全国自考线性代数(经管类)往年试题答案2009-2007 - 图文

更新时间:2024-01-31 05:16:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

全国2009年10月高等教育自学考试线性代数(经管类)试题答案

一、单项选择题(本大题共10小题,每小题2分,共20分)

01?111.行列式

?101?11?101第二行第一列元素的代数余子式A21?( B )

?11?10A.?2

B.?1

C.1

D.2

1?11101A21???101???1?11??01??1.

1?10100?112.设A为2阶矩阵,若|3A|?3,则|2A|?( C ) A.

12 B.1

C.43 D.2

|3A|?3,9|A|?3,|A|?1,|2A|?4|A|?433.

3.设n阶矩阵A、B、C满足ABC?E,则C?1?( A )

A.AB

B.BA

C.A?1B?1 D.B?1A?1

由(AB)C?E,得C?1?AB.

4.已知2阶矩阵A???ab??d??的行列式|A|??1,则(A*)?1?( A ) ?c?A.???a?b??db??B.??d?b?

D.??ab???c?d?? ?

C.?????ca?? ???c?a?? ??d?? ?c?因为A?1?1A*,所以A*?1??(A*)?1?1???a?b?|A|??A?|A|??E,?|A|A??A????c?d??. ?5.向量组?1,?2,?,?s(s?2)的秩不为零的充分必要条件是( B ) A.?1,?2,?,?s中没有线性相关的部分组 B.?1,?2,?,?s中至少有一个非零向量 C.?1,?2,?,?s全是非零向量

D.?1,?2,?,?s全是零向量 6.设A为m?n矩阵,则n元齐次线性方程组Ax?0有非零解的充分必要条件是( C )

A.r(A)?n B.r(A)?m C.r(A)?n D.r(A)?m 7.已知3阶矩阵A的特征值为?1,0,1,则下列矩阵中可逆的是( D )

A.A

B.E?A

C.?E?A

D.2E?A

2E?A的特征值为3,2,1,|2E?A|?3?2?1?0,2E?A可逆.

8.下列矩阵中不是..

初等矩阵的为( D ) ?100??100??100??100?A.??010??

B.??010??

C.??020??

D.??110?? ??101?????101????001????101????100??E??010?第1行加到第3行得A,第1行的(?1)倍加到第3行得B,第2行乘以2得C,以上??001??

1

都是初等矩阵.而E的第1行分别加到第2、3两行得D,D不是初等矩阵.

9.4元二次型f(x1,x2,x3,x4)?2x1x2?2x1x4?2x2x3?2x3x4的秩为( B ) A.1

B.2 C.3 D.4

??0101?010?二次型的矩阵A??1010???1?101????0101???0?000?,秩为2. ???0??1010????0000???001?10.设矩阵??A??010?,则二次型xTAx的规范形为( D ) ??100??A.z2222221?z2?z3

B.?z1?z222?z3

C.z21?z2?z3

D.z221?z2?z23

?x1?y1?y令?3?x?yT?x222222222,则xAx2?2x1x3?2y1?y2?2y3?z1?z2?z3. ??x3?y1?y3?0?1解法二:|?E?A|?0??10?(??1)2(??1),存在正交矩阵P,使得

?10???100?PT?AP??010?,即xTAx的规范形为z2221?z2?z3. ??00?1??二、填空题(本大题共10小题,每小题2分,共20分) 11.已知行列式a1?b1a1?b1a.

2?b2a??4,则

a1b12?b2a2b?_________2a1?b1a1?b1a1?b1a2?b2a?2a1?2a1a1?b12a1?b1b12?b22a2a2?b2a2a2?b?2a2?b??2a12a2b??4,2a1b1a?2.

2b212.已知矩阵A?(1,2,?1),B?(2,?1,1),且C?ATB,则C2?_________.

??1????2?11??C?ATB??2?(2,?1,1)??4?22?,所以 ???1?????21?1????2?11????2?11?????21?1?C2???4?22??4?22????42?2?. ???21?1?????21?1????2?11???1?解法二:注意到BAT?(2,?1,1)???2???1,所以

???1??

2

???21?1??C2?AT(BAT)B??ATB??C???42?2?. ??2?11???100???113.设矩阵?A??220?,则??1A???_________.

??333??2????100100????100100???100?(A,E)??220010???010?11/20?,?1??A???11/20?, ??333001????0010?1/21/3????0?1/21/3????200??1?1??A???2A?1???210?2??. ??0?12/3??14.已知矩阵方程XA?B,其中A???10??,B???1?1??1????10??,则X?_________. ?2?A?1?1|A|A????10??1???1?1?0??1????21??,X?BA???10????1????21??3??????10??. ?15.已知向量组?T?TT1?(1,2,3),2?(2,2,2),?3?(3,2,a)线性相关,则数a?_________.

123由222?2(1?a)?0,得a?1. 32a16.设?,0,0)T,?1,0)T1?(12?(0,,且?1??1??2,?2??2,则?1,?2的秩为_________.

?T1?(1,?1,0),?2?(0,1,0)T线性无关,秩为2.

??121?17.设3元方程组增广矩阵为?1??0a?101?,若方程组无解,则a的取值为_______. ??00a?10??当且仅当a??1时,a?1?0,r(A,b)?2,r(A)?1,方程组无解. 18.已知3阶矩阵A的特征值分别为1,2,3,则|E?A|?_________.

E?A特征值分别为2,3,4,|E?A|?2?3?4?24.

19.已知向量??(3,k,2)T与??(1,1,k)T正交,则数k?_________. 由(?,?)?0,即3?3k?0,得k??1.

20.已知f(x2221,x2,x3)?(1?a)x1?x2?(a?3)x3正定,则数a的取值范围是_________.

?1?a?0?a???3?0,1?,?3?a?1. ?a?a??3三、计算题(本大题共6小题,每小题9分,共54分)

x?1?11?121.计算行列式D?1x?11?11?1x?1?1的值.

1?11x?1

3

x?1?1x?1?1?111x?11?1?1?1x?1?xxxx?1x?1?1?111x?11?1?1?1x?1?x000?1x0010x0?100x?x.

4解:D?111?222.设矩阵A????1?1??,E为2阶单位矩阵,矩阵B满足BA?B?E,求|B|. 2???1解:由BA?B?E,得B(A?E)?E,B?(A?E)?2A?E????1?1??1????2???00??1????1????1,其中

11?2,|B|?|A?E|?11?1?,|A?E|?1??1??12.

?x1?x2?a1?23.已知线性方程组?x2?x3?a2,(1)讨论常数a1,a2,a3满足什么条件时,方程组有解.

?x?x?a13?3(2)当方程组有无穷多解时,求出其通解(要求用它的一个特解和导出组的基础解系表示).

?1?解:(1)(A,b)??0??1??1???0?0??110?110?110T0?110?100?10a1??1??a2???0?0a3???a1a2a1?a2?11?10?11??a2? a1?a3??a1???,a1?a2?a3?0时,方程组有解. ?a3??010?1?10a1?a2??x1?a1?a2?x3?a1?a2???a2a2?x3,通解为?a2?,?x1????00x3???x3?TT?1?(2)(A,b)??0?0?a1??1??a2???0?00???T??1??????k?1?. ??1????24.设向量组?1?(1,4,1,0),?2?(2,1,?1,?3),?3?(1,0,?3,?1),?4?(0,2,?6,3),求该向量组的秩及一个极大无关组,并将其余向量用此极大无关组线性表示. ?1??4解:(?1,?2,?3,?4)??1??0??1??0??0??0?2?3?3?211?1?4?1221?1?310?3?10??1??2??0??0?6?????03??2?3001?1?3?52?7?3?31?4?4?10??1??2??0??0?6?????03??2?3001?1112?3?3?70??3? ?3?3??1?1?4?40??3? ??6?2??0??1??3??0??0?6?????06??0??1??3??0??0?9?????0?15???1??0??0??0?2?3001?1100??1??3??0??03?????00??2?3000010?3??1??6??0??03?????00??421000010?3??1???2??0??03?????00??010000101???2?, ?3?0??向量组的秩为3,?1,?2,?3是一个极大线性无关组,???1?2?2?3?3.

