初中九年级数学中考专题复习模拟检测试卷WORD(含答案) (121)

更新时间:2023-03-08 04:33:24 阅读量: 初中教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)

1.(3分)﹣3的绝对值是( ) A.﹣3 B.3

C.±3 D.

2.(3分)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )

A. B. C. D.

3.(3分)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为( ) A.4.64×105

B.4.64×106

C.4.64×107

D.4.64×108

4.(3分)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为( ) A.

B.

C.

D.

5.(3分)如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于( )

A.120° B.30° C.40° D.60° 6.(3分)式子A.a≥﹣1 B.a≠2

有意义,则实数a的取值范围是( ) C.a≥﹣1且a≠2 D.a>2

7.(3分)下列说法正确的是( ) A.圆内接正六边形的边长与该圆的半径相等

B.在平面直角坐标系中,不同的坐标可以表示同一点

第1页(共27页)

C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根

D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等 8.(3分)反比例函数y=象的图象大致是( )

的图象如图所示,则一次函数y=kx+b(k≠0)的图

A. B. C. D.

9.(4分)如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是( )

A. B. C.5 D.

10.(4分)如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为( )

第2页(共27页)

A. B. C. D.

11.(4分)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )

A.23 B.75 C.77 D.139

12.(4分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论: ①抛物线过原点; ②4a+b+c=0; ③a﹣b+c<0;

④抛物线的顶点坐标为(2,b); ⑤当x<2时,y随x增大而增大. 其中结论正确的是( )

A.①②③ B.③④⑤ C.①②④ D.①④⑤

第3页(共27页)

二、填空题(本大题共4小题,每小题4分,满分16分) 13.(4分)分解因式:2m3﹣8m= .

14.(4分)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下: 183 191 169 190 177

则在该时间段中,通过这个路口的汽车数量的平均数是 .

15.(4分)如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是 .

16.(4分)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为的值为 .

,∠AOB=∠OBA=45°,则k

三、解答题

17.(9分)(1)计算:﹣(2﹣(2)先化简,再求值:

)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;

÷

,其中a=

18.(9分)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E. (1)求证:△DCA≌△EAC;

第4页(共27页)

(2)只需添加一个条件,即 ,可使四边形ABCD为矩形.请加以证明.

19.(10分)若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.

(1)写出所有个位数字是5的“两位递增数”;

(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.

20.(10分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务. (1)问实际每年绿化面积多少万平方米?

(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米? 21.(12分)阅读材料:

在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=

例如:求点P0(0,0)到直线4x+3y﹣3=0的距离. 解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3, ∴点P0(0,0)到直线4x+3y﹣3=0的距离为d=根据以上材料,解决下列问题:

问题1:点P1(3,4)到直线y=﹣x+的距离为 ;

第5页(共27页)

=.

问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;

问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.

22.(14分)如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D. (1)求线段CD的长及顶点P的坐标; (2)求抛物线的函数表达式;

(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S

△QAB

,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明

理由.

第6页(共27页)

参考答案与试题解析

一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)

1.(3分)(2017?日照)﹣3的绝对值是( ) A.﹣3 B.3

C.±3 D.

【分析】当a是负有理数时,a的绝对值是它的相反数﹣a. 【解答】解:﹣3的绝对值是3. 故选:B.

【点评】本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.

2.(3分)(2017?日照)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )

A. B. C. D.

【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项正确; B、不是中心对称图形,是轴对称图形,故本选项错误; C、既是中心对称图形,也是轴对称图形,故本选项错误; D、既是中心对称图形,也是轴对称图形,故本选项错误. 故选A.

【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

3.(3分)(2017?日照)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为( )

第7页(共27页)

A.4.64×105 B.4.64×106 C.4.64×107 D.4.64×108

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7. 【解答】解:4640万=4.64×107. 故选:C.

【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.

4.(3分)(2017?日照)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为( ) A.

B.

C.

D.

【分析】根据勾股定理求出BC,根据正弦的概念计算即可. 【解答】解:在Rt△ABC中,由勾股定理得,BC=∴sinA=

=

=12,

故选:B.

【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.

5.(3分)(2017?日照)如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于( )

A.120° B.30° C.40° D.60°

【分析】根据对顶角的性质和平行线的性质即可得到结论. 【解答】解:∵∠AEF=∠1=60°, ∵AB∥CD, ∴∠2=∠AEF=60°,

第8页(共27页)

故选D.

【点评】本题考查了平行线的性质,对顶角的性质,熟练掌握平行线的性质是解题的关键.

6.(3分)(2017?日照)式子A.a≥﹣1 B.a≠2

有意义,则实数a的取值范围是( )

C.a≥﹣1且a≠2 D.a>2

【分析】直接利用二次根式的定义结合分式有意义的条件分析得出答案. 【解答】解:式子

有意义,

则a+1≥0,且a﹣2≠0, 解得:a≥﹣1且a≠2. 故选:C.

