数学的历史

更新时间:2024-03-15 08:24:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

数学的历史

数统治着宇宙。

——毕达哥拉斯

第一章:基础数学

概括:数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,

简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。

1、数学概念

数学概念 (mathematical concepts):是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。

在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。

正确地理解和形成一个数学概念,必须明确这个数学概念的内涵——对象的“质”的特征,及其外延——对象的“量”的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。

许多数学概念需要用数学符号来表示。如⊿y表示函数y的微分。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增强了科学性。

许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图形来表示,比如y=x+1的图像。有些数学概念具有几何意义,如函数的微分。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。

总之, 数学概念是在人类历史发展过程中,逐步形成和发展的。

2、自然数

性质:

对自然数可以定义加法和乘法。其中,加法运算“+”定义为: a + 0 = a;

a + S(x) = S(a +x), 其中,S(x)表示x的后继者。

如果我们将S(0)定义为符号“1”,那么b + 1 = b + S(0) = S( b + 0 ) = S(b),即,“+1”运算可求得任意自然数的后继者。

同理,乘法运算“×”定义为: a × 0 = 0; a × S(b) = a × b + a

自然数的减法和除法可以由类似加法和乘法的逆的方式定义。但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。

分类:

①按能否被2整除分,可分为奇数和偶数。 1、奇数:不能被2整除的数叫奇数。

2、偶数:能被2整除的数叫偶数。也就是说,除了奇数,就是偶数 注:0是偶数。(2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。偶数可以被2整除,0照样可以,只不过得数依然是0而已)。

②按因数个数分,可分为质数、合数、1和0。

1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。 2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。 3、1:只有1个因数。它既不是质数也不是合数。

4、当然0不能计算因数,和1一样,也不是质数也不是合数。 备注:这里是因数不是约数。

特殊的自然数 0

0既不是正数也不是负数,而是正数和负数之间的一个数。当某个数X大于0(即X>0)时,称为正数;反之,当X小于0(即X<0)时,称为负数;而这个数X等于0时,这个数就是0。

应用

1、自然数列在“数列”,有着最广泛的运用,因为所有的数列中,各项的序号都组成自然数列。 任何数列的通项公式都可以看作:数列各项的数与它的序号之间固定的数量关系。

2、求n条射线可以组成多少个角时,应用了自然数列的前n项和公式;第1条射线和其它射线组成n-1个角,第2条射线跟余下的其它射线组成n-2个角,依此类推得到式子 1+2+3+4+……+n-1=n(n-1)/2

3、求直线上有n个点,组成多少条线段时,也应该了自然数列的前n项和公式

第1个点和其它点组成n-1条线段,第2个点跟余下的其它点组成n-2条线段,依此类推同样可以得到式子:1+2+3+4+……+n-1=n(n-1)/2

第二章:初等数学

概括:初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成现在中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数、三角。

1、 算数

介绍

算术算术是数学中最古老、最基础和最初等的部分。它研究数的性质及其运算。把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。在古代全部数学就叫做算术,现代的代数学、数论等最初就是由算术发展起来的。

规律

算术的基础在于:整数的加法和乘法服从某些规律。为了要叙述这些具有普遍性的规律,我们不能用像1,2,3这种表示特定数的符号。两个整数,不管它们的次序如何,它们的和相同。而1+2=2+1

这一命题仅仅是这一般规律的一个特殊例子。因此当我们希望表示整数之间的某个关系——不论涉及的一些特定的整数值如何——是正确的,我们可以用字母a,b,c,…作为表示整数的符号。于是,我们所熟知的五个算术规律可叙述为: 1) a+b=b+a, 2) ab=ba,

3) a+(b+c)=(a+b)+c, 4) (ab)c=a(bc), 5) a(b+c)=ab+ac.

前两个可以说明人们可以交换加法或乘法中元素的次序。第三个表明三个数相加时,或者我们把第一个加上第二个与第三个的和;或者我们把第三个加上第一个与第二个的和,其结果都相同。第四个是乘法的结合律。最后一个表明用一个整数去乘一个和时,我们可以用这整数去乘这和的每一项,然后把这些乘积加起来。

演变

算术是数学的一个分支,其内容包括自然数和在各种运算下产生的性质,运算法则以及在实际中的应用。可是,在数学发展的历史中,算术的含义比现在广泛得多。

在中国古代,算是一种竹制的计算器具,算术是指操作这种计算器具的技术,也泛指当时一切与计算有关的数学知识。算术一词正式出现于《九章算术》中。而当时的“算术”是泛指数学的全体,与现代的意义不同。

