常用制动元件(制动阀、继动阀、调压阀、四回路保护阀等)工作原理简介 - 图文

更新时间:2024-01-05 08:36:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

常用气制动元件工作原理简介

装设在车辆上的所有各种制动系总称为制动装备。任何制动系都具有四个基本组成部分: 供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中产生制动能量的部分称为制动能源。如空压机、人的肌体

控制装置——包括产生制动动作和控制制动效果的各种部件。如制动踏板机构,制动阀。 传动装置——包括将制动能量传输到制动器的各个部件,如制动总泵、制动轮缸

制动器——产生阻碍车辆的运动或运动趋势的力(制动力)的部件,其中也包括辅助制动系中的缓速装置。

较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 制动系还可按照制动能源来分类:以驾驶员的肌体作为唯一制动能源的制动系称为人力制动系;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的则是动力制动系。其制动能源可以是发动机驱动的空气压缩机或油泵。兼用人力和发动机动力进行制动的制动系称为伺服制动系,如真空助力。

按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁式等,我厂现有车型主要采用液压制动和气压制动两种传输方式。液压制动式结构简单,主要用于490发动机以下小型工程车和平板车上,气压制动结构复杂,用于中型及以上车型。下面只讨论一下我厂最常用的动力制动系中的气压制动。

气压制动系是发展最早的一种动力制动系,也是我厂现在最主要采用的制动形式。 图为气压双回路气压制动系示意图:

由发动机驱动的双缸活塞式空气压缩机将压缩空气经调压阀首先输入湿储气筒,压缩空气在湿储气筒内冷却并进行油水分离之后,再经过四回路保护阀,分别进入前桥储气筒、后桥储气筒和驻车储气筒,将气路分成三个回路;前、后储气筒分别与制动阀的上、下两腔相连,当驾驶员踩下踏板时,前筒气体通过制动阀上腔经快放阀到达前桥制动气室,实现前桥制动;后储气筒气体通过制动阀下腔,打开继动阀控制口,使后储气筒压缩空气直接经继动阀进入后桥制动气室,实现后桥制动;驻车储气筒与手控阀相连,在正常行车状态,驻车储气筒与

手控阀和弹簧气室处于常通状态,当车辆停止时,将手刹手柄达到停车位置,阻断气源,弹簧气室内的压缩空气通过快放阀排入大气,实现驻车制动。

下面分别简单介绍一下各气制动元件的作用和工作原理: 一、调压阀

调压阀的作用:能自动调节制动系统的工作压力,防止气路过载,即压力过载保护,去除水、油等污染物,并能向轮胎充气。

调压阀工作原理示意图:

技术参数:使用温度范围 环境温度:-40~+100°C

介质(空气)温度: -40~+150°C 切断压力: 810±20KPa(我厂现用) 压力调节范围:60400 KPa 安全阀开启压力(集成式):1.2~1.3Mpa

调压阀工作原理:空压机输出的压缩空气从1口进入A腔经由滤清器9,单向阀门6从21口输出,同时一部分压缩空气到达B腔。当B腔压力达到810±20Kpa时,膜片总成4克服弹簧3的预压力而上移,阀门5打开,气压推动活塞10下移,打开排气门11,气流经排气门11从3口排出,空压机卸荷。当21口的压力下降了60±070KPa时,由于B腔压力下降,膜片总成4下移,将阀门5关闭,活塞10上移将排气门11关闭,空压机恢复向系统供气。当系统压力过载时,调压阀内部的集成安全阀门11打开,从而实现过载保护。

向轮胎充气时,拔下保护盖,接上轮胎充气装置,此时附加阀杆7向左移动,阀门8将21口隔开,贮气筒处于被隔开状态,安全阀仍起作用。

二、四回路保护阀

双回路制动系统中,来自空压机的压缩空气可经四回路压力保护阀分别向各回路的储气筒充气,四个出气口各自独立,当有一回路损坏漏气时,压力保护阀能保证其余完好回路不会再漏,还能正常进行相关操作,四回路保护阀的每个回路开启压力可以根据需要由生产厂家调定,为使用安全,四回路阀的调整螺钉不能随意调整。基本开启压力顺序一般为:21口—22口—24口—23口,一般情况21、22口接前后桥行车制动,24口接辅助制动或其他辅助气路,23口接驻车制动气路,这样就使得在系统气压达不到要求时,不能起步,保证车辆起步行车安全。四回路保护阀的结构原理示意图:

四回路保护阀的工作原理:四回路保护阀具有四个单向阀单元,气压从1口进入,同时到达A、D腔和B、C腔。当达到阀门开启压力时,阀门2,3,5,6被打开,压缩空气经21,22,23,24口输送到贮气筒。当某一回路例如21回路失效时,由于阀门3,5,6的单向作用,保证22,23,24回路的气压不致经21口泄漏掉,从1口来的气压将阀门3,5和6打开可以继续向22,23,24回路供气,只有当充气气压达到或超过阀门2的开启压力时,气压才从损坏的回路21中泄露,而尚未失效的其它回路中的压力仍得到保证。

三、快放阀和继动阀

储气筒和制动气室二者之间一般只通过制动阀用管路连接的话,储气筒向制动气室以及制动气室内压缩空气排入大气,都必须迂回流经制动阀。在储气筒、制动气室都与制动阀相距较远的情况下,这种迂回充气和排气将导致制动和解除制动的滞后时间过长,不利于汽车的及时制动和制动过后的及时加速。因此在制动阀和制动气室的管路上靠近制动气室处,设置快放阀或继动阀,可以保证解除制动时制动气室迅速排气。

快放阀的作用:可以迅速地将制动气室中的压缩空气排入大气,以便迅速解除制动。 快放阀结构原理示意图:

气路中没有压力时,阀片a在本身弹力的作用下,使进气口和排气口处于关闭状态。 制动时,压缩空气从1口进入,将阀片a紧压在排气口上,气流经A腔从2口进入制动气室。

解除制动时,1口压力下降阀片a在气室压力作用下,关闭进气口,气室压力从2口进入3口迅速排入大气。

继动阀的作用:继动阀用来缩短操纵气路中的制动反应时间和解除制动时间,起加速及

快放的作用。

继动阀的结构原理示意图:

汽车正常行驶时,从贮气筒来的压缩空气从1口进入,使进气阀门5关闭,排气阀门6开启,与制动分气室相连的输出口2通大气。

当制动时,从制动阀来的压缩空气作为制动阀的控制压力从4口进入A腔,使活塞7连同芯管下行关闭排气阀门6,继而打开进气阀门5,于是压缩空气便由储气筒直接通过进气口1和出气口2充入制动分气室,而毋需流经制动阀。这样大大缩短了制动气室的充气管路,加速了气室充气过程。在达到平衡时,进、排气阀门同时关闭。

当解除制动时,A腔气压为零,活塞7上升,排气阀门6打开,进气阀门5关闭,制动分气室压缩空气经2口、排气阀门6和排气口3迅速排入大气,起快放作用。

2口和双通单向阀相连接,防止行车与驻车制动系统同时操作,组合式储能弹簧气室中力的重叠,从而避免机械传递元件超负荷。

四、制动阀

制动阀的作用:制动阀作为气压行车制动系的主要控制装置,用以起随动作用并保证有足够强的踏板感,即在输入压力一定的情况下,使其输出压力与输入的控制信号——踏板行程和踏板成一定的递增函数关系。其输出压力的变化在一定范围内应足够精微,(即变化应是渐近的)。制动阀输出压力可以作为促动管路压力直接输入作为传动装置的制动气室,但也可作为控制信号输入另一控制装置(如继动阀),制动阀在双回路主制动系统的制动过程中和释放过程中实现灵敏的随动控制。

制动阀的结构原理示意图:

制动时,在顶杆座a施加制动力,推动活塞c下移,关闭排气门d,打开进气门j,从11口来的压缩空气到达A腔,随后从21口输出到制动管路Ⅰ。同时气流经孔D到达B腔,作用在活塞f上,使活塞f下行,关闭排气门h,打开进气门g,由12口来的压缩空气到达c腔,从22口输送到制动管路Ⅱ。

解除制动时,21、22口的气压分别经排气门d和h从排气口3排向大气。

当第一回路失效时,阀门总成e推动活塞f向下移动,关闭排气门h,打开进气门g,使第二回路正常工作。当第二回路失效时,不影响第一回路正常工作。第一回路相对第二回路压力越前δP=30+10-20KPa。

制动阀之所以能起到随动作用,保证制动的渐近性,主要是因为推杆与芯管之间是依靠平衡弹簧来传力的,而平衡弹簧的工作长度和作用力则随自制动阀到制动气室的促动管路压力而变化。故只要自踏板传到推杆的力大于平衡弹簧预紧力,不论踏板停留在哪一个工作位置,制动阀都能自动达到并保持以进气阀和排气阀二者都关闭为特征的平衡状态。这也是现有的各种动力制动系和私服制动系中的控制阀等随动装置的基本工作原理。

五、手制动阀

手制动阀用于具有弹簧制动的牵引车的紧急制动和停车制动,如断气刹车型。在行车位置或停车位置之间,操纵手柄能自动回到行车位置,处于停车位置时能够锁止。

本文来源:https://www.bwwdw.com/article/rb8x.html

Top