【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.

7.(3分)(2017?日照)下列说法正确的是( ) A.圆内接正六边形的边长与该圆的半径相等

B.在平面直角坐标系中,不同的坐标可以表示同一点 C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根

D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等 【分析】根据正多边形和圆的关系、一元二次方程根的判别式、点的坐标以及旋转变换的性质进行判断即可. 【解答】解:如图∠AOB=∴△AOB是等边三角形, ∴AB=OA,

∴圆内接正六边形的边长与该圆的半径相等,A正确;

在平面直角坐标系中,不同的坐标可以表示不同一点,B错误; 一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;

根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;

第9页(共27页)

=60°,OA=OB,

故选:A.

【点评】本题考查的是正多边形和圆、一元二次方程根的判别式、点的坐标以及旋转变换的性质,掌握相关的性质和判定是解题的关键.

8.(3分)(2017?日照)反比例函数y=(k≠0)的图象的图象大致是( )

的图象如图所示,则一次函数y=kx+b

A. B. C. D.

【分析】根据反比例函数图象可以确定kb的符号,易得k、b的符号,根据图象与系数的关系作出正确选择. 【解答】解:∵y=∴kb>0, ∴k,b同号,

A、图象过二、四象限,

则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意; B、图象过二、四象限,

则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意; C、图象过一、三象限,

第10页(共27页)

的图象经过第一、三象限,

则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意; D、图象过一、三象限,

则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意; 故选:D.

【点评】此题主要考查了反比例函数以及一次函数的图象,正确得出k,b的符号是解题关键.

9.(4分)(2017?日照)如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是( )

A. B. C.5 D.

【分析】方法1、过点D作OD⊥AC于点D,由已知条件和圆的性质易求OD的长,再根据勾股定理即可求出AD的长,进而可求出AC的长.

方法2、先求出∠AOP=60°,进而求出∠ACP=∠P,即可得出AC=AP,求出AC即可.

【解答】解:

方法1、过点D作OD⊥AC于点D, ∵AB是⊙O的直径,PA切⊙O于点A, ∴AB⊥AP, ∴∠BAP=90°, ∵∠P=30°,

第11页(共27页)

∴∠AOP=60°, ∴∠AOC=120°, ∵OA=OC, ∴∠OAD=30°, ∵AB=10, ∴OA=5, ∴OD=AO=2.5, ∴AD=∴AC=2AD=5故选A,

=,

方法2、如图,

连接BC,∵AP是⊙O的切线, ∴∠BAP=90°, ∵∠P=30°, ∴∠AOP=60°, ∴∠BOC=60°,

∴∠ACP=∠BAC=∠BOC=30°=∠P, ∴AP=AC,

∵AB是⊙O直径, ∴∠ACB=90°,

在Rt△ABC中,∠BAC=30°,AB=10, ∴AC=5∴AP=5故选A.

, ,

第12页(共27页)

【点评】本题考查了切线的性质、等腰三角形的性质以及勾股定理的运用,熟记切线的性质定理是解题的关键.

10.(4分)(2017?日照)如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为( )

A. B. C. D.

【分析】根据角平分线的性质得到∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,根据直角三角形的性质得到r=t,根据圆的面积公式即可得到结论. 【解答】解:∵∠BAC=60°,AO是∠BAC的角平分线,

第13页(共27页)

∴∠BAO=30°,

设⊙O的半径为r,AB是⊙O的切线, ∵AO=2t, ∴r=t, ∴S=πt2,

∴S是圆心O运动的时间t的二次函数, ∵π>0,

∴抛物线的开口向上, 故选D.

【点评】此题考查动点问题的函数图象,求得函数解析式,利用函数的性质得出图象是解决问题的关键.

11.(4分)(2017?日照)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )

A.23 B.75 C.77 D.139

【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b. 【解答】解:∵上边的数为连续的奇数1,3,5,7,9,11, 左边的数为21,22,23,…, ∴b=26=64,

∵上边的数与左边的数的和正好等于右边的数,

第14页(共27页)

∴a=11+64=75, 故选B.

【点评】此题考查数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.

12.(4分)(2017?日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论: ①抛物线过原点; ②4a+b+c=0; ③a﹣b+c<0;

④抛物线的顶点坐标为(2,b); ⑤当x<2时,y随x增大而增大. 其中结论正确的是( )

A.①②③ B.③④⑤ C.①②④ D.①④⑤

【分析】①由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b=﹣4a、c=0,即4a+b+c=0,结论②正确;③根据抛物线的对称性结合当x=5时y>0,即可得出a﹣b+c>0,结论③错误;④将x=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当x<2时,yy随x增大而减小,结论⑤错误.综上即可得出结论.

【解答】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),

∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;

第15页(共27页)

本文来源:https://www.bwwdw.com/article/rg.html

Top