直到宋元时代,才出现了“数学”这一名词,在数学家的菱中,往往数学与算学并用。当然,此处的数学仅泛指中国古代的数学,它与古希腊数学体系不同,它侧重研究算法。

从19世纪起,西方的一些数学学科,包括代数、三角等相继传入中国。1953年,中国数学会成立数学名词审查委员会,确立起“算术”现在的意义,而算学与数学仍并存使用。

发展

关于算数的产生,还是要从数谈起。数是用来表达、讨论数量问题的,有不同类型的量,也就随着产生了各种不同类型的数。远在古代发展的最初阶段,由于人类日常生活与生产实践中的需要,在文化发展的最初阶段就产生了最简单的自然数的概念。

使用

1、十进制计数法 2、算术运算 3、加法(+) 4、减法(?) 5、乘法(× 或 ·) 6、除法(÷ 或 /)

2、几何

定义

几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。

古代几何 (1)、国外

最早记载可以追溯到古埃及、古印度、古巴比伦,始于公元前3000年。早期的几何学是关于长度,角积的经验原理,被用于满足在测绘,建筑,天文,和作中的实际需要。埃及和巴比伦人都在毕达哥拉斯之知道了毕达哥拉斯定理(勾股定理);埃及人有方形(截头金字塔形)体积正确公式;而巴比伦有一个三

其年代大约度,面积和体各种工艺制前1500年就棱锥的锥台角函数表。

(2)、中国

中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。

发展

几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。目前的数学各分支发展都有几何化趋向,即用几何观点及思想方法去探讨各数学理论。

几何作图三大问题

①化圆为方,求作一正方形,使其面积等于一已知圆 ②三等分任意角;

③倍立方,求作一立方体,使其体积是一已知立方体的两倍。

(这些问题的难处,是作图只许用直尺【没有刻度,只能作直线的尺】和圆规。)

3、代数

简介

代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。 初等代数是更古老的算术的推广和发展。

基本内容

三种数——有理数、无理数、复数 三种式——整式、分式、根式

中心内容是方程——整式方程、分式方程、根式方程和方程组。 初等代数的内容大体上相当于现代中学设置的代数课程的内容, 但又不完全相同。比如,严格的说,数的概念、排列和组合应归入 算术的内容;函数是分析数学的内容;不等式的解法有点像解方程 的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学 代数学之父—丢番图 的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一 种编排方法。

初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。

规则

五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;

两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方,底数不变,指数相乘;积的乘方等于乘方的积。

初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。 (1)a-b=0,a=b

(2)a+b=0,a=-b,b=-a (3)a*b=0,a=0 或 b=0 (4)(a-b) (a-b)=0,a=b

解方程(1)

初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。

要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。所以初等代数的一个重要内容就是代数式。由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。

4、三角

简介

研究平面三角形和球面三角形边角关系的数学学科。三角学是以研究三角形的边和角的关系为基础,应用于测量为目的,同时也研究三角函数的性质及其应用的一门学科。三角学分为平面三角学与球面三角学。它们都是研究三角形中边与角之间的关系的学科。平面三角学分为角的度量、三角函数与反三角函数、诱导公式、和与差的公式、倍角、半角公式、和差化积与积化和差公式、解三角形等内容;球面三角学研究球面上由大圆弧构成的球面三角形的边与角之间的关系,在天文学、测量学、制图学、结晶学、仪器学等方面有广泛的应用。

古代研究

以研究平面三角形和球面三角形的边和角的关系为基础,达到测量上的应用为目的的一门学科。同时还研究三角函数的性质以及它的应用。

古代埃及人已有三角学知识,三角法主要是适应测量上的需要而产生的。例如,建筑金字塔,整理尼罗河泛滥后的耕地,以及通商航海,观测天象的需要。希腊的自然哲学家泰勒斯的相似理论,可以认为是三角学的萌芽,但历史上都认为希腊的天文学家喜帕恰斯是三角学的创始者。他著有三角学12卷,并作成弦表。

印度人从天文、测量的角度,曾研究过三角学,在公元6世纪,有阿耶波多第一也曾作出正弦表。中国唐代,瞿昙悉旺达在他所编的《开元占经》中曾介绍了印度的正弦表。

德国的J.雷格蒙塔努斯曾研究过天文学与三角学。在他的《论三角》一书中,有仿印度人的正弦表作成的非常精密的正、余弦表。他对天文、航海、测量方面都有很大的贡献。

16世纪法国著名数学家F.韦达的《应用于三角形的数学法则》,是他对三角法研究的第一本书,其中包括他对解直角三角形、斜三角形的一些贡献,例如有正切定理;17世纪法国数学家棣莫弗也研究过三角问题。他曾发现有名的棣莫弗定理:从17世纪后半期到18世纪,I.牛顿和丹尼尔第一·伯努利曾发现各种三角级数,直到近代,才在三角学中引进现在使用的三角符号,并将三角法作为解析学的一部分,这是从L.欧拉开始的,欧拉曾发现: 中国的戴煦在他所著的《外切密率》中,讨论了三角函数线与弧度之间的关系,并在他的《假数测图》中,结合三角函数与对数函数的幂级数阐明了三角函数对数表的作法。 重要的三角函数 基本函数 英文 正弦函数 Sine 余弦函数 cosine

