【高考试题】1985年全国高考数学试题★答案
更新时间:2024-06-17 02:02:01 阅读量: 综合文库 文档下载
- 2021高考试题推荐度:
- 相关推荐
【高考试题】1985年全国高考数学试题★答案
(理工农医类)
一、本题每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个结论是正确的,把正确结论的代号写在题后的括号内.
(1)如果正方体ABCD A′B′C′D′的棱长为a,那么四面体 A′ ABD的体积是
【 】
[Key] 一、本题考查基本概念和基本运算.
(1)D;
(A)必要条件 (B)充分条件
(C)充分必要条件 (D)既不充分又不必要的条件 【 】
[Key] (2)A;
(A)y=x2 (x∈R)
(B)y=│sinx│ (x∈R) (C)y=cos2x (x∈R) (D)y=esin2x (x∈R) 【 】
[Key] (3)B;
(4)极坐标方程ρ=asinθ(a>0)的图象是
【 】
[Key] (4)C;
(5)用1,2,3,4,5这五个数字,可以组成比20000大,并且百位数不是数字3的没有重复数字的五位数,共有 (A)96个 (B)78个 (C)72个 (D)64个 【 】
[Key] (5)B.
二、只要求直接写出结果.
(2)设│a│≤1,求arccosa+arccos(-a)的值. (3)求曲线y2=-16x+64的焦点.
(5)设函数f(x)的定义域是[0,1],求函数f(x2)的定义域.
[Key] 二、本题考查基础知识和基本运算,只需直接写出结果.
(2)π; (3)(0,0); (4)64(或26);
(5)[-1,1](或{x│-1≤x≤1},或-1≤x≤1).
三、(1)解方程 log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1).
[Key] 三、本题考查对数方程、无理不等式的解法和分析问题的能力.
(1)解法一:由原对数方程得
因为log0.25a=-log4a,上式变成
由此得到
解这个方程,得到 x1=0,x2=7.
检验:把x=0代入原方程,左右两边都等于0;故x=0是原方程的根.但当x=7时,由于3-x<0,1-x<0,它们的对数无意义;故x=7不是原方程的根,应舍去. 因此,原对数方程的根是x=0.
对原方程变形,同解法一,得 x1=0, x2=7.
2x+5>x2+2x+1, x2<4,即-2 但由条件x≥-1,因此-1≤x<2也是原不等式的解. 综合(i),(ii),得出原不等式的解集是 四、如图,设平面AC和BD相交于BC,它们所成的一个二面角为 45°,P为面AC内的一点,Q为面BD内的一点.已知直线MQ是直线PQ在平面BD内的射影,并且M在BC上.又设PQ与平面BD所成的角为β,∠CMQ=θ(0°<θ<90°)线段PM的长为a.求线段PQ的长. [Key] 四、本题考查三垂线定理、二面角、斜线与平面所成的角、解三角形、空间想象能力和综合运用知识的能力. 解法一:自点P作平面BD的垂线,垂足为R,由于直线MQ是直线PQ在平面BD内的射影,所以R在MQ上,过R作BC的垂线,设垂足为N,则PN⊥BC.(三垂线定理) 因此∠PNR是所给二面角的平面角,所以∠PNR=45°. 由于直线MQ是直线PQ在平面BD内的射影,所以∠PQR=β. 在Rt△PNR中,NR=PRctg45°,所以NR=PR. 又已知0°<θ<90°,所以 解法二:同解法一,得∠PQR=β. 设:∠PMR=α则在Rt△PMR中,MR=acosα, PR=asinα, 在Rt△MNR中,NR=MRsinθ=acosα·sinθ. 又在Rt△PNR中,由于∠PNR=45°,所以PR=NR. 于是 asinα=acosα·sinθ, tgα=sinθ, 在△PMQ中,应用正弦定理得 五、设O为复平面的原点,Z1和Z2为复平面内的两个动点,并且满足: (2)△OZ1Z2的面积为定值S. 求△OZ1Z2的重心Z所对应的复数的模的最小值. [Key] 五、本题考查复数的概念、复数运算的几何意义、三角恒等式、不等式以及灵 活运用知识的能力. 解法一:设Z1、Z2和Z对应的复数分别为z1、z2和z,其中 z1=r1(cosθ+isinθ), z2=r2(cosθ-isinθ). 由于Z是△OZ1Z2的重心,根据复数加法的几何意义,则有3z=z1+z2=(r1+r2)cosθ+(r1-r2)isinθ. 于是 │3z│2=(r1+r2)2cos2θ+(r1-r2)2sin2θ =(r1-r2)2cos2θ+4r1r2cos2θ+(r1-r2)2sin2θ =(r1-r2)2+4r1r2cos2θ. 解法二:同解法一,得3z=(r1+r2)cosθ+(r1-r2)isinθ. 于是│3z│2=(r1+r2)2cos2θ+(r1-r2)2sin2θ.
正在阅读:
追寻童年的回忆作文550字06-25
人教版四年级下册数学四则运算练习题02-06
尽职调查承诺书04-25
nike市场细分08-24
我的童年作文550字07-08
苏教版五年级下册第二单元语文试卷06-06
最新误吸时的应急预案 - 图文05-11
九年级物理知识与应用竞赛试题05-10
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 数学试题
- 高考试题
- 答案
- 高考
- 全国
- 1985
- 智能微格实训系统方案
- 化工机械专业技能考核试题集1
- 解剖学 18脑和脊髓的被膜、血管及脑脊液循环习题
- 水上乐园设施项目可行性研究报告(发改立项备案+2013年最新案例
- 1加油站--应急预案-2016-12
- 文言文词法应用详解
- 小学一年级下册写字教案()
- 临时用电施工方案
- 房产抵押合同
- 126施工道掘进工作面供电设计
- 《学前儿童音乐教育》教案
- 健康生命教育四年级下册第六课教案
- 英语国家概况学习资源推荐
- 浦前中心小学语文学科三年级质量分析
- 阿里华为铁军之道
- PPP项目投资管理指引
- 重庆南开中学初2015届九年级(下)阶段测试(三)化学试题
- 处置民族宗教突发性事件应急预案
- 茶艺、酒吧经营 教学大纲
- 江苏省无锡市2017年高二学业水平第二次模拟考试历史试题