详细分析 - ORACLE - AWR报告 - 图文
更新时间:2023-09-24 21:09:01 阅读量: 综合文库 文档下载
详细分析ORACLE AWR报告 AWR 是 Oracle 10g 版本 推出的新特性, 全称叫Automatic Workload Repository-自动负载信息库, AWR 是通过对比两次快,照(snapshot)收集到的统计信息,来生成报表数据,生成的报表包括多个部分。 WORKLOAD REPOSITORY report for DB Name ICCI DB Id Instance Inst num Release 1 10.2.0.3.0 RAC YES Host HPGICCI1 1314098396 ICCI1 Begin Snap: End Snap: Elapsed: DB Time: Snap Id 2678 2680 Snap Time 25-Dec-08 14:04:50 25-Dec-08 15:23:37 78.79 (mins) 11.05 (mins) Sessions 24 26 Cursors/Session 1.5 1.5 DB Time不包括Oracle后台进程消耗的时间。如果DB Time远远小于Elapsed时间,说明数据库比较空闲。
db time= cpu time + wait time(不包含空闲等待) (非后台进程)
说白了就是db time就是记录的服务器花在数据库运算(非后台进程)和等待(非空闲等待)上的时间
DB time = cpu time + all of nonidle wait event time
在79分钟里(其间收集了3次快照数据),数据库耗时11分钟,RDA数据中显示系统有8个逻辑CPU(4个物理CPU),平均每个CPU耗时1.4分钟,CPU利用率只有大约2%(1.4/79)。说明系统压力非常小。
列出下面这两个来做解释: Report A:
Snap Id Snap Time Sessions Curs/Sess --------- ------------------- -------- ---------
Begin Snap: 4610 24-Jul-08 22:00:54 68 19.1 End Snap: 4612 24-Jul-08 23:00:25 17 1.7 Elapsed: 59.51 (mins) DB Time: 466.37 (mins)
Report B:
Snap Id Snap Time Sessions Curs/Sess --------- ------------------- -------- ---------
Begin Snap: 3098 13-Nov-07 21:00:37 39 13.6 End Snap: 3102 13-Nov-07 22:00:15 40 16.4 Elapsed: 59.63 (mins) DB Time: 19.49 (mins)
服务器是AIX的系统,4个双核cpu,共8个核: /sbin> bindprocessor -q
The available processors are: 0 1 2 3 4 5 6 7
先说Report A,在snapshot间隔中,总共约60分钟,cpu就共有60*8=480分钟,DB time为466.37分钟,则:
cpu花费了466.37分钟在处理Oralce非空闲等待和运算上(比方逻辑读)
也就是说cpu有 466.37/480*100% 花费在处理Oracle的操作上,这还不包括后台进程 看Report B,总共约60分钟,cpu有 19.49/480*100% 花费在处理Oracle的操作上 很显然,2中服务器的平均负载很低。
从awr report的Elapsed time和DB Time就能大概了解db的负载。
可是对于批量系统,数据库的工作负载总是集中在一段时间内。如果快照周期不在这一段时间内,或者快照周期跨度太长而包含了大量的数据库空闲时间,所得出的分析结果是没有意义的。这也说明选择分析时间段很关键,要选择能够代表性能问题的时间段。 Report Summary Cache Sizes
Buffer Cache: Shared Pool Size: Begin 3,344M 704M End 704M Log Buffer: 8K 14,352K 3,344M Std Block Size: 显示SGA中每个区域的大小(在AMM改变它们之后),可用来与初始参数值比较。
shared pool主要包括library cache和dictionary cache。library cache用来存储最近解析(或编译)后SQL、PL/SQL和Java classes等。library cache用来存储最近引用的数据字典。发生在library cache或dictionary cache的cache miss代价要比发生在buffer cache的代价高得多。因此shared pool的设置要确保最近使用的数据都能被cache。
Load Profile