缩写 表达式 语言描述 sin y/r cos x/r

∠O的对边比斜边

∠O的邻边比斜边

∠O的对边比邻边

∠O的邻边比对边

∠O的斜边比邻边 ∠O的斜边比对边

正切函数 Tangent tan y/x 余切函数 Cotangent cot x/y 正割函数 Secant

sec r/x

余割函数 Cosecant csc r/y

(注:tan、cot曾被写作tg、ctg,现已不用这种写法。且因为cot、sec、csc易由sin、cos、tan推出,所以现在初、高中教材中已将其删去不讲。)

特点与应用

早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.直到13世纪中亚数学家纳速拉丁在总结前人成就的基础上,著成《完全四边形》一书,才把三角学从天文学中分离出来.

15世纪,德国的雷格蒙塔努斯(J·Regiomontanus,1436—1476)的《论三角》一书的出版,才标志古代三角学正式成为独立的学科.这本书中不仅有很精密的正弦表、余弦表等,而且给出了现代三角学的雏形.

16世纪法国数学家韦达(F·Viete,1540—1603)则更进一步将三角学系统化,在他对三角研究的第一本著作《应用于三角形的数学法则》中,就有解直角三角形、斜三角形等的详述.

18世纪瑞士数学家欧拉(L·Euler,1707—1783),他首先研究了三角函数.这使三角学从原先静态研究三角形的解法中解脱出来,成为反映现实世界中某些运动和变化的一门具有现代数学特征的学科.

欧拉不仅用直角坐标来定义三角函数,彻底解决了三角函数在四个象限中的符号问题,同时引进直角坐标系,在代数与几何之间架起了一座桥梁,通过数形结合,为数学的学习与研究提供了重要的思想方法.著名的欧拉公式,把原来人们认为互不相关的三角函数和指数函数联系起来了。

欧拉

第三章:变量数学

简介:变量数学时期。变量数学产生于17世纪,大体上经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分的创立。

1、解析几何

概括

解析几何包括平面解析几何和立体解析几何两部分。平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关系,以及曲线与方程之间的一一对应关系,运用代数方法研究几何问题,或用几何方法研究代数问题。17世纪以来,由于航海、天文、力学、经济、军事、生产的发展,以及初等几何和初等代数的迅速发展,促进了解析几何的建立,并被广泛应用于数学的各个分支。解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破。

基本内容

在解析几何中,首先是建立坐标系。坐标系包括直角斜坐标系、极坐标系、空间直角坐标系等等。在空间坐标有球坐标和柱面坐标。坐标系将几何对象和数、几何关系之间建立了密切的联系。

这样就可以对空间形式的研究归结成比较成熟也容的数量关系的研究了。用这种方法研究几何学,通常就叫法。

解析几何的创立,引入了一系列新的数学概念,特变量引入数学,使数学进入了一个新的发展时期,这就是学的时期。解析几何在数学发展中起了推动作用。

坐标系、系中还和函数易驾驭做解析别是将变量数

应用

直角坐标系

解析几何又分作平面解析几何和空间解析几何。

在平面解析几何中,除了研究直线的有关性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。

在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。

解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案。

坐标法的思想促使人们运用各种代数的方法解决几何问题。先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。坐标法对近代数学的机械化证明也提供了有力的工具。

2、微积分

简介

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

创立

从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。

极限的产生

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如中国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。

微积分产生

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

数学首先从对运动(如天文、航海问题等)的研究中引出了一个基本概念,在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数——或变量间关系——的概念。紧接着函数概念的采用,产生了微积分,它是继Euclid几何之后,全部数学中的一个最大的创造。围绕着解决上述四个核心的科学问题,微积分问题至少被十七世纪十几个最大的数学家和几十个小一些的数学家探索过。位于他们全部贡献顶峰的是牛顿和莱布尼茨的成就。

十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

例如费马、巴罗、笛卡尔都对求曲线的切线以及曲线围成的面积问题有过深入的研究,并且得到了一些结果,但是他们都没有意识到它的重要性。在十七世纪的前三分之二,微积分的工作沉没在细节里,作用不大的细微末节的推理使他们筋疲力尽了。只有少数

