Superconductivity and Chiral Symmetry Breaking with Fermion Clusters
更新时间:2023-06-05 02:20:01 阅读量: 实用文档 文档下载
Cluster variables have recently revolutionized numerical work in certain models involving fermionic variables. This novel representation of fermionic partition functions is continuing to find new applications. After describing results from a study of a two
1
SuperconductivityandChiralSymmetryBreakingwithFermionClusters
ShaileshChandrasekharana
a
DepartmentofPhysics,DukeUniversity,Box90305,DurhamNC27708,USA
arX
iv:hep-lat/0110125v1 16 Oct 2001
Clustervariableshaverecentlyrevolutionizednumericalworkincertainmodelsinvolvingfermionicvariables.Thisnovelrepresentationoffermionicpartitionfunctionsiscontinuingto ndnewapplications.AfterdescribingresultsfromastudyofatwodimensionalHubbardtypemodelthatcon rmasuperconductingtransitionintheKosterlitz-Thoulessuniversalityclass,weshowhowaclustertypealgorithmcanbedevisedtostudythechirallimitofstronglycoupledlatticegaugetheorieswithstaggeredfermions.
1.INTRODUCTION
Duringthelastfewyearsanewclassoffermionalgorithmshaveemerged.Theessentialprogressisaresultofourabilitytorewritecer-tainfermionicpartitionfunctionsasasumovercon gurationsofbondvariableswithpositivedef-initeweights[1,2],i.e.,
W[b]Z=
[b]
Sign[b]≥0isanentropyfactorthat
takesintoaccountdegreesoffreedomotherthanthebondvariables.Typically,thePauliprincipleisencodedinthetopologyofclustersformedbylatticesitesconnectedthroughthebonds.Clus-tersalsocarryavarietyofinterestingphysicalin-formation.Forexample,sizesofcertainclustersarerelatedtocondensates,thesquaresofthesizesofclustersyieldsusceptibilities.Further,clustersareusefulinbuildinge cientalgorithmsclosetocriticalpointswherethecorrelationlengthsdi-vergesincetheyallownon-localupdateswithareasonableacceptance.Thispropertyhashelpedinstudyingcriticalphenomenainfermionicmod-elswithunmatchedprecision.2.SUPERCONDUCTIVITY
TherecentsuccessofclustermethodsinfermionicsystemsoriginatesfromtheHamilto-
Sign[b]=0.
Recently,superconductivityinatwodimen-sionalattractiveHubbardtypemodelwasstudiedusingthemeronclusterapproach.Thefermionpairingsusceptibility χ isausefulobservable.Itisexpectedtosatisfythe nitesizescalingfor-mula
2 η(T)
LT<Tc
χ =(2)
Const.T>TcifthesuperconductingtransitionbelongstotheKosterlitz-Thouless(KT)universalityclass,with0≤η(T)≤0.25,η(Tc)=0.25andη(0)=0.Inthespeci cmodelstudied, χ turnsouttobeasumoverthesquareofthesizeofeachclusterinthezeromeronsectorandtheproductofthesizeofthemeronsinthetwomeronsector.Figure1showsaplotofthesusceptibilityasafunctionoflatticesizeforvarioustemperatures.ConsistencywithKTpredictionsisclear.
Anotherobservablerelevanttothestudyofsuperconductivityisthespatialfermionwindingnumbersusceptibility W2 .Althoughthisisdif- culttoevaluatewithconventionalalgorithms,it
Cluster variables have recently revolutionized numerical work in certain models involving fermionic variables. This novel representation of fermionic partition functions is continuing to find new applications. After describing results from a study of a two
2
Figure1.Pairingsusceptibilityasafunctionofsystemsizeforvarioustemperatures.
isrelativelystraightforwardinthemeronclusterapproach.Eachclustercanbeassignedaspa-tialfermionwindingnumber.Thesusceptibilitythenturnsouttobethesumoverthesquareofeachcluster’sspatialwindingnumberinthezeromeronsectorandtheproductofthespatialwind-ingnumberofmeronclustersinthetwomeronsector.Inthein nitevolumelimitbelowthecrit-icaltemperature,onecancombineknownresultstoobtain2πη(T) W2 =1.Resultsagainshowconsistencywiththisexpectation.
