The Open Reading Frame VI Product of Cauliflower mosaic virus Is a Nucleocytoplasmic Protei
更新时间:2023-07-26 08:05:01 阅读量: 实用文档 文档下载
- the推荐度:
- 相关推荐
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
ThePlantCell,Vol.17,927–943,March2005,ª2005AmericanSocietyofPlantBiologists
TheOpenReadingFrameVIProductofCauli owermosaicvirusIsaNucleocytoplasmicProtein:ItsNTerminusMediatesItsNuclearExportandFormationofElectron-DenseViroplasms
`leGeldreich,aMarinaBureau,aLaurenceDupuis,aVe´roniqueLeh,a,2GuillaumeVetter,aMurielHaas,a,1Ange
KappeiKobayashi,bThomasHohn,bLyubovRyabova,aPierreYot,aandMarioKellera,3
´culairedesPlantes,Unite´PropredeRecherche,CentreNationaldelaRecherchedeBiologieMole
´LouisPasteur,67084StrasbourgCedex,FranceScienti que2357,Universite
bFriedrichMiescherInstitute,CH-4002Basel,Switzerland
aInstitut
TheCauli owermosaicvirus(CaMV)openreadingframeVIproduct(P6)isessentialfortheviralinfectioncycle.ItcontrolstranslationreinitiationoftheviralpolycistronicRNAsandformscytoplasmicinclusionbodies(viroplasms)wherevirusreplicationandassemblyoccur.Inthisstudy,themechanisminvolvedinviroplasmformationwasinvestigatedbyinvitroandinvivoexperiments.FarproteingelblotassaysusingacollectionofP6deletionmutantsdemonstratedthattheN-terminala-helixofP6mediatesinteractionbetweenP6molecules.Transientexpressionintobacco(Nicotianatabacum)BY-2cellsoffull-lengthP6andP6mutantsfusedtoenhancedgreen uorescentproteinrevealedthatviroplasmsareformedattheperipheryofthenucleusandthattheN-terminaldomainofP6isanimportantdeterminantinthisprocess.Finally,thisstudyledtotheunexpected ndingthatP6isanucleocytoplasmicshuttleproteinandthatitsnuclearexportismediatedbyaLeu-richsequencethatispartofthea-helixdomainimplicatedinviroplasmformation.ThediscoverythatP6canlocalizetothenucleusopensnewprospectsforunderstandingyetunknownrolesofthisviralproteininthecourseoftheCaMVinfectioncycle.
INTRODUCTION
Cauli owermosaicvirus(CaMV)isthetypememberoftheCaulimovirusgenusoftheCaulimoviridaefamily.Itsdouble-strandedcircularDNA(;8kb)isreplicatedviaanRNAin-termediatebyavirus-encodedreversetranscriptase,andthevirusisclassi edinthepararetrovirussupergroup,towhichanimalvirusesoftheHepadnaviridaefamilyalsobelong(forareview,seeHaasetal.,2002).TheCaMVgenomepossessessixmajoropenreadingframes(ORFsItoVI),whicharealllocatedonthesameDNAstrand.ManyfunctionsofthecorrespondinggeneproductsP1toP6havebeenelucidated,butthemecha-
´PropredeRecherche,CentreNationaldelaaddress:Unite
´partementRe´cepteursetProte´inesRechercheScienti que9050,De
´rieuredeBiotechnologiedeStrasbourg,Membranaires,EcoleSupe
´bastientBrant,67412IllkirchCedex,France.boulevardSe
2Currentaddress:LaboratoiredeDynamique,EvolutionetExpression
´nomesdeMicroorganismes,FormationdeRechercheendesGe
´Evolution2326,CentreNationaldelaRechercheScienti que,Universite
LouisPasteur,28rueGoethe,67084StrasbourgCedex,France.
3Towhomcorrespondenceshouldbeaddressed.E-mailmario.keller@ibmp-ulp.u-strasbg.fr;fax33-3-88-61-44-42.
Theauthorresponsiblefordistributionofmaterialsintegraltothe ndingspresentedinthisarticleinaccordancewiththepolicydescribedintheInstructionsforAuthors()is:MarioKeller(mario.keller@ibmp-ulp.u-strasbg.fr).versioncontainsWeb-onlydata.
Article,publicationdate,/cgi/doi/10.1105/tpc.104.029017.
1Current
nismsbywhichtheyoperateduringviralinfectionarenotyetfullyunderstood.