4

?12??5?,B???23???T25.设矩阵A???4?A?20?T?,存在?1?(1,2),???1?T2?(?1,1)T,使得A?1?5?1,

?1???2;存在?1?(3,1),?2?(0,1),使得B?1?5?1,B?2???2.试求可逆矩阵P,使得PAP?B.

解:由题意,A的特征值为5,?1,对应的线性无关特征向量为?1,?2;B的特征值为5,?1,对应的线性无关特征向量为?1,?2.

令P(????1?1?0?1?1,?2)?1??,则P?1?51是可逆矩阵,使得P1AP1???2?0?1??; ???令P?30?0?2?(?1,?2)???11??,则P?1?52是可逆矩阵,使得P2BP2???????0?1?. ?由上可得P?1?1?1?1?1?1?11AP1?P2BP2,从而(P2P1)A(P1P2)?B,即(P1P2)A(P1P2)?B,令

?1P?PP?112???1?1??1????10?????30????2/3?1???21????11??1??1?3??21?????13??????1/31?,则P是可逆矩阵,使得P?1AP?B. ?26.已知f(x1,x2,x3)?2x1x2?2x1x3?2x2x3,求正交变换x?Py,将二次型化为标准形.

?11?解:原二次型的矩阵为?0?A??101?. ??110????1?1??2?1?11?1?1|?E?A|??1??1???2??1?(??2)1??1 ?1?1???2?1?1?1?100?(??2)1??10?(??1)2(??2),

10??1A的特征值为?1??2??1,?3?2.

对于?1??2?2,解齐次方程组(?E?A)x?0:

???1?1?1?1??1??E?A????11??x1??x2?x3??1????1?1?1???000? ,??x?????2?x2,取1?1?,

2????0?, ???1?1?1????000????x??3?x0?3???1?????1?先正交化:????1???1???1??1??1?,?2??2?(?2,?1)?????1/2???0?1?1??1/2?||?21??????. ?0??1||??1?2???0????1????1/2???1再单位化:p1???/6??1?||??/2?,p11??1?2??2???1/6?. 1||??||?0??2||????2/6???对于?3?2,解齐次方程组(?E?A)x?0:

??1?1???2???10?1???x1?x3?1???1/3??E?A???12?1???01?1? ,??x2?x3,取?3????1?,单位化为 p13??3??1/3????1?12????000????x3?x?||?3||?3?1????1/3?. ??

5

??1/2?令P??1/2??0?四、证明题(本题6分)

?1/?1/2/6661/1/1/3??2223?,则P是正交矩阵,经过正交变换x?Py后,原二次型化为标准形 ?y1?y2?2y3. ?3??27.设向量组?1,?2,?3线性无关,且??k1?1?k2?2?k3?3.证明:若k1?0,则向量组?,?2,?3也线性无关. 证:设x1??x2?2?x3?3?0,即k1x1?1?(k2x1?x2)?2?(k3x1?x3)?3?0.

?0?k1x1??0. 由?1,?2,?3线性无关,可得?k2x1?x2??k3x1k1若k1?0,则方程组的系数行列式k2k3

?x3?00010?k1?0,只有x1?x2?x3?0,所以?,?2,?3线性无关. 016

2009年7月自考线性代数试题答案

课程代码:02198

7

8

9

10

全国2009年4月高等教育自学考试线性代数(经管类)试题答案

一、单项选择题(本大题共10小题,每小题2分,共20分)

0?1011?1中元素a21的代数余子式A21?( C ) 01.3阶行列式|aij|?A.?2

A21???111?1

10

?1.

B.?1 C.1 D.2

?a112.设A???a?21a12??a21?a11?,B???a22?a11??a22?a12??0?,P1????1a12??1??1?,P2???10???0??,则( A ) 1??A.P1P2A?B

?0P1P2A???1?1??1???0???1

0??1??B.P2P1A?B ?a11??a?21a12??1????a22???1

C.AP1P2?B

D.AP2P1?B a22?a12???B. ?a12?1??a11???0???a21a12??a21?a11????a22?a11???13.设n阶可逆矩阵A、B、C满足ABC?E,则BA.A?1?( D )

C?1

?1B.CB?1?1A?1

?1

?CA.

C.AC D.CA

由ABC?E,得CA?1?E,B?0?4.设3阶矩阵A??0?0?1000??21?,则A的秩为( B ) 0??A.0

A2

100 B.1

100

0??0??1???0?0???0

000C.2 D.3

?0???0?0?0??0??1??0?0???01??20?,A的秩为1. 0??5.设?1,?2,?3,?4是一个4维向量组,若已知?4可以表为?1,?2,?3的线性组合,且表示法惟一,则向量组?1,?2,?3,?4的秩为( C )

A.1

B.2

C.3

D.4

?1,?2,?3是?1,?2,?3,?4的极大无关组,?1,?2,?3,?4的秩为3.

6.设向量组?1,?2,?3,?4线性相关,则向量组中( A ) A.必有一个向量可以表为其余向量的线性组合 B.必有两个向量可以表为其余向量的线性组合 C.必有三个向量可以表为其余向量的线性组合 D.每一个向量都可以表为其余向量的线性组合

7.设?1,?2,?3是齐次线性方程组Ax?0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是( B ) A.?1,?2,?1??2 C.?1,?2,?1??2

B.?1??2,?2??3,?3??1 D.?1??2,?2??3,?3??1

只有?1??2,?2??3,?3??1线性无关,可以作为基础解系.

?28.若2阶矩阵A相似于B???2?0??,E为2阶单位矩阵,则与E?A相似的是( C ) ?3???1A.??1?0?? 4??

??1B.??1?0?? ?4??

??1C.???2?0?? 4??

??1D.???2?0?? ?4??11

B与A相似,则P?1AP?B,P?1(E?A)P?E?B,即E?B????10????24??与E?A相似. ??00?9.设实对称矩阵A??2?0?42?元二次型f(xT?,则31,x2,x3)?xAx的规范形为( D ) ??02?1??A.z2?z2222212?z3

B.z1?z2?z3

C.z221?z2

D.z221?z2

2x2222222221?4x2?4x2x3?x3?2x1?(4x2?4x2x23?x3)?2x1?(2x2?x3),规范形为z1?z2.

10.若3阶实对称矩阵A?(aij)是正定矩阵,则A的正惯性指数为( D ) A.0 B.1 C.2

D.3

二、填空题(本大题共10小题,每小题2分,共20分)

a112a123a13a11a12a1311.已知3阶行列式2a214a226a23?6,则a21a22a23?_______________.

3a316a329a33a31a32a33a112a123a13a112a123a13a11a12a132a214a226a23?2?3?a212a223a23?2?3?2?3?a21a22a23?6,

3a316a329a33a312a323a33a31a32a33a11a12a13a121a22a23?6.

a31a32a3312.设3阶行列式D3的第2列元素分别为1,?2,3,对应的代数余子式分别为?3,2,1,则D3?_______________.D3?a21A21?a22A22?a23A23?1?(?3)?(?2)?2?3?1??4.

13.设A???12??0??,则A2?2A?E?_______________. ??1?A2?2A?E?(A?E)2???02?2???2?2???1?1??0???????1?1??????1???1?. ?14.设A为2阶矩阵,将A的第2列的(?2)倍加到第1列得到B???12???34??,则A?_____. ?将B的第2列的2倍加到第1列可得A???52???114??. ??01?15.设3阶矩阵?0?A??022?,则A?1?_______________. ??333????001100????333001????330?301??(A,E)??022010???022010???020?210? ??333001????001100????001100????660?602????6000?32????1000?1/21/3????020?210???020?210???010?11/20?, ??001100????001100????001100??

12

?0????1?1??1/21/201/3??0?. 0??A?116.设向量组?1?(a,1,1),?2?(1,?2,1),?3?(1,1,?2)线性相关,则数a?___________.

a111?2111?2?a1?a1?2aT1?3310?0T1?a1?2a?33?6?3a?0,a??2.