Redo size: Logical reads: Block changes: Physical reads: Physical writes: User calls: Parses: Hard parses: Sorts: Logons: Executes: Transactions: % Blocks changed per Read: Per Second 918,805.72 3,521.77 1,817.95 68.26 362.59 326.69 38.66 0.03 0.61 0.01 354.34 1.18 51.62 Recursive Call %: 51.72 Per Transaction 775,912.72 2,974.06 1,535.22 57.64 306.20 275.88 32.65 0.03 0.51 0.01 299.23 Rollback per transaction %: 85.49 Rows per Sort: ######## 显示数据库负载概况,将之与基线数据比较才具有更多的意义,如果每秒或每事务的负载变化不大,说明应用运行比较稳定。单个的报告数据只说明应用的负载情况,绝大多数据并没有一个所谓“正确”的值,然而Logons大于每秒1~2个、Hard parses大于每秒100、全部parses超过每秒300表明可能有争用问题。 Redo size:每秒产生的日志大小(单位字节),可标志数据变更频率, 数据库任务的繁重与否。Logical reads:每秒/每事务逻辑读的块数.平决每秒产生的逻辑读的block数。Logical Reads= Consistent Gets + DB Block Gets Block changes:每秒/每事务修改的块数 Physical reads:每秒/每事务物理读的块数 Physical writes:每秒/每事务物理写的块数 User calls:每秒/每事务用户call次数
Parses:SQL解析的次数.每秒解析次数,包括fast parse,soft parse和hard parse三种数量的综合。 软解析每秒超过300次意味着你的\应用程序\效率不高,调整session_cursor_cache。在这里,fast parse指的是直接在PGA中命中的情况(设置了session_cached_cursors=n);soft parse是指在shared pool中命中的情形;hard parse则是指都不命中的情况。
Hard parses:其中硬解析的次数,硬解析太多,说明SQL重用率不高。每秒产生的硬解析次数, 每秒超过100次,就可能说明你绑定使用的不好,也可能是共享池设置不合理。这时候可以启用参数cursor_sharing=similar|force,该参数默认值为exact。但该参数设置为similar时,存在bug,可能导致执行计划的不优。
Sorts:每秒/每事务的排序次数 Logons:每秒/每事务登录的次数 Executes:每秒/每事务SQL执行次数
Transactions:每秒事务数.每秒产生的事务数,反映数据库任务繁重与否。
Blocks changed per Read:表示逻辑读用于修改数据块的比例.在每一次逻辑读中更改的块的百分比。
Recursive Call:递归调用占所有操作的比率.递归调用的百分比,如果有很多PL/SQL,那么这个值就会比较高。 Rollback per transaction:每事务的回滚率.看回滚率是不是很高,因为回滚很耗资源 ,如果回滚率过高,可能说明你的数据库经历了太多的无效操作 ,过多的回滚可能还会带来Undo Block的竞争 该参数计算公式如下: Round(User rollbacks / (user commits + user rollbacks) ,4)* 100% 。 Rows per Sort:每次排序的行数 注:
Oracle的硬解析和软解析
提到软解析(soft prase)和硬解析(hard prase),就不能不说一下Oracle对sql的处理过程。当你发出一条sql语句交付Oracle,在执行和获取结果前,Oracle对此sql将进行几个步骤的处理过程: 1、语法检查(syntax check) 检查此sql的拼写是否语法。
2、语义检查(semantic check)
诸如检查sql语句中的访问对象是否存在及该用户是否具备相应的权限。 3、对sql语句进行解析(prase)
利用内部算法对sql进行解析,生成解析树(parse tree)及执行计划(execution plan)。
4、执行sql,返回结果(execute and return) 其中,软、硬解析就发生在第三个过程里。
Oracle利用内部的hash算法来取得该sql的hash值,然后在library cache里查找是否存在该hash值;
假设存在,则将此sql与cache中的进行比较;
假设“相同”,就将利用已有的解析树与执行计划,而省略了优化器的相关工作。这也就是软解析的过程。 诚然,如果上面的2个假设中任有一个不成立,那么优化器都将进行创建解析树、生成执行计划的动作。这个过程就叫硬解析。
创建解析树、生成执行计划对于sql的执行来说是开销昂贵的动作,所以,应当极力避免硬解析,尽量使用软解析。
Instance Efficiency Percentages (Target 100%)
Buffer Nowait %: Buffer Hit %: Library Hit %: Execute to Parse %: Parse CPU to Parse Elapsd %: 100.00 Redo NoWait %: 98.72 In-memory Sort %: 99.97 Soft Parse %: 89.09 Latch Hit %: 7.99 % Non-Parse CPU: 100.00 99.86 99.92 99.99 99.95 本节包含了Oracle关键指标的内存命中率及其它数据库实例操作的效率。其中Buffer Hit Ratio 也称Cache Hit Ratio,Library Hit ratio也称Library Cache Hit ratio。同Load Profile一节相同,这一节也没有所谓“正确”的值,而只能根据应用的特点判断是否合适。在一个使用直接读执行大型并行查询的DSS环境,20%的Buffer Hit Ratio是可以接受的,而这个值对于一个OLTP系统是完全不能接受的。根据Oracle的经验,对于OLTP系统,Buffer Hit Ratio理想应该在90%以上。