TheviralDNAistranscribedbythecellularRNApolymeraseIIintotwomajorcappedandpolyadenylatedRNAs,amonocis-tronic19SmRNAandapregenomic35SRNAthatservesasatemplatebothforreversetranscriptionandfortranslationintoP1toP5.The35SRNAundergoesalternativesplicingeventsleadingtofourmRNAsinwhichORFIandpartofORFIIaredeleted(Kiss-Laszloetal.,1995).Currently,themechanismregulatingthenuclearexportof35SRNAanditssplicedformsisunknown.TheseRNAsaretranslatedbythecellularmachineryfollowingtwounconventionalstrategies,ribosomalshuntandtermination–reinitiation(forareview,seeRyabovaetal.,2002).TheCaMVP6protein(62kD),whichisexpressedspeci callyfromthe19SRNA,isamultifunctionalproteinthatrepresentsakeycomponentintheCaMVinfectiouscycle.P6isthemajordeterminantofhostspeci cityandin uencessymptomseverity(Daubertetal.,1984;DaubertandRouth,1990;Agamaetal.,2002).InoculationofcruciferousandsolanaceousplantspecieswithchimericCaMVgenomesbearingORFVIderivedfromdifferentCaMVisolatesshowedthattheN-terminalregionofP6isresponsibleforhostspeci city(Daubertetal.,1984;Schoelzetal.,1986).TransgenicArabidopsisthalianaplantsexpressingP6displaydiseasesymptomswhoseseverityisrelatedtotheexpressionlevelofthetransgene(Zijlstraetal.,1996).Compar-isonofthecellularmRNAcontentofORFVI-transgenicandcontrolArabidopsisplantsrevealedthatORFVIexpressiondownregulatesorupregulatesseveralhostgenes(Gerietal.,
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
928ThePlantCell
1999).WhetherP6playsadirectroleinregulatingexpressionofthesecellulargenes(i.e.,byregulatingtheirtranscription)hasnotbeendetermined.Finally,P6fromcertainCaMVisolatescanalsoactasanavirulencegeneproducttopromoteahypersensitiveresponseinsomeNicotianaspecies(Palanichelvametal.,2000;Coleetal.,2001).
P6trans-activatestranslationoftheviralpolycistronic35SRNAanditssplicedversionsandhenceallowssynthesisofacompletesetofviralproteins(forareview,seeRyabovaetal.,2002).Parketal.(2001)demonstratedthatP6isatranslationalreinitiationfactorthatassociateswiththehosttranslationalmachineryandthuspermitstranslationofdownstreamORFs.Thisfunc-tionismediatedbyphysicalinteractionsbetweenaninternalregion,includingtheminimalsequenceofP6requiredfortrans-activation(themini-TAV;DeTapiaetal.,1993),theinitiationfactoreIF3(Parketal.,2001),andtheribosomalproteinsL13(Bureauetal.,2004),L18(Lehetal.,2000),andL24(Parketal.,2001).TheobservedinteractionbetweenP6andtheCaMVcapsidprotein(P4)alsosuggestsaroleforP6asascaffoldingproteinintheassemblyofCaMVparticles(Himmelbachetal.,1996).
P6isanabundantlysynthesizedCaMVprotein,andinthecytoplasmofinfectedcellsitformsamorphous,non-membrane-limited,electron-denseinclusionbodies,alsoreferredtoasviroplasms.Theseelectron-denseviroplasmsaredistinctfromtheelectron-lucentinclusionbodiesthataremainlycomposedofCaMVP2protein(Espinozaetal.,1991;Druckeretal.,2002).Thenumberandthesize(2to10mmindiameter)oftheelectron-denseviroplasmsdependonthestageoftheviralcyclebutalsoontheCaMVisolateandthehostplant(Shallaetal.,1980).Electron-denseviroplasmsareahallmarkofinfectionofplantcellsbycaulimovirusesandsoymoviruses.Theyprobablyplayanimportantroleintheinfectiouscyclebecausetheyarethesitesofproteinsynthesis,viralgenomereplication,morphogen-esis,andstorageofthenewlyformedvirions(Mazzolinietal.,1989;Rothnieetal.,1994).OtherCaMVproteinshavebeendetectedintheelectron-denseviroplasms(Druckeretal.,2002),butnoneofthemseemstoberequiredfortheirformationbecausetransgenicArabidopsisplantsexpressingP6alonecontaininclusionbody-likestructures(Cecchinietal.,1997).PreviousdatafromseveralstudiessuggestedthatP6self-associates(Leh,1999;Haasetal.,2000),andLiandLeisner(2002)showedthatmultipledomainswithinP6caninteractwiththefull-lengthprotein;theyproposedthattheseinteractionsmightbeinvolvedintheformationofviroplasms.
Inthisarticle,wedemonstrateforthe rsttimethatP6localizesbothinthecytoplasmandinthenucleusofplantcellsandthattheN-terminalregionofP6hasadualfunction.ItisamajordeterminantforinvitrointeractionbetweenP6moleculesandmediatestheformationofviroplasmsinvivo.ItalsocontainsaLeu-richnuclearexportsignalthatpreventsaccumulationofP6moleculeswithinthenucleus.RESULTS
TheN-TerminalRegionMediatesP6–P6InteractionsinVitroInpreviouslydescribedfarproteingelblotexperiments(Leh,1999),proteinsfromhealthyandCaMV-infectedturnip(Brassicarapa)ingP6expressedinEscherichiacoliand32P-radiolabeledinvitroasoverlay,aradioactivesignalwasdetectedwithproteinsfrominfectedplantsatthelevelofapolypeptideof62kDthatalsoreactedwithanti-P6antibodies,stronglysuggestingthatP6interactswithitself.However,becauseCaMV-P6proteindownregulatesorupregulatestheexpressionofseveralhostproteingenes(Gerietal.,1999),itcouldnotbetotallyexcludedthattheblot-immobilizedspeciesinteractingwith32P-P6intheaboveexperimentwasahostproteinofsimilarmobilitytoP6thatwasexpresseduponviralinfection.Toruleoutthispossibility,wehaveperformedanidenticalfarproteingelblotexperimentexceptthattheimmo-bilizedproteinsontheblotwereobtainedfromanextractofE.coliexpressingP6.The32P-P6intheoverlayagainreactedwitha62-kDspecies(Figure1C,laneP6),whichwasalsorecog-nizedbyanti-P6antibodies(Figure1B,laneP6),providinginde-pendentcon rmationthatP6caninteractwithitself.Asimilarresultwasobtainedusingapull-downassay(datanotshown).BecauseP6containsseveraldomainsthatcanbindsingle-and/ordouble-strandedRNAandRNA-DNAheteroduplexes(DeTapiaetal.,1993;Cerritellietal.,1998),farproteingelblotassayswerealsoperformedaftertreatmentofboththeoverlayandthemembrane-boundproteinswithRNaseandDNase.ThesetreatmentsdidnotimpairformationoftheP6-P6complex,de-monstratingthatneitherRNAnorDNAmediatestheP6–P6interactionandconsequentlythatoneormoredomainsofP6aredirectlyinvolved.