Preliminaryresultsfromthisstudywaspresentedin[3]andthe nalanalysisin[4].
3.CHIRALSYMMETRYBREAKINGAlthoughtherecentsuccesshasbeenappliedtoHamiltonianmodelsofchiralsymmetrybreaking[5],clustermethodsareapplicabletomorecon-ventionalLagrangianmodelsaswell.Forexam-ple,considerstronglycoupledlatticegaugethe-orywithmasslessstaggeredfermionsinwhichtheU(1)chiralsymmetryisexpectedtobebrokenspontaneouslyinfourdimensions[6].Thisre-sultwasobtainedbymappingthemassivemodelintoastatisticalmechanicsofmonomer-dimer-polymer(MDP)systemwithpositivede niteBoltzmannweightsandextrapolatingtheresultstothechirallimit.Unfortunately,asfarasweknow,ithasbeendi culttodevisealgorithmsinthechirallimitwherethesystemsbecomecon-strained.Localmetropolisupdateswhichcanbeformulatedinthemassivecasebecomeexponen-tiallyine cientinthechirallimit.HerewearguethatclusterrepresentationsoftheMDPsystemsyieldusefulalgorithmsdirectlyinthechirallimit.Tounderstandtheclusterrepresentationcon-siderforsimplicitythestronglycoupledU(1)gaugesystem.Thepartitionfunctioninthiscaseisgivenbythenumberofclosely-packed-dimer(CPD)con gurationsonalattice.AtypicalCPDcon gurationintwodimensionsisshowninFig.2.
Figure2.AtwodimensionalCPDcon gurationSuchcon gurationsarealsoofinterestinsta-tisticalmechanicsandplayanimportantroleinthesolutiontothe2-dIsingmodel[7].Thechi-ralsymmetryofstaggeredfermionsismanifestinthisrepresentationbythefactthatthechi-ralcondensatevanishessinceitisimpossibleto ndaCPDcon gurationwithonedefect(onesitehasnodimerlinesattachedtoit).Thechiralsusceptibilityontheotherhandisnon-zeroandproportionaltotheratioofthetotalnumberofCPDcon gurationswithtwodefects(twositesarenotconnectedbydimers)andthepartitionfunction.
ItispossibletoextendCPDcon gurations
Cluster variables have recently revolutionized numerical work in certain models involving fermionic variables. This novel representation of fermionic partition functions is continuing to find new applications. After describing results from a study of a two
Figure3.RulesforextendingtheCPDcon gu-rationstoincludeadditionalbondvariables.tocon gurationsofloopsmadeupofbondswhichincludetheoriginalor“ lled”dimers(rep-resentedhereby“solid”bonds)and“empty”dimers(representedby“dashed”bonds)suchthatthepartitionfunctioncanbeexpressedasa
sumoverweightsofnewloopcon gurations.Fig-ure3showstherulesofonesuchextensionintwodimensions.EachshadedplaquetteoftheCPDcon gurationofFig.2carriesoneofthesevenplaquettecon gurationsgivenontheleftsideofequationsinFig.3.Itiseasytocheckthatallconstraintsaresatis edifeachloopismadeupofarepeatingsequenceof lledandemptydimers.Theusefulnessoftheloopvariableisthatadimersystemcanbeupdatedby“ ipping”aloopwhere lleddimersareemptiedandviceversa.Theac-ceptanceofsucha ipisreasonableandleadstoausefulalgorithm.
Thechiralsusceptibilitygetscontributionswhenapartoftheloopis ippedandcanbemeasuredeasilyalongwiththeupdate.Theal-gorithmwas rstappliedtothetwodimensionalmodel.AlthoughaU(1)chiralsymmetrycan-notspontaneouslybreakintwodimensions,longrangecorrelationscanariseaspredictedbytheKosterlitz-Thoulessuniversalityclassasdiscussedintheprevioussection.Figure4plotsthechiral
3
susceptibilitywithsystemsize.Surprisingly,al-thoughthedataisnotinconsistentwiththepres-enceoflongrangecorrelations,thesusceptibilitydoesnotseemtofollowthepredictionsofeq.(2).Thispuzzleiscurrentlybeinginvestigatedalongwithextensionstohigherdimensions.