17.已知x1?(1,0,?1),x2?(3,4,5)是3元非齐次线性方程组Ax?b的两个解向量,则对应齐次线性方程组Ax?0有一个非零解向量??_______________.

??x2?x1?(2,4,6)(或它的非零倍数).

18.设2阶实对称矩阵A的特征值为1,2,它们对应的特征向量分别为?1?(1,1),?T2T?(1,k),则数k?______________. T?1和?2属于不同的特征值,所以它们是正交的,即(?1,?2)?0,即1?k?0,k??1. 19.已知3阶矩阵A的特征值为0,?2,3,且矩阵B与A相似,则|B?E|?_______________.

B?E的特征值为1,?1,4,|B?E|?1?(?1)?4??4.

2220.二次型f(x1,x2,x3)?(x1?x2)f(x1,x2,x3)?x1?2x1x2?2x222?(x2?x3)的矩阵A?_______________.

?1?2?2x2x3?x3,A???1?0?3?12?10???1?. 1??三、计算题(本大题共6小题,每小题9分,共54分)

1x2?121.已知3阶行列式|aij|?x50中元素a12的代数余子式A12?8,求元素a21的代数余子式A21的值. 4?2?134??(?8?3)?5.

解:由A12??x504??4x?8,得x??2,所以A21????11???11??,B???,矩阵X满足AX?B?X,求X. 22.已知矩阵A????10??0?2????解:由AX?B?X,得(E?A)X?B,于是

X?(E?A)?1?2B???1??1??1??T?1??1??0?1?1?1????2??3??1T1???1???2???01?1??1????2??3?1T3???1/3????3???1/31??. 1??T23.求向量组?1?(1,1,1,3),?2?(?1,?3,5,1),?3?(3,2,?1,4),?4?(?2,?6,10,2)的一个极大无关组,并将向量组中的其余向量用该极大无关组线性表出. ?1??1解:?1??3??1?35132?14?1?200?2??1???6??0??010????0?2??3?1?70?1?2643?1?4?5?1?200?2??1???4??0??012?????08??3?110?1?2003?1?7?7?1?2000010?2???4? ?0?0???2???4? ?0?0???1??0??0??0??2??1???4??0??00?????00???2??1???4??0??00?????00??13

?1??0??0??0??11000010?2??1??2??0??00????00???0100001040??2?, 0??0???0??1?2?2?0??3.

?1,?2,?3是一个极大线性无关组,??ax1?x2?x3?0?24.设3元齐次线性方程组?x1?ax2?x3?0,(1)确定当a为何值时,方程组有非零解;

?x?x?ax?023?1(2)当方程组有非零解时,求出它的基础解系和全部解.

a1a11a?21a1111a1111a?1010a?1解:(1)|A|?111?a?2a21?(a?2)1a11?(a?2)0a0

a?2?(a?2)(a?1),a??2或a?1时,方程组有非零解;

??2?(2)a??2时,A??1?1??1???0?0?1?30?2??1??3???0?00???1111101?211??1??1???1??2?2???0101?21?2??1??1???0?01???1?33?2??3? ?3???2??1???1???0?00???100?1??x1?x3?1??1????????1?,?x2?x3,基础解系为?1?,全部解为k?1?,k为任意实数;

?1??1??0???????x3?x3?1?a?1时,A??1?1?1??1??1???0?01???1??x1??x2?x3??1???1???1???1???????????0?,?x2?x2,基础解系为?1?,?0?,全部解为k1?1??k2?0?,k1,k2?0??1??0??1??0?x3??x3?????????为任意实数.

?2?25.设矩阵B??3?4?0101??3?,(1)判定B是否可与对角矩阵相似,说明理由;(2)若B可与对角矩阵相似,求对角矩阵?和可逆矩5??阵P,使P?1BP??.

??2解:(1)|?E?B|??3?420?1?3?(??1)??10??2?4?1??5??5?(??1)(?2?7??6)

?(??1)(??6),特征值?1??2?1,?3?6.

对于?1??2?1,解齐次线性方程组(?E?B)x?0:

??1??E?B???3??4?000?1??1???3???0?0?4???000?x31??x1??0???1???????0?,?x2?x2,基础解系为p1??1?,p2??0?;

?0??1??0?x3??????x3?对于?3?6,解齐次线性方程组(?E?B)x?0:

14

1?x?x31?4?1/4??1/4?????3??3/4?,?x2?p?3/4,基础解系为x3??. 34?1??0????x3?x3????1012?4??E?B???3??4?050?1??1???3???0?01???0103阶矩阵B有3个线性无关的特征向量,所以B相似于对角阵; ?1???(2)令?0?0?0100??0??0?,P??1?06???21/4???13/4?,则P是可逆矩阵,使得PBP??. 1??226.设3元二次型f(x1,x2,x3)?x1?2x2?x3?2x1x2?2x2x3,求正交变换x?Py,将二次型化为标准形.

?1?解:二次型的矩阵为A???1?0??12?10???1?. 1??01??1|?E?A|?101??1101???1011??11101??21??2111??21

??101???10??1??30??(??3)??1??1??(??1)(??3),

特征值?1?0,?2?1,?3?3.

对于?1?0,解齐次线性方程组(?E?A)x?0:

??1??E?A??1?0?1?210??1??1???0?0?1???010?1/?1??x1?x3?1???????1?,?x2?x3,?1??1?,单位化为p1??1/??1???1/0?????x3?x3?3??3?; ?3??对于?2?1,解齐次线性方程组(?E?A)x?0:

?0??E?A??1?0?1?110??1??1???0?00???0101??x1??x3??0?,?x2?0,??x?x0?3??32??1/2???1??????; 0??0?,单位化为p2?????1??1/2?????对于?3?3,解齐次线性方程组(?E?A)x?0:

?2??E?A??1?0?1110??1??1???0?02???010x3?1??x1???2?,?x2??2x3,??0?x3??x3?3?1/6??1????????2?,单位化为p3???2/6?.

???1??1/6?????0100??0?,经正交变换x?Py后,原二次型化为3???1/?令P??1/??1/?2333?1/01/22226??0??T?2/6?,则P是正交矩阵,使得PAP??0??01/6???1/标准形f?0?y1?y2?3y3. 四、证明题(本题6分)

15

27.已知A是n阶矩阵,且满足方程A22?2A?0,证明A的特征值只能是0或?2.

证:设?是A的特征值,则满足方程??2??0,只能是??0或???2.

16

全国2009年1月高等教育自学考试线性代数(经管类)试题答案

课程代码:04184

一、单项选择题(本大题共10小题,每小题2分,共20分)

?x?y?z?0?1.线性方程组?2x?5y?3z?10?4x?8y?2z?4?的解为( A )

A.x?2,y?0,z??2 C.x?0,y?2,z??2

?1??2?4?1?581?320??1??10???0?04????12??3??

010001

2??0?. ?2??

B.x??2,y?2,z?0 D.x?1,y?0,z??1

2.设矩阵A???4?A.???3?42?? 1??,则矩阵A的伴随矩阵A??( D )

B.???3??4?2??1??

C.???3?24?? 1??

D.???3??2?4??1??

3.设A为5?4矩阵,若秩(A)=4,则秩(5AT)为( C ) A.2

B.3

C.4

D.5

4.设A,B分别为m?n和m?k矩阵,向量组(I)是由A的列向量构成的向量组,向量组(Ⅱ)是由(A,B)的列向量构成的向量组,则必有( C ) A.若(I)线性无关,则(Ⅱ)线性无关 C.若(Ⅱ)线性无关,则(I)线性无关

(I)是(Ⅱ)的部分组,整体无关?部分无关.