Tocharacterizetheregion(s)requiredforself-associationofP6,wetestedthecapacityofaseriesofP6deletionmutants(Figure1A)tobindfull-lengthP6.ThemutantscorrespondedtoN-andC-terminalrecurrentdeletionsandtoP6bearinginternaldeletionsofpreviouslyidenti edfunctionaldomains(i.e.,themini-TAVandRNAbindingsites)(DeTapiaetal.,1993).ThedeletedproteinswereexpressedinE.colifrompET3arecombi-nantplasmids,separatedbySDS-PAGE,blottedontoanitrocel-lulosemembrane,andincubatedinthepresenceof32P-labeledP6intheoverlaysolution.AsshowninFigure1C,P6interactedwiththeC-terminaldeletionmutantsA,B,C,D,andEandwiththeinternallydeletedmutantsJ,K,L,andM,butnotwiththeN-terminaldeletionmutantsF,G,H,andI.Becausenoradio-activesignalscouldbedetectedwiththelattermutantseventhoughtheywerepresentinrelativelyhighamountsonthemem-brane(Figure1B,lanesFtoI),wecanruleoutthepossibilitythatthesignalsobservedwiththeotherP6mutantscorrespondtoartifactualbindingasaresultofgrossoverloadingofthemembranewithproteins.TheminorsignalsobservedinlanesJtoM(Figure1C)correspondtointeractionsbetweentheoverlayandP6degradationproductsratherthantononspeci cinter-actionswithbacteriaproteinsasdemonstratedbythecontrolexperimentperformedwithbacteriatransformedwithemptyvector(Figure1C,laneE.coli).
ThesmallestmutantabletointeractwithP6wasmutantA,whichcorrespondstothe112N-terminalaminoacidsofP6,aregionwewillrefertoasdomainA.ThelatterwasfusedtotheNterminusofaproteinfromanunrelatedvirus,P42ofBeetnecroticyellowveinvirus,ortotheCterminusofglutathioneS-transferase(GST)toanalyzetheabilityofdomainAtointeract
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
CaMVP6IsaNucleocytoplasmicProtein929
Figure1.MappingoftheP6DomainInvolvedinP6–P6Interactions.
(A)Schematicrepresentationoffull-lengthP6(520aminoacids[aa])andP6deletionmutantsusedinthefarproteingelblotassays.Theminimalsequencerequiredfortranslationaltransactivation(mini-TAV),thesingle-strandedRNAbindingdomains(ssRNA),andthezinc ngermotif(Zn)areindicatedbydarkgray,black,andgrayboxes,respectively.ThemolecularmassesofP6anditsdeletedversionsareindicatedtotheright.
(B)and(C)Bacterialextractscontainingfull-lengthP6(laneP6),truncatedversionsofP6(lanesAtoM)ornot(laneE.coli)wereseparatedbySDS-PAGE(15%)andtransferredontoanitrocellulosemembrane.ThemembraneswereeitherincubatedwithantibodiesraisedagainstP6(B)orsubmittedtoafarproteingelblotassayusinginvitro32P-labeledP6(C).
(D)The112N-terminalaminoacidsofP6correspondingtomutantAwerefusedtoanunrelatedprotein,P42ofBeetnecroticyellowveinvirus.ThefusionproteinwasexpressedinE.coli,separatedbySDS-PAGE,andtransferredontoanitrocellulosemembrane.Themembranesweresubmittedtoafarproteingelblotassayusing32P-labeledP6asaprobe(leftpanel)ortoproteingelblottingusingspeci cpolyclonalantibodies(rightpanels).Molecularmassesofmarkerproteinsusedintheexperimentsareindicatedattheleft.
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
930ThePlantCell
withP6whenplacedinanunrelatedsequencecontext.P6boundtoA:P42butnottoP42alone(Figure1D)andtoGST:AbutnottoGST(seebelow),thusfurtherdemonstratingthatdomainAcanactindependentlyoftherestoftheaminoacidsequenceinmediatingP6self-associationinvitro.Takentogether,theresultsoftheabovefarproteingelblotexperimentsprovideevidencethattheN-terminalregionencompassesthedomainrequiredforP6self-interactioninvitro.