Figure4.Chiralsusceptibilityasafunctionoflatticesizeintwodimensions.
IwouldliketothankJ.OsbornandU.Wiesefortheircollaboration.REFERENCES
1.S.ChandrasekharanandU.-J.Wiese,Phys.
Rev.Lett.83,(1999)3116;S.Chandrasekha-ran,Nucl.Phys.(Proc.Suppl.)83-84,774(2000).
2.SeeS.Chandrasekharan,hep-lat/0110018for
arecentreview.
3.J.C.Osborn,Nucl.Phys.B(Proc.Suppl.)
Nucl.Phys.Proc.Suppl.94,(2001)865.
4.S.ChandrasekharanandJ.C.Osborn,cond-mat/0109424.
5.S.Chandrasekharan,J.Cox,K.Hollandand
U.-J.Wiese,Nucl.Phys.B576,481(2000);S.ChandrasekharanandJ.C.Osborn,Phys.Lett.B496,122(2000).
6.P.RossiandU.Wol ,Nucl.Phys.B248,
(1984)105.
7.B.M.McCoyandT.T.Wu,TwoDi-mensionalIsingModel”,HarvardUniversityPress,Cambridge,Massachusetts,1973.
正在阅读:
Superconductivity and Chiral Symmetry Breaking with Fermion Clusters06-05
《别有动机》剧情介绍 影评及看点介绍04-08
2012年“金钥匙”科技竞赛(初三学生CESL活动)决赛试题 有答案04-11
HP ProLiant 服务器进入BIOS 及RBSU的按键总结12-03
探究性学习在思想政治课教学中的运用12-18
流水行船问题及答案06-29
信息化建设与信息安全 在线考核答案12-25
老师求职信范文精选推荐05-17
- 1The Age Of Globular Clusters In Light Of Hipparcos Resolving
- 2Uncertainty Relation in Quantum Mechanics with Quantum Group Symmetry
- 3Catalog of Galaxy Morphology in Four Rich Clusters Luminosit
- 4Non-perturbative chiral approach to Kp --gamma Y reactions
- 5Search for Disoriented Chiral Condensates in 158 AGeV Pb+Pb Collisions
- 6The galaxy populations from the centers to the infall regions in z~0.25 clusters
- 7A New Two-dimensional Coordination Polymer Based on Trinuclear Manganese Clusters①
- 8Density fluctuations and a first-order chiral phase transition in non-equilibrium
- 9盾构到达米埔竖井出洞方案20150725Plan of TBM breaking through
- 10Constraints on Type Ia Supernova Models from X-ray Spectra of Galaxy Clusters
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Superconductivit
- Symmetry
- Breaking
- Clusters
- Fermion
- Chiral
- with
- 二年级下语文第八单元
- 手足口病防控工作总结doc
- 立足区域战略规划谋求又好又快发展
- 最新市经信委践行社会主义核心价值观工作情况汇报
- 英语中颜色的含义
- 公诉人应具备的综合素质研究与分析
- 东南大学考研微机复试
- 深基坑管井井点降水的监理控制措施
- 天津大学2016年博士研究生招生专业目录
- 企业研发准备金制度
- 非线性编辑教学大纲
- 初中语文《背影》听课记录
- 新部编人教版一年级语文下册四单元试卷考点练习(一套)
- 2009年朝阳区高技术产业与现代制造业专项资金使用情况验收审计项目初步审计方案
- 新疆2020年(春秋版)九年级上学期语文期末考试试卷C卷(新版)
- 【语言学中的合作原则在促销中的应用】语言学中的合作原则在促销中的应用论文
- 构建和谐宿舍人际关系
- 4、《翻越远方的大山》_(第一课时)
- 社区矫正人员入矫谈话笔录
- LCD&CAM异常问题处理报告汇总