艾萨克·牛顿 几个大学家意识到了这个问题,而这普遍的东西是由两个包罗万象 的思想家牛顿和莱布尼茨提供的。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

创立意义

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。

直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究, 建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了 微积分的坚定基础。才使微积分进一步的发展开来。

莱布尼茨 现代发展

微积分不断深化

在Riemann将Cauchy的积分含义扩展之后,Lebesgue又引进了测度的概念,进一步将Riemann积分的含义扩展。例如著名的Dirichilet函数在Riemann积分下不可积,而在Lebesgue积分下便可积。

前苏联

前苏联著名数学大师所伯列夫为了确定偏微分方程解的存在性和唯一性,建立了广义函数和广义导数的概念。这一概念的引入不仅赋予微分方程的解以新的含义,更重要的是,它使得泛函分析等现在数学工具得以应用到微分方程理论中,从而开辟了微分方程理论的新天地。

中国

中国的数学泰斗陈省身先生所研究的微分几何领域,便是利用微积分的理论来研究几何,这门学科对人类认识时间和空间的性质发挥着巨大的作用,并且这门学科至今仍然很活跃。前不久由俄罗斯数学家佩雷尔曼完成的庞加莱猜想便属于这一领域。

在多元微积分学中,Newton—Leibniz公式的对照物是Green公式、Ostrogradsky—Gauss公式、以及经典的Stokes公式。无论在观念上或者在技术层次上,他们都是Newton—Leibniz公式的推广。随着数学本身发展的需要和解决问题的需要,仅仅考虑欧式空间中的微积分是不够的。有必要把微积分的演出舞台从欧式空间进一步拓展到一般的微分流形。在微分流形上,外微分式扮演着重要的角色。于是,外微分式的积分和微分流形上的Stokes公式产生了。而经典的Green公式、Ostrogradsky—Gauss公式、以及Stokes公式也得到了统一。

微积分的发展历史表明了人的认识是从生动的直观开始,进而达到抽象思维,也就是从感性认识到理性认识的过程。人类对客观世界的规律性的认识具有相对性,受到时代的局限。随着人类认识的深入,认识将一步一步地由低级到高级、由不全面到比较全面地发展。

第四章:现代数学

简介:现代数学。现代数学时期,大致从19世纪上半年开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。

高等代数

研究对象

高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步 、多项式代数。

高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。

集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有很大的不同了。

与线性代数的区别和联系

很多人把高等代数和线性代数混为一谈,不明白其中的区别。

高等代数是大学数学专业开设的专业课,线性代数是大学中除了数学专业以外的理科,工科和部分医科专业开设的课程

解方程(2)

在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。这是初等代数的又一重要内容,就是数的概念的扩充。

有了有理数,初等代数能解决的问题就大大的扩充了,但是,有些方程在有理数范围内仍然没有解。于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。

数学家们说不用把复数再进行扩展。这就是代数里的一个著名的定理—代数基本定理。这个定理简单地说就是n次方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。

高等几何

平面几何与立体几何

最早的几何学当属 平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。

平面几何的内容也很自然地过渡到了三维空间的立体几何。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。

笛卡尔引进坐标系后,代数与几何的关系变得明朗, 且日益紧密起来。这就促使了解析几何的产生。解析几何是由笛卡尔、费马分别独立创建的。这又是一次具有里程碑意义的事件。从解析几何的观点出发,几何图形的性质可以归结为方程的分析性质和代数性质。几何图形的分类问题(比如把圆锥曲线分为三类),也就转化为方程的代数特征分类的问题,即寻找代数不变量的问题。

立体几何归结为三维空间解析几何的研究范畴,从而研究二次曲面(如球面,椭球面、锥面、双曲面,鞍面)的几何分类问题,就归结为研究代数学中二次型的不变量问题。

微分几何

为了引入弯曲空间的上的度量(长度、面积等等),我们就需要引进微积分的方法去局部分析空间弯曲的性质。微分几何于是应运而生。研究曲线和曲面的微分几何称为古典微分几何。但古典微分几何讨论的对象必须事先嵌入到欧氏空间里,才定义各种几何概念等等(比如切线、曲率)。一个几何概念如果和几何物体所处的空间位置无关,而只和其本身的性态相关,我们就说它是内蕴的。用物理的语言来说,就是几何性质必须和参考系选取无关。

内蕴几何

哪些几何概念是内蕴性质的?这是当时最重要的理论问题。 高斯发现了曲面的曲率(即反映弯曲程度的量)竟然是内蕴的---尽管它的原始定义看上去和所处的大空间位置有关。这个重要发现就称为高斯绝妙定理。古典几何的另一个重要发现就是高斯-博纳特公式,它反映了曲率和弯曲空间里的三角形三角之和的关系。