TheNTerminusofP6IsanEssentialDeterminantforBoththeFormationofViroplasmsandTheirLocalizationintheCytoplasm
ToobtainfurtherinformationabouttheimportanceoftheN-terminalregionofP6intheformationofinclusionbodies,tobacco(Nicotianatabacum)BY-2cellsweretransfectedwithrecombinantpCK-EGFPplasmidscodingforfull-lengthP6andtwodeletedversions(AandP6DA)fusedtotheCterminusoftheenhancedgreen uorescentprotein(EGFP).Theresultsde-scribedbelowarerepresentativeofatleastfourindependenttransfectionexperimentsandobservationbyconfocallaserscanningmicroscopy(CLSM)at20hpost-transfection.
AfterbombardmentofBY-2cellswithplasmidsexpressingtheEGFP:P6fusionprotein,;80%oftransfectedcellscontainedlargecytoplasmicinclusionbodies(3to5mmindiameter)withpittedsurfaces,generallyintheproximityofthenucleus(Figure2A,panels1and2).Theinclusionbodieswereformedbynumeroussmalleraggregates,mostofwhichappearedashollowdonut-likestructures(Figure2A,panel3).Toexcludethepossibilitythattheirformationwasartifactual(i.e.,asaresultoftheEGFPmoietyfusedtotheP6),protoplastswerepreparedfromCaMV-infectedturnipplantsasdescribedbyKobayashietal.(1998), xedandimmunolabeledwithanti-P6andsecond-aryantibodiescoupledtothe uorochromeAlexa568.Obser-vationsbyCLSMrevealedthattheviroplasmsthusproducedinthecontextofanauthenticviralinfectionhadasimilarstructure(Figure2B),demonstratingthattheEGFPmoietyhasnopro-nouncedeffectontheself-assemblyofEGFP:P6intobaccocells.MoreovertheseresultsalsoillustratethatP6moleculesassembleproperlyandindependentlyofthecellularcontextbecausesimilarlyshapedaggregateswereformedincellsfromhost(turnip)andnon-host(tobacco)plants.
Approximately20%ofthetobaccocellsexpressingtheEGFP:P6fusionproteincontainedaggregatesofvariablesizesbut<2mmindiameter(Figure2A,panels4and5),whichprobablycorrespondtoearlystagesofviroplasmformation.Thesmalleraggregatesgenerallywerescatteredinthecyto-plasm,althoughtheywerealsosometimesfoundwithinthenucleuswhenthecellswereanalyzedbyCLSM.ThepresenceofsuchaggregateswithinthenucleusmayindicatethatEGFP:P6moleculesweretransportedtothenucleus(seebelow)andwerethenunabletoexitaftertheirself-assemblybecauseofthelargesizeoftheresultingaggregates.
IncontrastwithEGFP:P6,EGFP:P6DA(Figure3A)didnotformaggregatesintobaccocells(Figure3B,panels1and2)butwasmainlyfoundinthenucleusandinparticularwithinthenucleolus.ThisresultstronglysuggeststhattheN-terminalregionofP6isadeterminantnecessaryfortheformationofaggregatesandthat
italsocontainssignal(s)involvedinthetargetingand/orretentionofP6withinthecytoplasm.SimilarlytoEGFP:P6DA,expressionofEGFP:Anevergaverisetoaggregatesofanysize,buttheproteinwasinsteaddistributeduniformlyinthecytoplasm(Figure3B,panels3and4).ThefailureofEGFP:Atoaccumulateinthenucleustoasigni cantextentwassomewhatsurprisingbecauseitissuf cientlysmallthatitwouldbeexpectedtobeabletotraversenuclearporesbypassivediffusion.
Takentogether,thesedatashowthattheN-terminalregionofP6isnecessarybutapparentlynotsuf cientfortheformationofviroplasmsand,thus,thatotherregion(s)ofP6contributetothisprocess.OurfailuretodetectEGFP:AinthenucleusstronglysupportstheideathatthecytosoliclocalizationofP6isgovernedbydomainA.
TheN-TerminalP6–P6InteractionDomainIsConservedamongCaMVStrains
ComparisonoftheN-terminalsequenceofP6fromCaMVstrainCabb-BJIwithitscounterpartsfromotherCaMVstrains(CabbS,CabbS-Japan,NY8153,CM1841,W260,D/H,D4,B29,Xin/Jin,andBari)showedidentityrangingfrom83to97%.TheregioncanbedividedintotwosubdomainsthatwehavedesignatedA1(aminoacids1to83)andA2(aminoacids84to112),respectively(Figure4A).Theformeristhemostconserved(87to99%ofidentity)withtwonotableinvariantsequences:I1(aminoacids11to20)andI2(aminoacids63to83).NotethatI1alsocontainsapentapeptidemotifEKILM(residues11to15)thatisidenticalatfourof vepositionstotheupsteamsequenceEKLLM(motifi1;Figure4B,top).ThesequenceI1formspartofapredicteda-helixlocatedneartheNterminus(positions4to31)thatcontainsaseriesoffoursuccessiveheptadsequences(abcdefg),whereresiduesinpositionsaanddarehydrophobicasinLeuzippermotifs(Figure4B).Thissequenceispredictedbycomputeranalysis(Berger,1995)todimerizeviaacoiled-coilstructurewith>98%probability.SubdomainA2ismorevariable(62to93%identity)anddoesnotpossessaconservedmotifamongCaMVstrains;ithasapredictedbsheetcon guration.