B.若(I)线性无关,则(Ⅱ)线性相关 D.若(Ⅱ)线性无关,则(I)线性相关

5.设A为5阶方阵,若秩(A)=3,则齐次线性方程组Ax?0的基础解系中包含的解向量的个数是( A ) A.2

B.3

C.4

D.5

未知量个数n?5,A的秩r?3,基础解系包含n?r?2个解向量. 6.设m?n矩阵A的秩为n?1,且?1,?2是齐次线性方程组Ax?0的两个不同的解,则Ax?0的通解为( )

17

A.k?1,k?R B.k?2,k?R C.k?1??2,k?R D.k(?1??2),k?R

Ax?0的基础解系包含1个解向量. ?1,?2是不同的解,?1??2是非零解,可以作为基础解系,通解为k(?1??2),k?R. 7.对非齐次线性方程组Am?nx?b,设秩(A)=r,则( ) A.r=m时,方程组Ax?b有解

B.r=n时,方程组Ax?b有唯一解 C.m=n时,方程组Ax?b有唯一解

D.r

r=m时,r(A,b)?r(A)?m,Ax?b有解 . ??1111?8.设矩阵A??0211???的线性无关的特征向量的个数是( C )

?0031?,则A???0003??A.1 B.2 C.3 D.4

特征值为?1?1,?2?2,?3??4?3. ??0?1?1?1??0?1?1?1?对于??0?1?1?1???0?2?1??1?1,?E?A??,基础解系含1个解向量; ?00?2?1???0????000?2???000?2????0000????1?1?1?1???1?1?1?对于??2,?E?A??00?1?1??1?0?1?1??2?,基础解系含1个解向量; ?00?1?1???0??1???000??000?1?????0000????2?1?1?1?对于?1?13??4?3,?E?A??0?1???,基础解系含1个解向量.?000?1? ???0000??9.设向量??(4,?1,2,?2),则下列向量是单位向量的是( B ) A.13?

B.15?

C.19?

D.

125?

||?||?5,1||?||??15?.

18

210.二次型f(x1,x2)?5x12?3x2的规范形是( D )

2A.y12?y2

2B.?y12?y2

2C.?y12?y2

2D.y12?y2

二、填空题(本大题共10小题,每小题2分,共20分)

102105?311.3阶行列式2312302105?3__1__.

2153?1. 12.设

?2?A?(3,1,0),B???4??3?1??0?5??,则AB?(2,3).

13.设A为3阶方阵,若|AT|?2,则|?3A|?__-54__.

|?3A|?(?3)|A|??27|A3T|??27?2??54. 14.已知向量??(3,5,7,9),??(?1,5,2,0),如果?????,则??(?4,0,?5,?9).

??????(?1,5,2,0)?(3,5,7,9)?(?4,0,?5,?9). ?a11?A??a21?a?31a12a22a32a13??a23?a33???a11x1?a12x2?a13x3?0?阶非奇异矩阵,则齐次线性方程组?a21x1?a22x2?a23x3?0??a31x1?a32x2?a33x3?015.设为3

的解为x1?x2?x3?0.

|A|?0,Ax?0只有零解. ?1?Ax?b的增广矩阵为?0?0?0100022?14???1??2?6??16.设非齐次线性方程组,则该方程组的通解为(1,2,3,0)T?k(?2,1,?2,1)T.

?1?(A,b)??0?0?0100012?12???1??2?3???x1??x2,??x3?x?4?1?2x4?2?x4?3?2x4?x4,通解为(1,2,3,0)T?k(?2,1,?2,1). T19

17.已知3阶方阵A的特征值为1,?3,9,则

13A?__-1__.

133A???1??|A|?1?1?(?3)?9??1. ?3?2718.已知向量??(1,2,?1)与向量??(0,1,y)正交,则y?__2__.

(?,?)?0,2?y?0,y?2. 19.二次型f(x?x221,x2,x3,x4)1?3x2?2x223?x4的正惯性指数为__3__. 20.若f(x21,x2,x3)?x21?4x2?4x23?2?x1x2?2x1x3?4x2x3为正定二次型,则?的取值应满足?2???1.??1??1??A???42D?1??,1?1?0;D24??2??(??2)(??2)?0, ???124??4??1??11??1D3??42?04??2??2?(??2)(2??)??2?2)2????2?1240??23??23?(?13 ??4(??2)(??1)?0,?(??2)(??2)?0??2???2?,?,?2???1. ?(??2)(??1)?0??2???1三、计算题(本大题共6小题,每小题9分,共54分)

533321.计算行列式D?35333353.

33355333113331333解:D?35332003353?1153311353?11?00020?11?8?88.

3335113350002?10?2?22.设

?1??1?A??0?1,?1?B??01?,又AX?B,求矩阵X.

??001/2????10??

20

?10100?0100?解:?1???11???110100??(A.E)??0?11010???0?11010???0?1001?2?

??001/2001????001002????001002????10011?2????10011?2????11?2????0?1001?2???0100?12?,A?1??0?12?,

??001002????001002????002???11?2?2??1????1????13??X?AB??0?12??01???2?1?.

??002????10????20????358???1021?23.设矩阵

?A??240?,?B??0259?,求矩阵AB的秩.

??001????0030??358解:|A|?240?352,A可逆,而B的秩为3,所以AB的秩为3.

00124??024.求向量组?1?(1,4,3,?2),?2?(2,5,4,?1),?3?(3,9,7,?3)的秩.

???43?2?43?2?解:?1???1???143?2????1???2???254?1???0?3?23???0?3?23?,?1,?2,?3的秩为2.????3???397?3????0?3?23????0000???x1?x2?x3?x4?025.求齐次线性方程组??x1?2x2?4x3?4x4?0的一个基础解系.

??2x1?3x2?5x3?5x4?0?111?111?111?解:

?1???1???1???10?2?2??A??1244???0133???0133???0133?,

??2355????0133????0000????0000???x1?2x3?2x4??2????2???x??3x?23?3x4,基础解系为???3??1??x?,?2???3??3?x3??1?0?.

?x???4?x4?0?????1??

21

26.设矩阵

?1?A??0?0?0210??1?2??,求可逆矩阵P,使P?1AP为对角矩阵.

解:A的特征多项式为

??1|?E?A|?00200?1?(??1)??2?1??2?1?1??2??2?(??1)(?2?4??3)

?(??1)(??3),

特征值为?1??2?1,?3?3.

对于?1??2?1,解齐次方程组(?E?A)x?0:

?0??E?A??0?0?0?1?10??0???1???0?0?1???1001??0?0???x1?x1?,?x2??x3?x3?x3?,取

?1???p1??0??0???,p2?0??????1??1???.

对于?3?3,解齐次方程组(?E?A)x?0:

?2??E?A??0?0??1?令P??0?0?0?1101?10??1?1??0??1???1???0?01???0100??x1?0???1?,?x2?x3?0???x3?x3?0?????1?. ?1???0??0?3??,取p3?1?,则P是可逆矩阵,使P?1AP??0?0?010.

四、证明题(本大题共1小题,6分)

27.设向量组?1,?2,?3线性无关,?1??1??2,?2??2??3,?3??3??1,证明:向量组?1,?2,?3线性无关. 证:设k1?1?k2?2?k3?3?0,即

k1(?1??2)?k2(?2??3)?k3(?3??1)?0,

(k1?k3)?1?(k1?k2)?2?(k2?k3)?3?0,

22

?k3?0?k1??0因为?1,?2,?3线性无关,必有?k1?k2?k2?k3?0?,

1011011?1|A|?110?01?1??2?0,

01101111方程组只有零解:k1?k2?k3?0,所以?1,?2,?3线性无关.

23

全国2008年10月高等教育自学考试线性代数(经管类)试题答案

课程代码:04184

一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A为3阶方阵,且?A.-9 113A?13,则|A|?( A )

C.-1

D.9

1

3B.-3

1?1??A?,???|A|?,|A|??9. 333?3?2.设A、B为n阶方阵,满足AA.A?B

2?B,则必有( D )

2B.A??B

1??1?,B=??1?1??? C.|A|?|B| D.|A|?|B|

22?13.已知矩阵A=??0?0??,则AB?BA?( A ) 1??1?? ?1??A.???1??20?? ?1??

?1B.??0?

?1C.??0?0?? 1??

?0D.??0?0??. ?1??0?? 0??1??10?1??21??11??1?1?10??1????????=?????AB?BA???0?1??11??11??0?1???1?1???10?=??2?????????????4.设A是2阶可逆矩阵,则下列矩阵中与A等价的矩阵是( D ) ?0A.??0?0?? 0??

