按频率抽取的快速傅里叶变换
更新时间:2024-07-05 21:32:01 阅读量: 综合文库 文档下载
《数字信号处理》
课程设计报告
按频率抽取的DFT快速算法分析及MATLAB实现
专 业: 通信工程
班 级: 组 次: 姓 名: 学 号:
目录
摘 要…………………………………………………………………… 1 关键字……………………………………………………………………1 0 引言……………………………………………………………………1 1 按频率抽取的DFT快速算法原理……………………………………1 2 DIF-FFT的运算规律及编程思想……………………………………2 2.1 原位计算…………………………………………………………2 2.2 序列的倒序………………………………………………………2 2.3 旋转因子的变换规律……………………………………………2 2.4 蝶形运算规律……………………………………………………4 2.5 编程思想及程序框图……………………………………………4 3 DIF-FFT算法运算量分析……………………………………………5 4 MATLAB程序实现 ……………………………………………………5 5 结束语…………………………………………………………………7 参考文献…………………………………………………………………7
按频率抽取的DFT快速算法分析及MATLAB实现
摘要:DFT是数字信号分析与处理中的一种重要变换。但直接计算DFT的计算量与变换区
间长度N的平方成正比,计算量非常大。DFT的快速算法使运算效率提高了1~2个数量级,为数字信号处理技术应用于各种信号的实时处理创造了条件。为了对FFT有更加深入的了解,本文对DIF-FFT的原理进行了分析,并给出MATLAB程序实现的方法与步骤。 关键词:DFT;DIF-FFT;MATLAB;
0 引言
DFT是数字信号分析与处理中的一种重要变换。但直接计算DFT的计算量与变换区间长度
N的平方成正比,计算量非常大。DFT的快速算法使运算效率提高了1~2个数量级,为数字信号处理技术应用于各种信号的实时处理创造了条件。本文通过对按频率抽取的DFT快速算法原理介绍与MATLAB实现以期使我们对傅里叶快速算法有更全面的理解,为我们以后更复杂的快速算法学习打下基础。
1 按频率抽取的DFT快速算法原理
设序列x(n)的长度为N?2M,将序列前后对半分开,得到两个子序列,如下:
X(k)??x(n)Wn?0N?12n?0N?1nkN??x(n)Wn?0N?12N?12nkNnk??x(n)WNn?N2N?1
?nkx(n)W?NN?12N???x?n?2n?0???W?N???n??k2??N
?kN/2?N?Nk/2?nk?x(n)?xn?WN??WN???2??n?0??
?(?1)k
式中:WN 将x(k)分解成偶数组与奇数组,当k取偶数(k=2m,m=0,1,…,N/2-1)时:
N/2?1 x(2m)??n?0N/2?1NN2mnmn[x(n)?x(n?)]WN??[x(n)?x(n?)]WN/2 (1)
22n?0 当k取奇数(k=2m+1,m=0,1,…,N/2-1)时,
N/2?1 x(2m?1)??n?0N/2?1NNn(2m?1)nnm[x(n)?x(n?)]WN??[x(n)?x(n?)]WN?WN/2(2)
22n?0令:
?Nn?x2(n)?[x(n)?x(n?)]WN 其中, n=0,1,2,…,N/2-1 2?x1(n)?x(n)?x(n?将x1(n)和x2(n)分别代入(1)、(2)式,可得:
N)2
??n?0N/2?1?nmX(2m?1)??x2(n)WN/2 (3)
?n?0?X(2m)?N/2?1?mnx1(n)WN/2(3)式表明,X(k)按奇偶k值分为两组,其偶数组是x1(n)的N/2点DFT,奇数组则是x2(n)的N/2点DFT。x1(n)、x2(n)和x(n)之间的关系可以用图1所示的蝶形运算流图符号表示。图2表示N=8的DIF-FFT运算流图。
x(n)x(n)+x(n+N / 2)
nWN nx(n+N / 2)[x(n)-x(n+N / 2)]WN -1 图1 DTF-FFT蝶形运算流图符号
x(0)X(0) 0WN x(1)X(4)-10 WNx(2)X(2)
-120WNWN
x(3)X(6) -1-10WN x(4)X(1)-110 WNWNx(5)X(5)
-1-120WNWN
x(6)X(3) -1-1320WNWNWN
x(7)X(7)-1-1-1
图2 DIF-FFT的运算流图(N=8)
2 DIF-FFT的运算规律及编程思想 2.1 原位计算
N?2M点的FFT共进行M级运算,每级由N/2个蝶形运算组成。同一级中,每个蝶形的
两个输入数据只对计算本蝶形有用,而且每个蝶形的输入、输出数据结点又同在一条水平线上,这就意味着计算完一个蝶形后,所得输出数据可立即存入原输入数据所占用的存储单元。这样,经过M级运算后,原来存放输入序列数据的N个存储单元中便依次存放X(k)的N个值。原位计算可节省大量内存,从而使设备陈本降低。
2.2 序列的倒序
由图2可知,DIF-FFT算法输入序列为自然序列,而输出为倒序排列。因此M级运算完
后,要对输出数据进行倒序才能得到自然顺序的X(k)。图3为顺序与倒序二进制对照图。
顺序 十进制数I 0 1 2 3 4 5 6 7 二进制数 000 001 010 011 100 101 110 111 二进制数 000 100 010 110 001 101 011 111 倒序 十进制数J 0 4 2 6 1 5 3 7 图3 顺序与倒序二进制对照图
2.3 旋转因子的变换规律
P N点的DFT快速傅里叶运算流图中,每级都有N/2个蝶形。每个蝶形都要乘以因子WN,
称其为旋转因子,P为旋转因子的指数。但各级的旋转因子和循环方式都有所不同。为了编
P写计算程序,下面列出旋转因子WN与运算级数的关系。用L表示从左到右的运算级数
(L=1,2,…,M),第L级共有2L?1个不同的旋转因子。
正在阅读:
按频率抽取的快速傅里叶变换07-05
第6章习题集 投资学教程03-03
高洁净度轴承钢开发与试制05-11
学校2023年开展元旦活动策划方案范文03-22
公司日常费用管理费用办公费用报销规定制度11-26
2013 6 7 外贸避税与离岸贸易操作技巧 介绍03-18
05继电保护设备检修规程06-01
常用排序算法的比较03-20
【推荐】石榴花的作文5篇04-02
高考数学最后一题解题NB策略01-27
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 抽取
- 变换
- 频率
- 快速
- 傅里
- 《数理统计》课后题答案(西交大版)
- 纺织工业十二五规划Microsoft Word 文档(2)
- 小升初名校冲刺语文
- 市政通用进度计划保证措施
- 2015高考历史二轮配套资料:第1部分 专题4 第2步 专题10 西方民
- 财务管理试题库答案(最终版)
- 2011年大事记
- 配套K122018秋高中历史 第4单元 近代中国反侵略求民主的潮
- 质量知识竞赛300题 - 图文
- 四级写作 - --学生版2013
- 模具工岗位竞聘演讲稿范文
- 商业银行外汇业务培训手册
- 急性脑血管病昏迷观察护理论文
- 煤矿爆破器材管理员岗位责任制
- 农村土地承包经营权技术设计书
- 4G网络现状分析与安全对策研究
- 施工现场临时性建筑物应用技术规程(修改后)11.23
- 网络复习考试个人整理
- 有机化合物的鉴别
- 六年级下语文教学反思-莫泊桑拜师-苏教版小学学科网