Asa rststeptowardfurtherde ningtheP6–P6interactiondomain,thesequencescodingforsubdomainsA1andA2wereampli edbyPCRandclonedintothepGEX-2TKvectortoproduceGST-taggedproteins.Thecapacityofthesefusionproteinstoself-interactandtointeractwithP6orGST:Aweretestedbyfarproteingelblotexperiments.RadiolabeledP6interactedwithGST:AandGST:A1butnotwithGST:A2(Figure4C,leftpanel),showingthatsubdomainA1isresponsiblefortheinteractionbetweenP6molecules.Thisresultwascon rmedbythe ndingthat,wheneitherGST:AorGST:A1wasusedasoverlay,theyinteractedwithP6andwiththemselvesbutnotwithGST:A2,whereasthelatterwasunabletobindeithertoP6ortoanyofthefusionproteins(Figure4C,rightpanels).NotethatnoneofthefusionproteinsinteractedwithGST,excludingthepossi-bilitythattheobservedinteractionswereduetodimerizationofthetag.Takentogether,theseresultsprovideevidencethatthe83N-terminalaminoacidsencompassthedomainrequiredforP6self-interactioninvitroand,hence,probablyfortheformationofviroplasms.
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
CaMVP6IsaNucleocytoplasmicProtein931
Figure2.SubcellularLocalizationAnalysisofP6FusedtoEGFPinTobaccoBY-2CellsandofP6inProtoplastsfromCaMV-InfectedTurnipPlantsbyCLSM.
(A)Green uorescentimagesofEGFP:P6(images1and4)weretaken20haftertransfectionoftobaccocellsbybombardmentwithpCK-EGFP:P6plasmid.A0.45-mm-thickopticalsectionwassampledusingasingletrackconfocalmicroscopeandappropriate lters.Image3correspondstoanenlargementofaggregatessimilartothoseobservedinimage1.Images2and5correspondtothesuperpositionofthe uorescentimageandthecorrespondingdifferentialinterferencecontrastimage.Bars¼10mm.N,nucleus;Nu,nucleolus.
(B)ProtoplastspreparedfromCaMV-infectedturnipleaveswere xedandimmunolabeledwithrabbitanti-P6antibodiesandmouseanti-rabbitIgGcoupledtoAlexa568assecondaryantibody.Shownisthered uorescentimageofatypicalprotoplast.Theconfocalimageswerecollectedwithafocaldepthof0.45mm.Bar¼10mm.
MutationsintheN-Terminala-HelixofP6AffecttheFormationofViroplasms
InviewofthefactthatsubdomainA1istotallyconservedamongCaMVstrainsandispartoftheputativeLeuzipper–containinga-helix,additionalexperimentswereperformedtofurtherin-vestigateitsroleinviroplasmformation.Weremovedboththei1andI1sequences(aminoacidsfrompositions5to20)fromP6(Figure5A)toseeifthereductionofthesizeofthea-heliximpairstheformationofviroplasms.The uorescenceofthecorrespond-ingEGFP:P6Di1-I1mutantwasveryabundantanddiffuseinthenucleus,whereasonlylowlevelswerefoundinthecytoplasm(Figure5B,panels1and2).SimilarbehaviorwasobservedwithmutantEGFP:P6DI1,inwhichwedeletedonlytheI1sequence(Figure5B,panels3and4).TheseP6mutantsdidnotformaggregates,thusreinforcingthehypothesisthattheN-terminala-helixisrequiredforP6self-assembly.Moreover,theseresultsstronglysuggestthatthea-helixand/orspeci cresiduesofI1arealsoimplicatedinthecytoplasmiclocalizationofP6becausebothconstructions,EGFP:P6Di1-I1andEGFP:P6DI1,localizedalmosttotallyinthenucleus,incontrastwithEGFP:P6(Fig-ure2A).
Insummary,theforegoingresultsstronglysuggestthattheN-terminala-helixhasstructuralfeaturesimportantforboththeaggregationofP6anditslocalizationinthecytoplasm.Todemonstrateitsroleintheformationofviroplasm,wemutatedthreeLeuresiduesoftheI1sequenceofP6(seealsobelow).TheLeuresiduesatpositions14and16weresubstitutedbyGlnresiduesandtheLeuatposition18byaHis(Figure4B,top).Aminoacidresidues14and18correspondtoposition‘‘d’’ofthesecondheptadandtoposition‘‘a’’inthethirdheptadoftheLeuzipper.Theyarepredictedtolieonthesurfaceofthea-helixandtobeinvolvedinhydrophobicinteractionsbetweenP6mole-culesinthecoiled-coilstructure(Figure4B).Leu16,ontheotherhand,isnotpredictedtobesurface-located.
First,wetestedthecapacityofthismutant,namedP6m1,tointeractwiththewild-typeP6byfarproteingelblotassay.
The
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
932ThePlantCell
Figure3.SubcellularLocalizationofTruncatedVersionsofEGFP:P6inTobaccoBY-2Cells.