?1B.??0?0?? 0??

?1C.??0?1?? 0??

?1D.??0?1?? 1??5.设向量?1?(a1,b1,c1),?2?(a2,b2,c2),?1?(a1,b1,c1,d1),?2?(a2,b2,c2,d2),下列命题中正确的是( B ) A.若?1,?2线性相关,则必有?1,?2线性相关 B.若?1,?2线性无关,则必有?1,?2线性无关 C.若?1,?2线性相关,则必有?1,?2线性无关 D.若?1,?2线性无关,则必有?1,?2线性相关

?1??2?????6.已知?2?,?3?是齐次线性方程组Ax=0的两个解,则矩阵A可为( A )

??1??1?????A.(5,?3,?1)

?5B.??2??311?? 1??

?1C.??2?2?1?3?? 7??

?1?D.??1??5?223?1???2? 1???1???(5,?3,?1)?2??0,(5,?3,?1)??1????2????3??0. ?1???7.设m×n矩阵A的秩r(A)=n-3(n>3),?,?,?是齐次线性方程组Ax=0的三个线性无关的解向量,则方程组Ax=0的基础解系为( D ) A.?,?,???

B.?,?,???

0?10C.???,???,??? D.?,???,?????

其中只有?,???,?????线性无关.

?1?8.已知矩阵A与对角矩阵D=?0?0?0??20?相似,则A?( C ) ?1??24

A.A

B.D C.E

D.?E

存在P,使P?1AP?D,A?PDP?1,A2?PD2P?1?PEP?1?PP?1?E.

?001?9.设矩阵A=???010?,则A的特征值为( D ) ??100??A.1,1,0

B.-1,1,1

C.1,1,1

D.1,-1,-1

?0?1|?E?A|?0??10?(??1)??1?(??1)(?2)?(??1)2(??1).

?10??1??110.设A为n(n?2)阶矩阵,且A2?E,则必有( C )

A.A的行列式等于1

B.A的逆矩阵等于E C.A的秩等于n

D.A的特征值均为1

|A|2?1,|A|?0,A的秩等于n.

二、填空题(本大题共10小题,每小题2分,共20分)

a2111.已知行列式230?0,则数a =__3__.

1?11a21a?130230?230?a?13?3(a?3)?0,a?3.

1?111?112312.设方程组?x1?2x2?0?有非零解,则数k = __4__.

?2x1?kx2?0122k?k?4?0,k?4.

3?3?13.设矩阵A=??201??042???T?3??57?. ??11?3??,B=????357??,则AB??3????9?11?19????2?1??33?3??ATB??01?2???04???7???=?357?. ??1?3???35????9?11?19????1????0??2?14.已知向量组???0???1????1??1??,?2??,?的秩为2,则数t=__3__. ?0???53????2?????t?2??0????4????102?02??02??011???1?11??1??11????05t?2???0???05t?2??0???00t?3?,秩为2,则t?3. ??204?????000????000??

25

1215.设向量??(2,?1,,1),则?的长度为__5/2__.

16.设向量组?1?(1,2,3),?2?(4,5,6),?3?(3,3,3)与向量组?1,?2,?3等价,则向量组?1,?2,?3的秩为__2__.

??123????123????123???456???0?3?6???0?3?6?,秩为2. ??333????0?3?6????000??17.已知3阶矩阵A的3个特征值为1,2,3,则|A?|?__36__.

|A?|?|A|n?1?|A|2?(1?2?3)2?36.

18.设3阶实对称矩阵A的特征值为?1??2?3,?3?0,则r(A)= __2__.

?300?A相似于???030?,r(A)=2. ??000???24?19.矩阵A=?1??22?1?对应的二次型f =x2221?2x2?3x3?4x1x2?8x1x3?2x2x3. ??4?13??20.设矩阵A=???20???01??,则二次型xTAx的规范形是y2?y212. ?xTAx??2x22221?x2?y1?y2,其中y1?x2,y2?2x1.

三、计算题(本大题共6小题,每小题9分,共54分)

123421.计算行列式D=10123?1?10的值.

120?512341222012000222200解:

13?1?10?13?1?4?6???1?4?6???1?3?5 120?512?1?72?1?72?3?9??2?3?5?3?9??2(27?15)??24.

22.已知A=??14??0?1????12??,B=?2??11??3???,C=??1??,矩阵X满足AXB=C,求解X. ???0?解:(A,E)???1410????1410??1230?01?2????1201?????0611????3???0611??3??????0611?? ????101/3?2/3??2/3???061/61/6??,A?1???1/3???1/61/6??; ?(BE)???2010?010?101?????2????2010??101/20????1????2202????0212?????01??,B?1???1/2??11/2???1/2

0?1??. ?26

?1/3???1/6??2/3??1/6???3??0?1???1???1/2??1/2?0?1?2?=??11?12???4??1???3??0?1???1???1??1?0?? 2??X?A?1CB?1=

1?6??12?36??0???1??1?T0?1?=2??12?12??3?12??1?=??0???1/4T1??. 0??TT23.求向量??(3,?1,2)在基?1?(1,1,2),?2?(?1,3,1),?3?(1,1,1)下的坐标,并将?用此基线性表示. 解:设??x1?1?x2?2?x3?3,即(3,?1,2)?x1?x2?x3?3?1??,x?3x?x??1A??1?123?2???2x1?x2?x3?2T?x1(1,1,2)T?x2(?1,3,1)T?x3(1,1,1),得

T?131?1101111013??1???1???0?02???3??1???1???0?01????143?11010?10013??1???4???0?0?4???2??1???1???0?01???010?11300110?13???1? ?4???1???0?0??11010?13??1???1???0?0?1???1???1?, 1??x1?1,x2??1,x3?1.

?在基?1,?2,?3下的坐标是(1,?1,1),???1??2??3.

24.设向量组?1,?2,?3线性无关,令?1???1??3,?2?2?2?2?3,?3?2?1?5?2?3?3,试确定向量组?1,?2,?3的线性相关性.

解:设k1?1?k2?2?k3?3?0,即

k1(??1??3)?k2(2?2?2?3)?k3(2?1?5?22?3?3)?0,

(?k1?2k3)?1?(2k2?5k3)??(k1?2k2?3k3)?3?0,

?2k3?0??k1?2k2?5k3?0, 由?1,?2,?3线性无关,得???k1?2k2?3k3?0?10102?220?22?25?5?3?5?031?225?5?0,有非零解,?1,?2,?3线性相关.

?x1?x2??x3??2?25.已知线性方程组?x1??x2?x3??2,

???x1?x2?x3???3(1)讨论?为何值时,方程组无解、有惟一解、有无穷多个解.

(2)在方程组有无穷多个解时,求出方程组的通解(用一个特解和导出组的基础解系表示).

?1?解:(A,b)??1????1???0?0?11?11?1?2??1???2???0?0??3????21?1??1??2??11????0? 3??3???2?1??(1??)(??2)??10??0?. 3(??1)??(1)???2时无解,???2且??1时惟一解,??1时有无穷多个解.

27

?1?(2)??1时,(A,b)??0?0???2???1???1???????0?k1?k0????. 1?2??0??0??1????????1?26.已知矩阵A=?1?1?1111???11?,求正交矩阵P和对角矩阵?,使PAP??. 1???1?1?1100100?2??x1??2?x2?x3??0?,?x2?x2,通解为

?0?x3??x3???1解:|?E?A|??1?11?(??3)11??3???3?1?1?11?(??3)11?1?1?1??1?1000??1?1??1?1

??1??3??1??1?0??(??3),特征值?1??2?0,?3?3.