研究内蕴几何的学科首属黎曼几何·黎曼在一次著名的演讲中,创立了这门奠基性的理论。它首次强调了内蕴的思想, 并将所有此前的几何学对象都归纳到更一般的范畴里,内蕴地定义了诸如度量等等的几何概念。 这门几何理论打开了近代几何学的大门,具有里程碑的意义。它也成为了爱因斯坦的广义相对论的数学基础。

从黎曼几何出发,微分几何进入了新的时代,几何对象扩展到了流形(一种弯曲的几何物体)上--这一概念由庞加莱引入。由此发展出了诸如张量几何、黎曼曲面理论、复几何、霍奇理论、纤维丛理论、芬斯勒几何、莫尔斯理论、形变理论等等。

从代数的角度看, 几何学从传统的解析几何发展成了更一般的一门理论--代数几何。传统代数几何就是研究多项式方程组的零点集合作为几何物体所具有的几何结构和性质--这种几何体叫做代数簇。解析几何所研究的直线、圆锥曲线、球面、锥面等等都是其中的特例。稍微推广一些,就是代数曲线,特别是平面代数曲线, 它相应于黎曼曲面。代数几何可以用交换代数的环和模的语言来描述,也可以从复几何、霍奇理论等分析的方法去探讨。代数几何的思想也被引入到数论中, 从而促使了抽象代数几何的发展,比如算术代数几何。

拓扑学

拓扑学是和传统几何密切相关的一门重要学科,也可以视为一种“柔性”的几何学, 也是所有几何学的研究基础。拓扑学研究始于欧拉,经由庞加莱等人的研究发展,逐渐成为比较成熟的数学分支和活跃的研究方向。拓扑学思想是数学思想中极为关键的内容。它讨论了刻画几何物体最基本的一些特征,比如亏格(洞眼个数)等等 。由此发展出了同调论、同伦论等等基础性的理论。

其他的几何学科

除了以上传统几何学之外,我们还有闵可夫斯基建立的“数的几何”; 与近代物理学密切相关的新学科“热带几何”;探讨维数理论的“分形几何”;还有“凸几何”、“组合几何”、“计算几何”、“排列几何”、“直观几何”等等。

第五章:数学危机

前述:何为数学危机

一般来讲,危机是一种激化的、非解决不可的矛盾。从哲学上来看,矛盾是无处不在的、不可避免的,即便以确定无疑著称的数学也不例外。

数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。

矛盾的消除,危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。

1、第一次数学危机

简介

第一次数学危机,是数学史上的一次重要事件,发生于大约公元前400年左右的古希腊时期,自根号二的发现起,到公元前370年左右,以无理数的定义出现为结束标志。这次危机的出现冲击了一直以来在西方数学界占据主导地位的毕达哥拉斯学派,同时标志着西方世界关于无理数的研究的开始。

出现背景

毕达哥拉斯学派

从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。它是一个唯心主义学派,兴旺的时期为公元前500年左右。他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。

有理数的定义

整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。为了满足这些简单的度量需要,就要用到分数。于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。

有理数有一种简单的几何解释。在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。以q为分母的分数,可以用每一单位间隔分为q等分的点表示。于是,每一个有理数都对应着直线上的一个点

危机爆发

无理数的发现

古代数学家认为,这样能把直线上所有的点用完。但是,大约在公元前5世纪,毕达哥拉斯学派的希帕索斯发现了:等腰直角三角形的直角边与其斜边不可通约。新发现的数由于和之前的所谓“合理存在的数”——即有理数在学派内部形成了对立,所以被称作了无理数。 希帕索斯正是因为这一数学发现,而被毕达哥拉斯学派的人投进了大海,处以“淹死”的惩罚。

直角三角形的直角边与其斜边不可通约,这个简单的数学事实的发现使毕达哥拉斯学派的人感到迷惑不解。它不仅违背了毕达哥拉斯派的信条,而且冲击着当时希腊人持有的“一切量都可以用有理数表示”的信仰。所以,通常人们就把希帕索斯发现的这个矛盾,叫做希帕索斯悖论。

不过存在另外一种说法称,据说, 正五边形的边与对角线之比【(√5-1)/2】是最先被发现的无理数。

芝诺悖论

古希腊著名哲学家芝诺(约公元前490年~前425年)曾提出四条著名的悖论,也被如今的数学史界认定为引发第一次数学危机的重要诱因之一。

第一,“二分法”。

运动着的东西在到达目的地之前须先完成行程的一半,而在完成行程的一半后,还须完成行程的一半的一半……如此分割,乃至无穷,因而它与目的地之间的距离是无限的,永远也达不到目的地。

