数学建模任意两点间最短距离

更新时间:2024-03-06 02:37:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

任意两点间最短距离-floyd算法matlab程序

%Floyd's Algorithm 通过一个图的权值矩阵求出它的任意两点间的最短路径矩阵。 %Floyd算法适用于APSP(All Pairs Shortest Paths),是一种动态规划算法, %稠密图效果最佳,边权可正可负。

%此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。

%a为图的带权邻接矩阵

%从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新, %即由矩阵D(0)=A,按一个公式,构造出矩阵D(1); %又用同样地公式由D(1)构造出D(2);……; %最后又用同样的公式由D(n-1)构造出矩阵D(n)。

%矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,

%同时还可引入一个后继节点矩阵path来记录两点间的最短路径。

%采用的是松弛技术,对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3);

matlab函数文件为:

function [D,path]=floyd1(a) a(find(a==0))=inf;

n=size(a,1); %计算出a的规模的大小. D=a;path=zeros(n,n);%设置D和path的初值. for i=1:n for j=1:n if D(i,j)~=inf path(i,j)=j; end

end end

%做n次迭代,每次迭代均更新D(i,j)和path(i,j) for k=1:n for i=1:n for j=1:n

if D(i,k)+D(k,j)

for i=1:n D(i,i)=0; path(i,i)=i; end

关于path的说明:path(i,j)表示从i到j的最短路径中紧接着i后面的一个结点

举例如下:无向图

由该图的带权邻接矩阵(边权矩阵)a为:

>> a=[0 3 5 inf 8 inf 3 0 2 5 inf 7 5 2 0 4 inf 3 inf 5 4 0 6 1 8 inf inf 6 0 2 inf 7 3 1 2 0]

a =

0 3 5 Inf 8 Inf 3 0 2 5 Inf 7 5 2 0 4 Inf 3 Inf 5 4 0 6 1 8 Inf Inf 6 0 2 Inf 7 3 1 2 0

然后将上述代码写入一个floyd1.m文件,在命令窗口中输入:

>> [D,path]=floyd1(a);

>> D

D =

0 3 5 8 8 8 3 0 2 5 7 5 5 2 0 4 5 3 8 5 4 0 3 1

8 7 5 3 0 2 8 5 3 1 2 0

>> path

path =

1 2 3 2 5 3 1 2 3 4 3 3 1 2 3 4 6 6 2 2 3 4 6 6 1 6 6 6 5 6 3 3 3 4 5 6

解释:比如我们看到D(1,5)=8表示v1到到v5的距离是8,再查看具体路径,path(1,5)=5,表示v1到v5最短路径中紧接着v1的下一个顶点就是v5,说明边(v1,v5)就是最短路;

再如,D(1,6)=8,path(1,6)=3,path(3,6)=6,说明v1到v6的最短距离是8,最短路为v1->v3->v6。从D(1,6)=8=5+3=D(1,3)+D(3,6)可以得到验证。

本文来源:https://www.bwwdw.com/article/rnba.html

Top