2?对于?1??2?0,解齐次线性方程组(?E?A)x?0:

??1??E?A???1??1??1?1?1?1??1???1???0?0?1???1001??x1??x2?x3??1?????0?,?x2?x2,基础解系为?1??1?,??0??x?0?x3????3??1?????0?,正交化:令?1???2?1??1??1?????1?,?2???0???2??1???1???1/2??????(?2,?1)11??1??1????0?1??1/2,单位化:令??????12|?1||?1|?1?2?0??1?????????1???1/2????1??1???1/2?,

?2?????00?????2?1|?2|?2???1/2???1/6????2???1/2????1/6?;

?6????2/6?1?????12?1?1??2???1????2??22???010?14?2?1??2???2???0?04???010?13?3?1??2???3???0?03????130?1???3? 0???1?????1?,单位化:令?1???对于?3?3,解齐次线性方程组(?E?A)x?0:

?2??E?A???1??1??2???0?0??110?1??2???1???0?00????2??1???1???0?00????1??x1?x3???1?,?x2?x3,基础解系为??0???x3?x33?3?1|?3|?3?1??1/1?????1???1/3?????1??1/3??3?. ?3??28

??1/2?1/6??1/6令P??1/2??02/6?四、证明题(本题6分)

1/1/1/3??0??3?,???0??03???0000???10?,则P是正交矩阵,使PAP??. 3??27.设?为非齐次线性方程组Ax=b的一个解,?1,?2,?,?r是其导出组Ax=0的一个基础解系.证明?,?1,?2,?,?r线性无关. 证:设k??k1?1?k2?2???kr?r?0,则

A(k??k1?1?k2?2???kr?r)?0,

kA??k1A?1?k2A?2???krA?r?0, kb?k10?k20???kr0?0, kb?0,

由b?0,得

k?0---------------------------------(1)

从而

k1?1?k2?2???kr?r?0,

由?1,?2,?,?r线性无关,得

k1?k2???kr?0--------------(2)

由(1)(2)可知?,?1,?2,?,?r线性无关.

29

全国自考2008年7月线性代数(经管类)试卷答案

课程代码:04184

一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设3阶方阵A=[?1,?2,?3],其中?i(i=1, 2, 3)为A的列向量,且|A|=2,则|B|=|[?1?3?2,?2,?3]|=(A.-2 B.0 C.2 D.6

?x1?x2?0?2.若方程组?kx1?x2?0有非零解,则k=( A )

A.-1 B.0 C.1 D.2

3.设A,B为同阶可逆方阵,则下列等式中错误的是( C ) A.|AB|=|A| |B|

B. (AB)-1=B-1A-1

C. (A+B)-1=A-1+B-1 D. (AB)T=BTAT

4.设A为三阶矩阵,且|A|=2,则|(A*)-1|=( D )

1A.4 B.1

C.2 D.4

5.已知向量组A:?1,?2,?3,?4中?2,?3,?4线性相关,那么( B ) A. ?1,?2,?3,?4线性无关 B.

?1,?2,?3,?4线性相关

C.

?1可由?2,?3,?4线性表示 D.

?3,?4线性无关

6.向量组?1,?2,??s的秩为r,且r

A.

?1,?2,??s线性无关

C )30

B. ?1,?2,??s中任意r个向量线性无关 C. ?1,?2,??s中任意r+1个向量线性相关 D.

?1,?2,??s中任意r-1个向量线性无关

7.若A与B相似,则( D ) A.A,B都和同一对角矩阵相似 B.A,B有相同的特征向量

C.A-λE=B-λE D.|A|=|B|

8.设?1,?2是Ax=b的解,η是对应齐次方程Ax=0的解,则( B ) A. η+?1是Ax=0的解 B. η+(?1-?2)是Ax=0的解

C.

?1+?2是Ax=b的解 D.

?1-?2是Ax=b的解

9.下列向量中与?=(1,1,-1)正交的向量是( D ) A. ?1=(1,1,1) B. ?2=(-1,1,1) C.

?3=(1,-1,1) D.

?4=(0,1,1)

??11??10.设A=?1?2??,则二次型f(x1,x2)=xTAx是( B )

A.正定 B.负定 C.半正定

D.不定

二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 11.设A为三阶方阵且|A|=3,则|2A|=__24_________. 12.已知?=(1,2,3),则|?T?|=____0_______.

?120??6?40????030???020??13.设A=??002??,则A*=

??003??

14.设A为4×5的矩阵,且秩(A)=2,则齐次方程Ax=0的基础解系所含向量的个数是______3_____. 15.设有向量?1=(1,0,-2),

?2=(3,0,7),?3=(2,0,6). 则?1,?2,?3的秩是_____2______.

31

??(1,0,0)?k1(?1,1,0)?k2(1,0,1)?1TTT16.方程x1+x2-x3=1的通解是

A?13(A?E)17.设A满足3E+A-A2=0,则

18.设三阶方阵A的三个特征值为1,2,3. 则|A+E|=_24__________.

19. 设α与β的内积(α,β)=2,‖β‖=2,则内积(2α+β,-β)=___-8________.

?3??1???1?1021??2?2??20.矩阵A=所对应的二次型是

3x1?2x3?2x1x2?2x1x3?4x2x322

三、计算题(本大题共6小题,每小题9分,共54分)

1300020000000100200010000001000200121.计算6阶行列式0?2?1A=?5??3?=18

1???2?22.已知

?1?4,B=?2???3??2?5,C=??2??2X???1,X满足AX+B=C,求X. ?8??3?

23.求向量组?1=(1,2,1,3),

?1?2??1?组. ?34?1?5?61??1???30????4??0???7??04900=(4,-1,-5,-6),?3=(1,-3,-4,-7)的秩和其一个极大线性无关

1??5?0??0? 秩为2,极大无关组为?1,?2

24.当a, b

x3?1?x1?x2??x2?x3?1??2x?3x?(a?2)x?b?323为何值时,方程组?1T 有无穷多解?并求出其通解.

T a??1,b?0时有无穷多解。通解是??(0,1,0)?k(?2,1,1)

?3?7A=??1??11?25.已知,求其特征值与特征向量.

T 特征值??4,??10,??4的特征向量k(1,?1),??10的特征向量k(1,?7)

32

T、

n?2?1?An?1?1?31?n3??26.设

A=??12??,求An.

2??1?3n1?n3?? 四、证明题(本大题共1小题,6分)

27.设?为Ax=0的非零解,?为Ax=b(b?0)的解,证明?与?线性无关.

k1α?k2β?0A(k1α?k2β)?A0?0?k1Aα?k2Aβ?0?k2bk2b?0?k2?0证明: k1α?k2β?0?k1α?0?k1?0 所以?与?线性无关。

33

34

35

全国2008年1月高等教育自学考试线性代数(经管类)试题答案

课程代码:04184

一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A为三阶方阵且|A|??2则|3ATA|?( D ) A.-108

B.-12

C.12 D.108

|3ATA|?33|A|2?27?(?2)2?108. ?3x1?kx2?x3?02.如果方程组??4x2?x3?0有非零解,则k=( B )

??4x2?kx3?0A.-2

B.-1 C.1 D.2

3k?104?1?34?1)?0,k??1. 044k?12(k?1k3.设A、B为同阶方阵,下列等式中恒正确的是( D ) A.AB?BA

B.(A?B)?1?A?1?B?1 C.|A?B|?|A|?|B|

D.(A?B)T?AT?BT

4.设A为四阶矩阵,且|A|?2,则|A?|?( C ) A.2

B.4

C.8 D.12

|A?|?|A|n?1?|A|3?23?8. 5.设?可由向量?1?(1,0,0),?2?(0,0,1)线性表示,则下列向量中?只能是( B ) A.(2,1,1)

B.(?3,0,2)

C.(1,1,0)

D.(0,?1,0)

??k1?1?k2?2?(k1,0,k2). 6.向量组?1,?2,?,?s的秩不为s(s?2)的充分必要条件是( C ) A.?1,?2,?,?s全是非零向量

36

B.?1,?2,?,?s全是零向量

C.?1,?2,?,?s中至少有一个向量可由其它向量线性表出 D.?1,?2,?,?s中至少有一个零向量

?1,?2,?,?s的秩不为s??1,?2,?,?s线性相关. 7.设A为m?n矩阵,方程AX=0仅有零解的充分必要条件是( C ) A.A的行向量组线性无关 B.A的行向量组线性相关 C.A的列向量组线性无关

D.A的列向量组线性相关

AX=0仅有零解?r(A)?n?A的列向量组线性无关. 8.设A与B是两个相似n阶矩阵,则下列说法错误..的是( D ) A.|A|?|B|

B.秩(A)=秩(B) C.存在可逆阵P,使P?1AP?B

D.?E?A??E?B

?100?9.与矩阵A=??010??相似的是( A )

??002???100??110??100??101?A.??020??