第二,“阿基里斯永远追不上乌龟”。

阿基里斯是希腊跑得最快的英雄,而乌龟则爬得最慢。但是芝诺却证明,在赛跑中最快的永远赶不上最慢的,因为追赶者与被追赶者同时开始运动,而追赶者必须首先到达被追赶者起步的那一点,如此类推,他们之间存在着无限的距离,所以被追赶者必定永远领先。

第三,“飞矢不动”。

任何物体都要占有一定的空间,离开自己的空间就意味着失去了它的存在。飞矢通过一段路程的时间可被分成无数瞬间,在每一瞬间,飞矢都占据着一个与自己大小相同的空间,由于飞矢始终在自己的空间之中,因而它是静止不动的。

第四,“运动场”。

有两排物体,大小相同,数目相等,一排从终点排到中间点,另一排从中间点排到起点,当它们以相同的速度作方向相反的运动时,就会在时间上出现矛盾。芝诺认为这可以证明一半的时间等于一倍的时间。

以上四条悖论从根本上挑战了毕达哥拉斯学派所一直贯彻的度量和计算方式

妙解

关于无理数

约在公元前370年,柏拉图的学生攸多克萨斯(Eudoxus,约公元前408—前355)解决了关于无理数的问题。他纯粹用公理化方法创立了新的比例理论,微妙地处理了可公度和不可公度。他处理不可公度的办法,被欧几里

[5]

得《几何原本》第二卷(比例论)收录。并且和狄德金于1872年绘出的无理数的现代解释基本一致。21世纪后

[4]

的中国中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微炒之处。 关于芝诺悖论

芝诺的四条悖论在后来被亚里士多德等人成功解释完毕。

第一条悖论:伯内特解释了芝诺的“二分法”:即不可能在有限的时间内通过无限多个点,在你走完全程之前必须先走过给定距离的一半,为此又必须走过一半的一半,等等,直至无穷。亚里士多德批评芝诺在这里犯了错误:“他主张一个事物不可能在有限的时间里通过无限的事物,或者分别地和无限的事物相接触,须知长度和时间被说成是“无限的”有两种涵义。一般地说,一切连续事物被说成是“无限的”都有两种涵义:或分起来的无限,或延伸上的无限。因此,一方面,事物在有限的时间里不能和数量上无限的事物相接触;另一方面,却能和分起来无限的事物相接触,因为时间本身分起来也是无限的。因此,通过一个无限的事物是在无限的时间里而不是在有限的时间里进行的,和无限的事物接触是在无限数的而不是在有限数的范围上进行的。

第二条悖论:亚里士多德指出这个论证和前面的二分法是一回事,这个论证得到的结论是:跑得慢的人不可能被赶上。因此,对这个论证的解决方法也必然是同一个方法,认为在运动中领先的东西不能被追上这个想法是错误的,因为在它领先的时间内是不能被赶上的,但是,如果芝诺允许它能越过所规定的有限的距离的话,那么

[4]

它也是可以被赶上的。

第三条悖论:亚里士多德认为芝诺的这个说法是错误的,因为时间不是由不可分的‘现在’组成的,正如别的任何量都不是由不可分的部分组合成的那样。亚里士多德认为,这个结论是因为把时间当作是由‘现在’组成的而引起的,如果不肯定这个前提,这个结论是不会出现的。

第四条悖论:亚里士多德认为,这里错误在于他把一个运动物体经过另一运动物体所花的时间,看做等同于以相同速度经过相同大小的静止物体所花的时间,事实上这两者是不相等的。

影响

第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。反之,数却可以由几何量表示出来。整数的尊祟地位受到挑战,古希腊的数学观点受到极大的冲击。于是,几何学开始在希腊数学中占有特殊地位。同时也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。这是数学思想上的一次革命,是第一次数学危机的自然产物。

回顾在此以前的各种数学,无非都是“算”,也就是提供算法。即使在古希腊,数学也是从实际出发,应用到实际问题中去的。至于埃及、巴比伦、中国、印度等国的数学,并没有经历过这样的危机和革命,也就继续走着以算为主,以用为主的道路。而由于第一次数学危机的发生和解决,希腊数学则走上完全不同的发展道路,形成了欧几里得《原本》的公理体系与亚里士多德的逻辑体系,为世界数学作出了另一种杰出的贡献。

但是,自此以后希腊人把几何看成了全部数学的基础,把数的研究隶属于形的研究,割裂了它们之间的密切关系。这样做的最大不幸是放弃了对无理数本身的研究,使算术和代数的发展受到很大的限制,基本理论十分薄溺。这种畸形发展的局面在欧洲持续了2000多年

