基于OrCADPSpice有源低通滤波器设计

更新时间:2023-11-29 21:44:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

有源低通滤波器设计

要求:

⒈ 设计一个截止频率fo为1000HZ的1阶有源低通滤波器(提示:集成运放使用μА741、取电容C=0.01uf,其他元件参数自行考虑)。要求:①设计的电路、标明元件参数;②在OrCAD/PSpice平台上完成上述设计及仿真 ,测试1阶电路对应的幅频特性曲线。

⒉ 设计一个截止频率fo为1000HZ的2阶有源低通滤波器(提示:集成运放使用μА741、设计系数α=1.414,即Q=0.707、R1=R2=R,C1=C2=C,取电容C=0.01uf,其他元件参数自行考虑)。要求:①设计的电路、标明元件参数;②在OrCAD/PSpice平台上完成上述设计及仿真 ,测试2阶电路对应的幅频特性曲线。书写Pspice实践练习报告(自行)。

(一)Pspice简介

Pspice是由SPICE(Simulation Program with Intergrated Circuit Emphasis)发展而来的用于微机系列的通用电路分析程序。Pspice软件是一个通用的电路分析程序,它可以仿真和计算电路的性能。由于该软件提供了丰富的元件库,使得各种常用元器件随手可得,在软件上我们可以搭接任何模拟和数字或者数模混合电路。该软件使用的编程语言简单易学,对电路的计算和仿真快速而准确,强大的图形后处理程序可以将电路中的各电量以图形的方式显示在计算机的屏幕上,就像一个多功能、多窗口的示波器一样。

PSPICE软件具有强大的电路图绘制功能、电路模拟仿真功能、图形后处理功能和元器件符号制作功能,以图形方式输入,自动进行电路检查,生成图表,模拟和计算电路。它的用途非常广泛,不仅可以用于电路分析和优化设计,还可用于电子线路、电路和信号与系统等课程的计算机辅助教学。与印制版设计软件配合使用,还可实现电子设计自动化。被公认是通用电路模拟程序中最优秀的软件,具有广阔的应用前景。这些特点使得PSPICE受到广大电子设计工作者、科研人员和高校师生的热烈欢迎,国内许多高校已将其列入电子类本科生和硕士生的辅修课程。

电路设计软件有很多,它们各有特色。如Protel和Tango,它对单层/双层电路板的原理图及PCB图的开发设计很适合,而对于布线复杂,元件较多的四层及六层板来说ORCAD更有优势。但在电路系统仿真方面,PSPICE可以说独具特色,是其他软件无法比拟的,它

- 1 -

是一个多功能的电路模拟试验平台,PSPICE软件由于收敛性好,适于做系统及电路级仿真,具有快速、准确的仿真能力。

Pspice软件具有如下功能:

(1)直流特性分析

包括电路的静态工作点分析;直流小信号传递函数值分析;直流扫描分析;直流小信号灵敏度分析。

在进行静态工作点分析时,电路中的电感全部短路,电容全部开路,分析结果包括电路每一节点的电压值和在此工作点下的有源器件模型参数值。这些结果以文本文件方式输出。

直流小信号传递函数值是电路在直流小信号下的输出变量与输入变量的比值,输入电阻和输出电阻也作为直流解析的一部分被计算出来。进行此项分析时电路中不能有隔直电容。分析结果以文本方式输出。

直流扫描分析可作出各种直流转移特性曲线。输出变量可以是某节点电压或某节点电流,输入变量可以是独立电压源、独立电流源、温度、元器件模型参数和通用(Global)参数(在电路中用户可以自定义的参数)。

直流小信号灵敏度分析是分析电路各元器件参数变化时,对电路特性的影响程度。灵敏度分析结果以归一化的灵敏度值和相对灵敏度形式给出,并以文本方式输出。

(2)交流分析

包括频率特性(ACSweep)和噪声特性(Noise)分析。

PSPICE进行交流分析前,先计算电路的静态工作点,决定电路中所有非线性器件的交流小信号模型参数,然后在用户所指定的频率范围内对电路进行仿真分析。

频率响应分析能够分析传递函数的幅频响应和相频响应,亦即,可以得到电压增益、电流增益、互阻增益、互导增益、输入阻抗、输出阻抗的频率响应。分析结果均以曲线方式输出。

PSPICE用于噪声分析时,可计算出每个频率点上的输出噪声电平以及等效的输入噪声电平。噪声电平都以噪声带宽的平方根进行归一化。它们的单位是V/Hz1/2。

(3)瞬态分析

即时域分析,包括电路对不同信号的瞬态响应,时域波形经过快速傅里叶变换(FFT)后,可得到频谱图。通过瞬态分析,也可以得到数字电路时序波形。

- 2 -

另外,PSPICE可以对电路的输出进行傅里叶分析,得到时域响应的傅里叶分量(直流分量、各次谐波分量、非线性谐波失真系数等)。这些结果以文本方式输出。

(4)参数扫描

包括温度特性分析(TemperatureAnalysis)和参数扫描分析(ParameTR_ic Analysis)。 (5)统计分析

包括蒙托卡诺分析(MC,MonteCarlo)和最坏情况分析(WC,Worst Case)。

蒙特卡罗分析是分析电路元器件参数在它们各自的容差(容许误差)范围内,以某种分布规律随机变化时电路特性的变化情况,这些特性包括直流、交流或瞬态特性。

最坏情况分析与蒙特卡罗分析都属于统计分析,所不同的是,蒙特卡罗分析是在同一次仿真分析中,参数按指定的统计规律同时发生随机变化;而最坏情况分析则是在最后一次分析时,使各个参数同时按容差范围内各自的最大变化量改变,以得到最坏情况下的电路特性。