(A)Schematicrepresentationoffull-lengthP6andoftruncatedversionsfusedtotheCterminusofEGFP.P6fragments:thenumberscorrespondtoaminoacidpositionswithintheclonedP6sequence.EGFPisrepresentedbyagreenboxanddeletedversionsofP6byanemptybox,exceptdomainA,whichisyellow(nottoscale).TheotherdomainsofP6arerepresentedasinFigure1.CLSMimages:thenumbersreferto(B).aa,aminoacids.(B)SubcellularlocalizationofEGFP:P6mutants(1to4)intobaccoBY-2cells20hpost-transfectionbybombardment.FluorescenceimageswerecollectedbyCLSMasdescribedinFigure2.Images2and4correspondtothesuperpositionofthe uorescentimageandthecorrespondingdifferentialinterferencecontrastimage.Bars¼10mm.
proteinwasexpressedinE.coli,fractionatedbySDS-PAGE,transferredontoanitrocellulosemembrane,andthenincubatedwith32P-labeledP6.AsshowninFigure6,P6m1nolongerinteractedwithP6,suggestingthattheputativehydrophobicbondsinvolvingLeu14and18arecrucialforformationoftheP6-P6complex(cf.tolaneP6correspondingtothepositivecontrol).WealsofusedP6m1totheCterminusofEGFPandexpresseditinBY-2cells.VisualizationofEGFP:P6m1byCLSMrevealedthatitneverproducedaggregatesbutwasinsteadevenlydistributedthroughoutthecytoplasmandthenucleus(Figure5B,panels5and6)incontrastwithEGFP:P6deletedversionsthatmainlyaccumulatedwithinthenucleus(Figure5B,panels1to4).WealsodeterminedbyAlascanningwhetherotherresiduesofthea-helixareinvolvedintheaggregationofEGFP:P6.InthemutantEGFP:P6m2,theMet,Glu,andAspresidueslocatedbetweenLeuresiduesoftheI1sequenceatpositions15,17,and19,respectively,werereplacedbyAlaresidues,andinmutantEGFP:P6m3,theresiduesoftheEKImotifatpositions11to13wassubstitutedbyanAlatriplet.IncontrastwithEGFP:P6m1,whenexpressedinBY-2cellsbothconstructionswereexclu-sivelyfoundinthecytoplasm;no uorescencecouldbedetectedinthenucleusevenafter48to72hincubationofthetransfectedtobaccocells(Figure5B,panels7to10).However,EGFP:P6m2alsogeneratednumeroussmall uorescentfocithatweresuper-imposedonthediffuse uorescence(Figure5B,panel7;seealsoFigure8C,panel5),whereasEGFP:P6m3wasunabletoformaggregates.
Takentogether,theseresultsdemonstratethattheN-terminala-helixofP6isessentialfortheformationofviroplasmsand,furthermore,thatitsLeuzippermediatestheP6–P6interaction.Variousaminoacidsofthea-helix,notallofwhicharelocatedattheinterfaceofthepredictedcoiled-coilstructure(Figure4B),areimportantfortheaggregationprocess.Ifwerefertoourmodel(Figure4B),GlufromtheEKImotifandLeuatpositions14and18aredirectlyinvolvedintheinteractionbetweenP6molecules,thusexplainingtheinabilityofEGFP:P6m1andEGFP:P6m3toformaggregates.Whethertheotherresidues,inparticularthoselocalizedbetweentheLeuresidues,affectthe
secondary
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
CaMVP6IsaNucleocytoplasmicProtein933
Figure4.Fine-ScaleMappingoftheP6–P6InteractionDomain.
(A)SchematicrepresentationofdomainA(aminoacids1to112).TheconservedregioncanbedividedintotwosubdomainsdesignatedA1(aminoacids1to83)andA2(aminoacids84to112).Thetwoinvariantsequences(I1andI2)indomainAareindicatedbysolidlinesandthea-helixbyagraybox.aa,aminoacids.
(B)Top:thesequenceofaminoacids4to31ofP6containsfourtypicalLeuzipperheptadmotifs.Hydrophobicresiduesatheptadpositionsaanddareinbold.TheinvariantsequenceI1andthenearduplicatesequencei1areindicated.LeuresiduessubstitutedinEGFP:P6mbyaGln(atpositions14and16)andbyaHis(atposition18)arespeci ed.Bottom:acomputer-generatedmodelofaparallelcoiled-coilstructureformedbetweentheNterminioftwoP6molecules.Thesidechainsoftheresiduesinpositionsaanddareshown.
(C)GST:A,GST:A1,andGST:A2aswellasGSTandfull-lengthP6wereexpressedinE.coliandsubmittedtofarproteingelblotanalysisusing32P-labeledP6,GST:A,GST:A1,orGST:A2asprobeintheoverlay.Theradioactivecomplexesweredetectedbyautoradiographyafteranexposureof24h.Molecularmassesofmarkerproteinsareindicatedattheleft.
structureoftheNterminusofP6orthecompleteproteinremainsanopenquestion.Indeed,EGFP:P6m2couldstillgivesmallaggregatesbutlostthecapacitytoassembleintolargeperinu-clearviroplasms.
P6IsaNucleocytoplasmicShuttlingProtein
Asmentionedatthebeginning,smallaggregatesofEGFP:P6werefoundinthenucleusofBY-2cells(Figure2,panels4and5)andEGFP:P6DAwaspresentmainlyinthenucleus(Figure3B,panels1and2),althoughthecorrespondingfusionproteinshaveapproximatemolecularmassesof85and75kD,respectively,whicharehigherthanthereportedlimitforpassivediffusion
¨rlichandKutay,1999).We rstsus-acrossnuclearpores(Go
pectedthatEGFP:P6andEGFP:P6DAmightbecleavedbyacellularproteasetoproduceaspeciessmallenoughtofreelydiffusethroughthenuclearpores.SuchahypothesiswasconsistentwiththeobservationthataP6-speci cdegradationproductof42kDisfrequentlyfoundinCaMV-infectedplants(Mauleetal.,1989)andinheterologousexpressionsystems(Lehetal.,2000).However,proteingelblottingassaysperformedwithproteinsfromtransfectedBY-2cellsexpressingEGFP:P6orEGFP:P6DA,usingantibodiesraisedagainstGFP,revealedonlypolypeptidesof85and70kD,respectively(seesupplemen-taldataonline),indicatingthatnosigni cantdegradationofthefusionproteinsoccurred.Consequently,EGFP:P6andEGFP:P6DAareprobablytransportedactivelyintothenucleusoftobaccocells.