2、第二次数学危机

简介

第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。

背景

(1)芝诺悖论(同上) (2)微积分的出现

经过许多人多年的努力,终于在17世纪晚期,形成了无穷小演算——微积分这门学科。牛顿和莱布尼兹被公认为微积分的奠基者,他们的功绩主要在于:把各种有关问题的解法统一成微分法和积分法;有明确的计算步骤;

[2]

微分法和积分法互为逆运算。由于运算的完整性和应用的广泛性,微积分成为当时解决问题的重要工具。

爆发

在微积分大范围应用的同时,关于微积分基础的问题也越来越严重。关键问题就是无穷小量究竞是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论,造成了第二次数学危机。

无穷小量究竟是不是零?两种答案都会导致矛盾。牛顿对它曾作过三种不同解释:1669年说它是一种常量;1671年又说它是一个趋于零的变量;1676年它被“两个正在消逝的量的最终比”所代替。但是,他始终无法解决上述矛盾。莱布尼兹曾试图用和无穷小量成比例的有限量的差分来代替无穷小量,但是他也没有找到从有限量过渡到无穷小量的桥梁。

英国大主教贝克莱于1734年写文章,攻击流数(导数)。他说,用忽略高阶无穷小而消除了原有的错误。贝克莱虽然也抓住了当时微积分、无穷小方法中一些不清楚不合逻辑的问题,不过他是出自对科学的厌恶和对宗教的维护,而不是出自对科学的追求和探索。

当时一些数学家和其他学者,也批判过微积分的一些问题,指出其缺乏必要的逻辑基础。例如,罗尔曾说:“微积分是巧妙的谬论的汇集。”在那个勇于创造时代的初期,科学中逻辑上存在这样那样的问题,并不是个别现象。

18世纪的数学思想的确是不严密的、直观的,强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念不清楚;无穷大概念不清楚;发散级数求和的任意性等等;符号的不严格使用;不考虑连续性就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。

初步解决

到19世纪20年代,一些数学家才比较关注于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、狄德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。

波尔查诺给出了连续性的正确定义;阿贝尔指出要严格限制滥用级数展开及求和;柯西在1821年的《代数分析教程》中从定义变量出发,认识到函数不一定要有解析表达式;他抓住极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,无穷小量是以零为极限的变量;并且定义了导数和积分;狄里赫利给出了函数的现代定义。在这些工作的基础上,威尔斯特拉斯消除了其中不确切的地方,给出现在通用的极限的定义,连续的定义,并把导数、积分严格地建立在极限的基础上。

19世纪70年代初,威尔斯特拉斯、狄德金、康托等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析建立在实数理论的严格基础之上。

不同意见

关于第二次数学危机,自其爆发开始直到二十一世纪,始终都存在着不同意见。著名的数学家欧拉就坚持认为在求导数的运算中,其结果应该是0/0。他举例说,如果计算地球的数值,则一颗灰尘、甚至成千上万颗灰尘的误差都是可以忽略的。但是在微积分的运算中,“几何的严格性要求连这样小的误差也不能有。”[3]马克思在他的《数学手稿》中说得更明确:求导数的运算的结果应该是严格的、特定的0/0,批判了所谓“无限趋近”的说法。[4]同时也有言论称,该危机在二十世纪前的数学研究体制下无法彻底解决

影响

这次危机不但没有阻碍微积分的迅猛发展和广泛应用,反而让微积分驰骋在各个科技领域,解决了大量的物理问题、天文问题、数学问题,大大推进了工业革命的发展。就微积分自身而言,经过本次危机的“洗礼”,其自身得到了不断的系统化,完整化,扩展出了不同的分支,成为了18世纪数学世界的“霸主”。同时,第二次数学危机也促进了19世纪的分析严格化、代数抽象化以及几何非欧化的进程

3、第三次数学危机

简介

数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。

背景

第三次数学危机产生于十九世纪末和二十世纪初,当时正是数学空前兴旺发达的时期。首先是逻辑的数学化,促使了数理逻辑这门学科诞生。

十九世纪七十年代康托尔创立的集合论是现代数学的基础,也是产生危机的直接来源。十九世纪末,戴德金及皮亚诺对算术及实数理论进行公理化,推动了公理化运动。而公理化运动的最大成就则是希尔伯特在1899年对于初等几何的公理化。

公理化方法

公理化方法是现代数学最重要的方法之一,对于数学基础和数理逻辑的研究也有影响。当时也是现代数学一些新分支兴起的时期,如抽象代数学、点集拓扑学和代数拓扑学、泛函分析、测度与积分理论等学科。这些学科的发展一直与数学基础及数理逻辑的发展有着密切的关系。数学的更新与发展也对数学哲学有许多新的探讨,数学的陈腐哲学观念在当时已经几乎一扫而空了。

