或受损的顾虑。且因不属于接触式焊接制程,机具的耗损及变形皆可降至最低;

(4)激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥;

(5)工件可放置在封闭的空间(经抽真空或内部气体环境在控制下); (6)激光束可聚焦在很小的区域,可焊接小型且间隔相近的部件; (7)可焊材质种类范围大,亦可相互接合各种异质材料; (8)易于以自动化进行高速焊接,亦可以数位或电脑控制; (9)焊接薄材或细径线材时,不会像电弧焊接般易有回熔的困扰;

(10)不受磁场所影响(电弧焊接及电子束焊接则容易),能精确的对准焊件; (11)可焊接不同物性(如不同电阻)的两种金属; (12)不需真空,亦不需做X射线防护; (13)若以穿孔式焊接,焊道深一宽比可达10:1; (14)可以切换装置将激光束传送至多个工作站。 缺点

(1)焊件位置需非常精确,务必在激光束的聚焦范围内;

(2)焊件需使用夹治具时,必须确保焊件的最终位置需与激光束将冲击的焊点对准;

(3)最大可焊厚度受到限制渗透厚度远超过19mm的工件,生产线上不适合使用

激光焊接;

(4)高反射性及高导热性材料如铝、铜及其合金等,焊接性会受激光所改变; (5)当进行中能量至高能量的激光束焊接时,需使用等离子控制器将熔池周围的离子化气体驱除,以确保焊道的再出现;

(6)能量转换效率太低,通常低于10%; (7)焊道快速凝固,可能有气孔及脆化的顾虑; (8)设备昂贵。

为了消除或减少激光焊接的缺陷,更好地应用这一优秀的焊接方法,提出了一些用其它热源与激光进行复合焊接的工艺,主要有激光与电弧、激光与等离子弧、激光与感应热源复合焊接、双激光束焊接以及多光束激光焊接等。此外还提出了各种辅助工艺措施,如激光填丝焊(可细分为冷丝焊和热丝焊)、外加磁场辅助增强激光焊、保护气控制熔池深度激光焊、激光辅助搅拌摩擦焊等。

激光焊接现在应用到多个领域,如制造业(激光拼焊技术在轿车制造中得到广泛的应用);粉末冶金,汽车工业,电子工业,生物医学等行业。

激光焊接;

(4)高反射性及高导热性材料如铝、铜及其合金等,焊接性会受激光所改变; (5)当进行中能量至高能量的激光束焊接时,需使用等离子控制器将熔池周围的离子化气体驱除,以确保焊道的再出现;

(6)能量转换效率太低,通常低于10%; (7)焊道快速凝固,可能有气孔及脆化的顾虑; (8)设备昂贵。

为了消除或减少激光焊接的缺陷,更好地应用这一优秀的焊接方法,提出了一些用其它热源与激光进行复合焊接的工艺,主要有激光与电弧、激光与等离子弧、激光与感应热源复合焊接、双激光束焊接以及多光束激光焊接等。此外还提出了各种辅助工艺措施,如激光填丝焊(可细分为冷丝焊和热丝焊)、外加磁场辅助增强激光焊、保护气控制熔池深度激光焊、激光辅助搅拌摩擦焊等。

激光焊接现在应用到多个领域,如制造业(激光拼焊技术在轿车制造中得到广泛的应用);粉末冶金,汽车工业,电子工业,生物医学等行业。

本文来源:https://www.bwwdw.com/article/rtj7.html

Top