Theaforesaidobservationsraisedthequestionwhetherfull-lengthP6mightlikewiseenterthenucleusofhostplantsduringCaMVinfection.Toanswerthisquestion,wepreparedproto-plastsfromsystemicallyCaMV-infectedandhealthyturnipplantsandperformedimmunodetectionofP6usinganti-P6andsecondaryantibodiescoupledtoAlexa488.Observationofthecytosolandinparticularthenucleusby uorescentmicros-copyunderstandardconditionswasoftenhinderedbythepresenceofnumerouschloroplasts.Nevertheless,diffuse uo-rescencecouldbevisualizedwithinthenucleusbutnotthenucleolus.Generally,theprotoplastscontainednumerousP6aggregatesinproximitytothenuclearmembranesothatitwasdif culttodeterminewhethersigni cantamountsoftheimmu-nolabeledP6wereindeedwithintheinteriorofthe
nucleus.
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
Figure5.TheN-Terminala-HelixofP6IsanEssentialDeterminantfortheFormationofViroplasms.
(A)SchematicrepresentationofEGFP:P6anditsdeletedversions.P6fragments:thenumberscorrespondtotheaminoacidpositionswithintheclonedP6sequence.EGFPanddomainAarerepresentedbygreenandyellowboxes,respectively(nottoscale).TheLeu-enrichedsequences(i1-I1andI1)areindicatedaboveEGFP:P6Di1-I1andbelowEGFP:P6DI1,respectively.I1indomainAisrepresentedbyabluebox.Theemptyspaceandtheredstarintheblueboxindicatethedeletionandthepointmutations,respectively.TheotherdomainsofP6arerepresentedasinFigure1.AminoacidsmutatedinmotifI1ofthethreeEGFP:P6mversionsaredepictedinred.Theothermotifsarede nedinFigure1.LegendCLSMimages:numberingrefersto(B).aa,aminoacids.
(B)SubcellularlocalizationofpointmutatedEGFP:P6anddeletedversions(images1to10).The uorescentproteinswereexpressedinBY-2cellsandthe uorescentimages(1,3,5,7,and9)collectedbyCLSMweresuperposedonthecorrespondingdifferentialinterferencecontrastimages(2,4,6,8,and10).Bars¼10mm.
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
Figure6.PointMutationsintheInvariantSequenceI1ImpairP6–P6Interactions
Proteinextractsofbacteriaexpressingeitherwild-typeP6(laneP6),point-mutatedP6(laneP6m1),oranextractofbacteriatransformedwithemptyvector(laneE.coli)werefractionatedbySDS-PAGE(15%)andtransferredontoanitrocellulosemembrane.ThemembraneswereincubatedeitherwithantibodiesraisedagainstP6(rightpanel)orsubmittedtoafarproteingelblotassayusinginvitro32P-labeledP6(leftpanel).Molecularmassesofmarkerproteinsareindicatedtotheleft.
Therefore,immunolabelingwithanti-P6antibodieswasper-formedonpuri ednucleiisolatedfromhealthyandCaMV-infectedturnipprotoplasts;thenucleiwerealsostainedwithpropidiumiodide(Figures7Aand7B,panel2).Nucleipreparedfromhealthyplantsneverreactedwithanti-P6antibodies(Figure7A),whereas;50%ofthosefrominfectedplantswereimmu-nolabeled(Figure7B).P6-Alexa488 uorescentfociwereobservedinthenucleoplasmand/orthenucleolusfrominfectedturnipcells,thusdemonstratingthatP6moleculesdoindeedenterthenucleusduringtheCaMVinfectioncycle.ThenucleiwereoftencontaminatedwithP6-containingviroplasmsbe-causethelatterremained rmlyattachedtotheoutersurfaceevenwhentheywerefurtherpuri edthroughacompositesucrose/Percollgradient.Therefore,werealizedaseriesofphotographsobtainedbyCLSManalysisof0.5-mm-thicksec-tionsacrosspuri edandP6-immunolabelednuclei.AsshowninFigure7C,largecontaminatingviroplasmsprogressivelydisap-pearedfromviewinsuccessivesections(panels5to14),whereassmallP6-labeledaggregatesprogressivelyappearedwithintheorganelle(panels13to18),thusprovidingadditionalevidenceforthepresenceofP6withinthenucleus.The uores-centfocimightcorrespondtoP6aggregatesand/ortointer-actionsbetweenP6andspecializednuclearcompartmentssuchasspeckles(forareview,seeLamondandSpector,2003)orCajalbodies(Ochsetal.,1994).ThelocalizationofP6inthenucleolus,observedinsomecases,mightberelatedtoitscapacitytointeractwiththeribosomalsubunitsasshownbyParketal.(2001).