研究

人类最早认识的是自然数。从引进零及负数就经历过斗争:要么引进这些数,要么大量的数的减法就行不通;同样,引进分数使乘法有了逆运算——除法,否则许多实际问题也不能解决。但是接着又出现了这样的问题,是否所有的量都能用有理数来表示?于是发现无理数就导致了第一次数学危机,而危机的解决也就促使逻辑的发展和几何学的体系化。

方程的解导致了虚数的出现,虚数从一开始就被认为是“不实的”。可是这种不实的数却能解决实数所不能解决的问题,从而为自己争得存在的权利。

几何学的发展从欧几里得几何的一统天下发展到各种非欧几何学也是如此。在十九世纪发现了许多用传统方法不能解决的问题,如五次及五次以上代数方程不能通过加、减、乘、除、乘方、开方求出根来;古希腊几何三大问题,即三等分任意角、倍立方体、化圆为方不能通过圆规、直尺作图来解决等等。

这些否定的结果表明了传统方法的局限性,也反映了人类认识的深入。这种发现给这些学科带来极大的冲击,几乎完全改变了它们的方向。比如说,代数学从此以后向抽象代数学方面发展,而求解方程的根变成了分析及计算数学的课题。在第三次数学危机中,这种情况也多次出现,尤其是包含整数算术在内的形式系统的不完全性、许多问题的不可判定性都大大提高了人们的认识,也促进了数理逻辑的大发展。

发展

这种矛盾、危机引起的发展,改变面貌,甚至引起革命,在数学发展历史上是屡见不鲜的。第二次数学危机是由无穷小量的矛盾引起的,它反映了数学内部的有限与无穷的矛盾。数学中也一直贯穿着计算方法、分析方法在应用与概念上清楚及逻辑上严格的矛盾。在这方面,比较注意实用的数学家盲目应用。而比较注意严密的数学家及哲学家则提出批评。只有这两方面取得协调一致后,矛盾才能解决。后来算符演算及δ函数也重复了这个过程,开始是形式演算、任意应用,直到施瓦尔兹才奠定广义函数论的严整系统。

数学基础危机

对于第三次数学危机,有人认为只是数学基础的危机,与数学无关。这种看法是片面的。诚然,问题涉及数理逻辑和集合论,但它一开始就牵涉到无穷集合,而现代数学如果脱离无穷集合就可以说寸步难行。因为如果只考虑有限集合或至多是可数的集合,那绝大部分数学将不复存在。而且即便这些有限数学的内容,也有许多问题要涉及无穷的方法,比如解决数论中的许多问题都要用解析方法。由此看来,第三次数学危机是一次深刻的数学危机。

第六章:三大数学流派

(1、由于以下文章及其晦涩且难以读懂,故只进行简介,不展开详细说2、以下内容顺序不分前后)

1、罗素悖论

把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有: P={A∣A∈A} Q={A∣A?A} 问,Q∈P 还是 Q∈Q? 若Q∈P,那么根据第一类集合的定义,必有Q∈Q,但是Q中任何集合都有A?A的性质,因为Q∈Q,所以Q¢Q,引出矛盾。若Q∈Q,根据第一类集合的定义,必有Q∈P,而显然P∩Q=?,所以Q?Q,还是矛盾。 这就是著名的“罗素悖论”。罗素悖论还有一些较为通俗的版本,如理发师悖论等。

2、康托尔悖论

在数学中,康托尔悖论是集合论的一个定理,即没有最大的基数,所以“无限大小”的搜集自身是无限的。进一步的,从这个事实得出这个搜集不是集合而是真类;在 von Neumann-Bernays-G?del 集合论中从这个事实得出大小限制公理,即这个真类必定双射于所有集合的集合。所以,不只是有无限多个无限,而是这个无限大于无限的任何枚举。

3、数学基础

研究整个数学的理论基础及其相关问题的一个专门学科,即研究数学的基础,回答“数学是什么?”,“数学的基础是什么?”,“数学是否和谐?”等等一些数学上的根本问题的学科。从直觉主义、逻辑主义和形式主义的相同与不同,可以追溯到近代康德对数学本质的思考。康德认为算术来自先验主体对时间纯形式的直观,几何则是对空间纯形式的直观。这实质上是一种由主观而客观的思路。康德的思想后来又在胡塞尔那里得到继承和发展。胡塞尔就是从考虑“数在哪里”的问题提出现象学还原方法的。

本文来源:https://www.bwwdw.com/article/rk18.html

Top