B.??010??

C.??110??

D.??020??

??001????002????002????001??有相同特征值的同阶对称矩阵一定(正交)相似. 10.设有二次型f(x21,x2,x3)?x21?x2?x23,则f(x1,x2,x3)( C ) A.正定 B.负定 C.不定 D.半正定

当x1?1,x2?0,x3?0时,f?0;当x1?0,x2?1,x3?0时f?0.总之,f有正有负. 二、填空题(本大题共10小题,每小题2分,共20分) 11.若

k112?0,则k=

1.

2

37

k1112?2k?1?0,k?2. ?32??326?12.设

A=??01??,B=?102??,则

AB=?010??.

??14???010?????142???32?26?AB=?1??102??3?0??10??. ?14?010?=?????0???142???200??1/200?13.设

A=??010??,则A?1???010??.

??022????0?11/2???200100??200100??1001/200???010010?????010010?????010010??. ??022001????0020?21????0010?11/2??14.设A为3?3矩阵,且方程组Ax=0的基础解系含有两个解向量,则秩(A)= __1__.

秩(A)=n?r?3?2?1. 15.已知A有一个特征值?2,则B?A2?2E必有一个特征值__6__.

???2是A的特征值,则?2?2?(?2)2?2?6是B?A2?2E的特征值. 16.方程组x1?x2?x3?0的通解是k1(?1,1,0)T?k2(1,0,1)T.

?x1??x2?x?3???1????1???x2?x2,通解是k1?1??k2?0?. ??x3?x?3?0????1??17.向量组?1?(1,0,0),?2?(1,1,0),?3?(?5,2,0)的秩是__2__.

??100????100???110???010?,秩是2. ???520????000??

38

?200?18.矩阵A=??020??的全部特征向量是

??002??kT1(1,0,0)T?kT2(0,1,0)?k3(0,0,1)(k1,k2,k3不全为零).

?00????0??x1?x1??1????0????0??1??2?3?2,?E?A??000?,??x2?x2,基础解系为?0?,?1?,?0?. ??000????x3?x?3?0????0????1??19.设三阶方阵A的特征值分别为?2,1,1,且B与A相似,则|2B|?__-16__.

?200|2B|?23010?8?(?2)??16. 001?121?20.矩阵A=??2?10?所对应的二次型是f(x2?1,x2,x3)?x21?x2?3x23?4x1x2?2x1x3. ??103??三、计算题(本大题共6小题,每小题9分,共54分)

120021.计算四阶行列式

0120的值.

001220011200120012001200解:

01201200012?00012?01200012?01200012??15.

20010?4010081000?15?321?22.设A=??111??,求A?1.

??101???321100??101001??101001?解:??111010?????111010?????01001?1??

??101001????321100????02?210?3??

39

?101001??202002??2001?21????01001?1?????01001?1?????01001?1??

??00?21?2?1????00?21?2?1????00?21?2?1???1001/2?11/2??1/2?11/2????01001?1??,

A?1=??01?1??.

??001?1/211/2?????1/211/2??

??110??110?23.设A=??002??,B=??022??,且A,B,X满足(E?B?1A)TBTX?E,求X,X?1.??002????003??解:由(E?B?1A)TBTX?E,得[B(E?B?1A)]TX?E,即(BE?BB?1A)TX?E,

?200?T?200??1/200?(B?A)TX?E,X?1?(B?A)T???020?????020??,X???01/20??.

??001????001????001??24.求向量组?1?(1,?1,2,4),?2?(0,3,1,2),?3?(3,0,7,14),?4?(2,1,5,6),?5?(1,?1,2,0) 的一个极大线性无关组.

??1?124???124???124??124??0312??1??0312??1??0312???1??0312??解:??30714?????0312?????0000?????0000??,

?2156??031?2??000?4??000?4???1?120????000?4????000?4????0000???1,?2,?4是一个极大线性无关组. ?x1?x2?x3?x4?x5?7?25.求非齐次方程组?3x?2x?12?x3?x4?3x5??2的通解.

?x2?2x3?2x4?6x5?23??5x1?4x2?3x3?3x4?x5?12?111117??111117??解:A??3211?3?2???0?1?2?2?6?23???01226???23?0122623?

??54?33?112????0?1?8?2?6?23??

40

?111117??111117????0?1?2?2?6?23?????1?2?2?6?23????0000000??00?6000?

??00?6000????000000???111117??110117??100?1?5?16????0122623???23???0623?????01026102001000??00100???,

0?001000???000000????000000????000000???x1??16?x4?5x5??16???x?23?2x???1??5??24?6x?5?23???2?????6???x3?0,通解为????0??k?1?0???k?2?0??.

?x4?x4?0??1??0???x5?x??5?0???0????1???2?20?26.设A=???21?2??,求P使P?1AP为对角矩阵.

??0?20????220解:|?E?A|?2??12??(??1)(??2)?4(??2)?4???3?3?2?6??8

02??(?3?8)?3?(??2)?(??2)(?2?2??4)?3?(??2)

?(??2)(?2?5??4)?(??2)(??1)(??4),

特征值?1??2,?2?1,?3?4.

对于?1??2,解齐次线性方程组(?E?A)x?0:

??420??10??????2???2?10????2?10??E?A??2?32???2?32???0?22???0?22?

??02?2????02?2????02?2????000?????2?10????20?1??x1?1???10?1/2??2x3???01?1???01?1???01?1?,??x2?x3,基础解系为??1/2??1??1?;??000????000????000?????x3?x3?1???

41

对于?2?1,解齐次线性方程组(?E?A)x?0:

??1??E?A??2?0?2020???1??2???1?01???2020???1??1???0?01???2220???1??1???0?01???2200???1??1???0?00???020?1??1?0??

?1???0?0?010?x1??x31???1?1/2?,?x2??x32?0??x3??x3?,基础解系为?2??1??????1/2??1???;

对于?3?4,解齐次线性方程组(?E?A)x?0:

?2??E?A??2?0??x1?2x3??x2??2x3??x3?x32320??2??2???0?04???2120??2??2???0?04???2100??1??2???0?00???1100??1??2???0?00???010?2??2?0??,

,基础解系为?3?2??????2??1???.

?1/2?令P??1?1??1?1/212???2?1??,则

??2?P是可逆矩阵,使P?1AP??0?0?0100??0?4??.

四、证明题(本大题6分)

27.设?1,?2,?3是齐次方程组Ax=0的基础解系,证明?1,?1??2,?1??2??3也是Ax =0的基础解系. 证:

(1)Ax=0的基础解系由3个线性无关的解向量组成.

(2)?1,?2,?3是Ax=0的解向量,则?1,?1??2,?1??2??3也是Ax=0的解向量. (3)设k1?1?k2(?1??2)?k3(?1??2??3)?0,则

(k1?k2?k3)?1?(k2?k3)?2?k3?3?0,

由?1,?2,?3线性无关,得

?k1?k2?k3?0?k2?k3?0??k3?0?111011?1?01,系数行列式00,只有零解k1?k2?k3?0,所以

?1,?1??2,?1??2??3线性无关.

42

由(1)(2)(3)可知,?1,?1??2,?1??2??3也是Ax =0的基础解系.

43

全国2007年7月高等教育自学考试线性代数(经管类)试题答案

课程代码:04184

一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A是3阶方阵,且|A|=?12,则|A-1|=( A )

A.-2

B.?12

C.

12 D.2

2.设A为n阶方阵,?为实数,则|?A|?( C ) A.?|A|

B.|?||A|

C.?n|A|

D.|?|n|A|

3.设A为n阶方阵,令方阵B=A+AT,则必有( A ) A.BT=B

B.B=2A

C.BT??B

D.B=0

BT?(A?AT)T?AT?(AT)T?AT?A?A?AT?B. 4.矩阵A=???1?1????11?的伴随矩阵A*=( D )

?A.??1?1????1?1???11??11???1?1?