Buffer Nowait表示在内存获得数据的未等待比例。在缓冲区中获取Buffer的未等待比率。Buffer Nowait的这个值一般需要大于99%。否则可能存在争用,可以在后面的等待事件中进一步确认。
buffer hit表示进程从内存中找到数据块的比率,监视这个值是否发生重大变化比这个值本身更重要。对于一般的OLTP系统,如果此值低于80%,应该给数据库分配更多的内存。数据块在数据缓冲区中的命中率,通常应在95%以上。否则,小于95%,需要调整重要的参数,小于90%可能是要加db_cache_size。一个高的命中率,不一定代表这个系统的性能是最优的,比如大量的非选择性的索引被频繁访问,就会造成命中率很高的假相(大量的db file sequential read),但是一个比较低的命中率,一般就会对这个系统的性能产生影响,需要调整。命中率的突变,往往是一个不好的信息。如果命中率突然增大,可以检查top buffer get SQL,查看导致大量逻辑读的语句和索引,如果命中率突然减小,可以检查top physical reads SQL,检查产生大量物理读的语句,主要是那些没有使用索引或者索引被删除的。
Redo NoWait表示在LOG缓冲区获得BUFFER的未等待比例。如果太低(可参考90%阀值),考虑增加LOG BUFFER。当redo buffer达到1M时,就需要写到redo log文件,所以一般当redo buffer设置超过1M,不太可能存在等待buffer空间分配的情况。当前,一般设置为2M的redo buffer,对于内存总量来说,应该不是一个太大的值。
library hit表示Oracle从Library Cache中检索到一个解析过的SQL或PL/SQL语句的比率,当应用程序调用SQL或存储过程时,Oracle检查Library Cache确定是否存在解析过的版本,如果存在,Oracle立即执行语句;如果不存在,Oracle解析此语句,并在Library Cache中为它分配共享SQL区。低的library hit ratio会导致过多的解析,增加CPU消耗,降低性能。如果library hit ratio低于90%,可能需要调大shared pool区。STATEMENT在共享区的命中率,通常应该保持在95%以上,否则需要要考虑:加大共享池;使用绑定变量;修改cursor_sharing等参数。
Latch Hit:Latch是一种保护内存结构的锁,可以认为是SERVER进程获取访问内存数据结构的许可。要确保Latch Hit>99%,否则意味着Shared Pool latch争用,可能由于未共享的SQL,或者Library Cache太小,可使用绑定变更或调大Shared Pool解决。要确保>99%,否则存在严重的性能问题。当该值出现问题的时候,我们可以借助后面的等待时间和latch分析来查找解决问题。
Parse CPU to Parse Elapsd:解析实际运行时间/(解析实际运行时间+解析中等待资源时间),越高越好。计算公式为:Parse CPU to Parse Elapsd %= 100*(parse time cpu / parse time elapsed)。即:解析实际运行时间/(解析实际运行时间+解析中等待资源时间)。如果该比率为100%,意味着CPU等待时间为0,没有任何等待。
Non-Parse CPU :SQL实际运行时间/(SQL实际运行时间+SQL解析时间),太低表示解析消耗时间过多。计算公式为:% Non-Parse CPU
=round(100*1-PARSE_CPU/TOT_CPU),2)。如果这个值比较小,表示解析消耗的CPU时间过多。与PARSE_CPU相比,如果TOT_CPU很高,这个比值将接近100%,这是很好的,说明计算机执行的大部分工作是执行查询的工作,而不是分析查询的工作。
Execute to Parse:是语句执行与分析的比例,如果要SQL重用率高,则这个比例会很高。该值越高表示一次解析后被重复执行的次数越多。计算公式为:Execute to Parse =100 * (1 - Parses/Executions)。本例中,差不多每execution 5次需要一次parse。所以如果系统Parses > Executions,就可能出现该比率小于0的情况。该值<0通常说明shared pool设置或者语句效率存在问题,造成反复解析,reparse可能较严重,或者是可能同snapshot有关,通常说明数据库性能存在问题。
In-memory Sort:在内存中排序的比率,如果过低说明有大量的排序在临时表空间中进行。考虑调大PGA(10g)。如果低于95%,可以通过适当调大初始化参数PGA_AGGREGATE_TARGET或者SORT_AREA_SIZE来解决,注意这两个参数设置作用的范围时不同的,SORT_AREA_SIZE是针对每个session设置的,PGA_AGGREGATE_TARGET则时针对所有的sesion的。
Soft Parse:软解析的百分比(softs/softs+hards),近似当作sql在共享区的命中率,太低则需要调整应用使用绑定变量。sql在共享区的命中率,小于<95%,需要考虑绑定,如果低于80%,那么就可以认为sql基本没有被重用。
正在阅读:
详细分析 - ORACLE - AWR报告 - 图文09-24
快乐的轮胎作文450字06-30
奶奶上当了作文450字06-20
建筑抗震试题11-04
公路竣工验收报告04-25
上海商业“十二五”发展规划04-18
招商局个人述职报告09-27
第三人效果12-31
2010年呼和浩特市中考历史试卷及答案08-14
数据库答案12-08
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 图文
- 报告
- 分析
- ORACLE
- 详细
- AWR