(6)逻辑模拟

包括逻辑模拟(DigitalSimulation)、数/模混合模拟(MixedA/DSimulation)和最坏情况时序分析(Worst-Case timing Analysis)。

Pspice软件由于收敛性好,适于做系统及电路级仿真,具有快速,准确的仿真能力。 其主要优点有:

(1)图形界面友好,易学易用,操作简单

由Dos版本的PSPICE到Windows版本的PSPICE,使得该软件由原来单一的文本输入方式而更新升级为输入原理图方式,使电路设计更加直观形象。PSPICE 6.0以上版本全部采用菜单式结构,只要熟悉Windows操作系统就很容易学,利用鼠标和热键一起操作,既提高了工作效率,又缩短了设计周期。即使没有参考书,用户只要具备一定的英语基础就可以通过实际操作很快掌握该软件。

(2)实用性强,仿真效果好

在PSPICE中,对元件参数的修改很容易,它只需存一次盘、创建一次连接表,就可以实现一个复杂电路的仿真。如果用Protel等软件进行参数修改仿真,则过程十分繁琐。在改变一个参数时,哪怕是一个电阻阻值的大小都需要重新建立网络表的连接,设置其他参数更为复杂。

(3)功能强大,集成度高

- 3 -

Pspice内集成了许多仿真功能,如:直流扫描,交流分析,噪声分析,温度分析等,用户只需在所要观察的节点放置电压探针,就可以在仿真结果图中观察其情况,而且该软件还集成了许多数学运算,不仅为用户提供了加,减,乘,除等基本的数学运算,还提供了绝对值,对数,指数等基本的函数运算,这些都是其他软件所无法比拟的。

另外,用户还可以对仿真结果窗口进行编辑,如添加窗口,修改坐标,叠加图形等,还具有保存和打印图形的功能,这些功能都给用户提供了制作所需图形的一种快倢,简便的方法。因此,Windows版本的Pspice更优于Dos版本的Pspice,它不但可以输入原理图方式,而且可以输入文本方式,因此它不失为电子工程师的好帮手。

Pspice的版本介绍

现在流行的pspice版本如下:pspice8.0,集成pspice的Orcad10.5,集成Orcad的Cadence15.7等多个版本。实验过程采用Orcad9.2。

Orcad9.2是一个过渡版本,内部包含pspice输入工具schematics(在以后的版本中已经取消了该输入方式)。Orcad的原理图输入工具Capture(和Capture CIS)。实验过程的操作以Capture为主。

(二)滤波器的简介

滤波器是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。

滤波器分为无源滤波器与有源滤波器两种: ① 无源滤波器:

由电感L、电容C及电阻R等无源元件组成 ② 有源滤波器:

一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。

- 4 -

从功能来上有源滤波器分为:

低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。

(三)滤波器的设计与仿真

一、设计简介

自已设计电路系统,构成低通滤波器、高通滤波器和带通滤波器。利用Matlab或PSPICE或PROTEL或其他软件仿真。 二、设计要求

完成电路设计;学习用计算机画电路图;学会利用Matlab或PSPICE或其他软件仿真。 三、设计路线

滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率次(通常是某个频率范围)的信号通过,而其他频率的信号幅值均要受到衰减或抑制。这些网络可以由RLC元件或RC元件构成的无缘滤波器,也可以由RC元件和有源器件构成的有源滤波器。

根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF),高通滤波器(HPF),带通滤波器(BPF),和带阻滤波器(BEF)四种。从实现方法上可分为FIR,IIR滤波器。

从设计方法上可分为切比雪夫滤波器,巴特沃思滤波器。从处理信号方面可分为经典滤波器和现代滤波器。

在这里介绍两种具体的滤波器设计方法:

(1)切比雪夫滤波器:是在通带或阻带上频率响应幅度等波纹波动的滤波器。在通带波动的为“I型切比雪夫滤波器”,在阻带波动的为“II型切比雪夫滤波器”。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动。 这种滤波器来自切比雪夫多项式,因此得名,用以记念俄罗斯数学家巴夫尼提·列波维其·切比雪夫(Пафнутий Львович Чебышёв)。

(2)巴特沃斯滤波器:特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工

- 5 -

本文来源:https://www.bwwdw.com/article/rdit.html

Top