B.??????11?

C.?????11?

D.??????1?1?

?5.下列矩阵中,是初等矩阵的为( C )

00??010?A.??101?1??0???

B.?????101?

C.?1?010??

D.??003??

?00? ???001????101????100??6.若向量组?1?(1,t?1,0),?2?(1,2,0),?3?(0,0,t2?1)线性相关,则实数t=( B ) A.0

B.1

C.2 D.3

1t?10120?(t2?1)1t?1?(t2?1)(1?t)?0?t?1. 00t2?1127.设A是4×5矩阵,秩(A)=3,则( D ) A.A中的4阶子式都不为0 B.A中存在不为0的4阶子式 C.A中的3阶子式都不为0

D.A中存在不为0的3阶子式

44

8.设3阶实对称矩阵A的特征值为?1??2?0,?3?2,则秩(A)=( B ) A.0

B.1 C.2 D.3

?00?相似于?0?AD??000?,秩(A)= 秩(D)=1. ??002??9.设A为n阶正交矩阵,则行列式|A2|?( C ) A.-2

B.-1

C.1

D.2

A为正交矩阵,则ATA?E,|A2|?|A|2?|AT||A|?|ATA|?1. 10.二次型f(x,y,z)?x2?y.2的正惯性指数p为( B ) A.0

B.1

C.2

D.3

二、填空题(本大题共10小题,每小题2分,共20分) 11.设矩阵A=??12?T??,则行列式||??11?AA__1__.

?|AAT|?|A||AT|?|A|2?1211?(?1)2?1. 11112.行列式234中(3,2)元素的代数余子式A32?__-2__.

4916A32??1124??2. 13.设矩阵A=??1??,B=??1???,则ATB?__5__. ?2????2??ATB?(1,2)??1???2??5. ??14.已知?1?5?2?2?3??,其中?1?(3,4,?1),?2?(1,0,3),??(0,2,?5),则??3??1,?1,11??2?.?

45

?3?12[(0,2,?5)?(3,4,?1)?5(1,0,3)]?111??(2,?2,11)??1,?1,?22?? ??1?15.矩阵A=?1?1???1??1?1?0???1??3???0?06???0??3?6??的行向量组的秩=__2__.

0???1??3???0?06???0??3?,秩=2. 0??3?2?(1,2,0),?3?(3,0,0)是R的一组基,16.已知向量组?1?(1,1,1),则向量??(8,7,3)在这组基下的坐标是(3,2,1).

设??x1?1?x2?2?x3?3,即(8,7,3)?x1(1,1,1)?x2(1,2,0)?x3(3,0,0),得 ?x1?x2?3x3?8?x1?3???7,解得?x2?2. ?x1?2x2???3?x3?1?x1?x1?x2?017.已知方程组???2x1?tx2?0存在非零解,则常数t=__2__.

1?2?1t?t?2?0,t?2. 18.已知3维向量??(1,3,?1)T,??(?1,2,4)T,则内积(?,?)?__1__.

?1?19.已知矩阵A=?0?1?0101??0?x??的一个特征值为0,则x=__1__.

101010?x|0E?A|?0,所以|A|?0,即01111x?x?1?0,x?1. 22?5x3?2x1x220.二次型f(x1,x2,x3)?2x12?3x2?2??2x1x3?8x2x3的矩阵是?1??1?134?1??4?5??.

三、计算题(本大题共6小题,每小题9分,共54分)

46

21021.计算行列式D=121的值.

0122100?3?2解:

121?121???3?2?6?2)?4.

01201212??(22.设矩阵A=??21???,B=??13??XA=B的解X.

?53????20?,求矩阵方程?解:(A,E)???2110?????2110?110???06?2?????5301?60???2???102????01?52???2???01?52?

????103?1???1?3??????3?1???01?52?,A?1???3??52?,X?BA?1???1????125??????20?????5??2???6?2?.??12?13?23.设矩阵

A=???48?412?,问a为何值时,(1)秩(A)=1;(2)秩(A)=2.

??36?3a???2?13?2?13?2?13?解:?1???1???1??48?412???0000???000a?9?.

??36?3a????000a?9????0000??(1)a?9时,秩(A)=1;(2)a?9时,秩(A)=2.

??1??1?6??2?24.求向量组???1=?1?,????2=?3?,????3=?2?,???4=?4?的秩与一个极大线性无关组.??1????5????6????5????116?2?????116?2?解:?????116?2?????116?2???1324???0482???0241???0241?,??1565????06123????0241????0000??秩为2,?1,?2是一个极大线性无关组.

?x1?2x2?4x3?325.求线性方程组??2x2?2x3?3的通解. ??2x1?2x2?6x3?3

47

解:

?1?A??0?2?2224263??1??3???0?03???22?242?23??1??3???0?0?3???2204203??1??3???0?00???0202200??3?0??

?1???0?0?0102100??3/2?0???x1??2x3?3?,?x2??x32?x3??x3??1036100??0?1???0???2?????,通解为?3/2??k??1??0??1?????.

26.设矩阵

??4?A??1?3?,求可逆矩阵P及对角矩阵D,使得P?1AP?D.

??400?(??1)解:|?E?A|??1?3??3?6??4?110??1??3?(??2)(??1)2,

特征值?1??2,?2??3?1.

对于?1??2,解齐次线性方程组(?E?A)x?0:

?2??E?A???1??3?10?5?60??1??0???1?1?3???5520??1??0???0?01???50?30??3??0???0?01???15?300??3??1???0?00???0?305??1?0???1???0?0?0105/3???1/3?0?? ,

5?x??x31?3?1??x2?x33??x3?x3??,基础解系为 ?1??5/3?????1/3?; ?1???对于?2??3?1,解齐次线性方程组(?E?A)x?0:

?5??E?A???1??3???5/3?令P??1/3?1?10?2?6?2100??1??0???1?10???2220??1??0???0?00???0100??0?1??2000??0?0???x1??2x2?,?x2?x2?x??3,基础解系为 ?2x3??2?????1??0???,?3?0?????0?. ?1???0???2??0?,D??0?01???,则P是可逆矩阵,使P?1AP?D.

48

四、证明题(本大题6分)

27.设向量组?1,?2线性无关,证明向量组?1??1??2,?2??1??2也线性无关. 证:设k1?1?k2?2?0,即k1(?1??2)?k2(?1??2)?0,(k1?k2)?1?(k1?k2)?2?0.

由?1,?2线性无关,得??k1?k2?0?k1?k2?0,因为

111?1??2?0,方程组只有零解,所以?1,?2线性无关.

49

全国2007年10月高等教育自学考试线性代数(经管类)试题答案

课程代码:04184

一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式a1b11c1a=( D ) 2b=1,

a,则a1b1?c12a2c=22a2b2?c2A.-3

B.-1

C.1

D.3

a1b1?c1a=a1b1+a1c12ba 2?c22b2ac=1+2=3.222.设A为3阶方阵,且已知|?2A|?2,则|A|?( B ) A.-1

B.?14

C.

14 D.1

|?2A|?2,(?2)3|A|?2,|A|??14. 3.设矩阵A,B,C为同阶方阵,则(ABC)T?( B ) A.ATBTCT

B.CTBTAT

C.CTATBT

D.ATCTBT

4.设A为2阶可逆矩阵,且已知(2A)?1???12???4?,则A=( D )

?3??1?1A.2??12??? B.

1??12??2???34??2??34?

C.2??1???34?

D.1??12???2??34?

??1(2A)?1???12?2??1??,2A???12??,A?1??1??34????34??2??34?. ?5.设向量组?1,?2,?,?s线性相关,则必可推出( C ) A.?1,?2,?,?s中至少有一个向量为零向量 B.?1,?2,?,?s中至少有两个向量成比例

C.?1,?2,?,?s中至少有一个向量可以表示为其余向量的线性组合 D.?1,?2,?,?s中每一个向量都可以表示为其余向量的线性组合

50

本文来源:https://www.bwwdw.com/article/r5jw.html

Top