ToexcludethepossibilitythatP6enteredthenucleiduringtheirpuri cation(i.e.,bydiffusionthroughanalterednuclearenvelope),nucleifromhealthyprotoplastswereincubatedduring30minat48Cwith;100mgofsolubleP6proteinexpressedinE.coli.Thepreparationwasimmunolabeledasdescribeabove.No uorescencewasdetectablewithintheorganellesafterthistreatment,thusreinforcingourconclusionthattheP6proteinfoundinnucleifrominfectedcellsisactivelytransportedthereinthecourseoftheCaMVreplicationcycle.
CaMVP6IsaNucleocytoplasmicProtein935
Inconclusion,ourdataclearlysupporttheideathatP6canenterthenucleusduringviralinfectionandalsoindicatethatP6isanucleocytoplasmicshuttlingprotein.Furthermore,our ndingsalsostronglysuggestthatthesequencedownstreamofdomainAisimplicatedinthenuclearlocalizationofP6,whereastheN-terminalregionofP6mightcontainanuclearexportsignal(NES).
TheNTerminusofP6ContainsanNESThatIsRecognizedbytheCRM-1NuclearExportPathway
ThelatterhypothesisisreinforcedbythefactthatdeletionoftheconservedhydrophobicsequenceI1locatedinsubdomainA1ormutationoftheLeuresiduesatpositions14,16,and18partiallyabolishednuclearexportofP6(Figure5B,panels3to6).Moreover,thisLeu-richsequencebearssomeresemblancetotheNES(EKDTLLIDL)foundintheBR1proteinoftheSquashleafcurlvirus,ageminivirus(WardandLazarowitz,1999),andtotheNESsequenceofseveralknownrapidlyshuttlingnuclearpro-teins,suchasHIVRevprotein(forareview,seePollardandMalim,1998).
ToprovidefurtherevidencethattheaforesaidsequenceisanNES,wedeletedthesequenceI1ormutatedLeuresidues14,16,and18intheEGFP:Afusionprotein(Figure8A)asdescribedabove,andthebehaviorintobaccoBY-2cellsofthemutantswascomparedwiththatofthenonmutatedprotein.TheseexperimentswereperformedwithEGFP:Aratherthanwiththefull-lengthP6becausenuclearaccumulationofEGFP:Amutantswouldbedirectlyrelevanttotheimpairmentoftheexportprocess,whereastheaccumulationofEGFP:P6mutantsinthenucleusdoesnotpermitdiscriminationbetweenanexportdefectandanactiveimportoftheprotein.Indeed,thewild-typefusionproteinEGFP:Awasneverfoundinthenucleus,althoughitisofasizethatshouldpermitittodiffusefreelythroughthenuclearpore(Figure3B,panels3and4).
WhensequenceI1wasremovedfromdomainA,EGFP:ADI1wasequallydistributedinthecytoplasmandthenucleusexceptforthenucleolus(Figure8B,panels1and2),whereasEGFP:Alocalizedexclusivelytothecytoplasmiccompartment(Figure3B,panels3and4).ThesubcellularlocalizationinBY-2cellsofmutantEGFP:Am(Figure8B,panels3and4),inwhichthethreeLeuresiduesofI1werereplacedbypolarresidues,wassimilartothatobservedwithEGFP:ADI1(Figure8B,panels1and2);EGFP:Amwasfoundinboththecytoplasmandinthenucleusbutnotinthenucleolus.TheabsenceofbothEGFP:Amutantsinthenucleolus,incontrastwiththesituationwithEGFP:P6DI1andEGFP:P6pointmutatedversions(Figure5),mightbeduetothefactthattheN-terminalregionofP6isunabletointeractwithribosomalproteins,whereastheEGFP:P6mutantsstillcontainthecorrespondinginteractiondomains(i.e.,mini-TAVandRNAbindingdomainA)(Lehetal.,2000;Parketal.,2001;Bureauetal.,2004).
Alltheseresultssupportamodelinwhich(1)bothEGFP:AandEGFP:Amutantscanenterandexitthenucleusbydiffusion,(2)EGFP:AmoleculesbutneitherEGFP:ADI1norEGFP:Amarerapidlyexportedtothecytoplasm,and(3)thatthesequenceI1functionsasanNESbecausepointmutationsofLeuresiduesinI1impairtheexportofEGFP:A.Thus,theseLeuresidues
appear
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
936ThePlantCell
Figure7.NuclearLocalizationofP6.
Nucleifromhealthy(A)andCaMV-infectedturnipleaves(B)were xedandimmunolabeledwithrabbitanti-P6antibodiesandmouseanti-rabbitIgGcoupledtoAlexa488assecondaryantibodies(image1)andstainedwithpropidiumiodide(image2).Panel3correspondstodifferentialinterferencecontrastimagesandtheright-handimages(panel4)totheirsuperpositionwiththe uorescentandpropidium-stainedimages.Theconfocalimageswerecollectedwithafocaldepthof0.45mm(C).Aseriesofsuchopticalsectionsthroughanucleusisolatedfromaninfectedplant,anti-P6immunolabeled,andstainedwithpropidiumiodide.Bar¼5mm.
tobeessentialresiduesforthenuclearexportofP6asalreadydescribedfornucleocytoplasmicshuttlingproteinspossessingaLeu-richNESandinparticularfortheBR1proteinofSquashleafcurlvirus(WardandLazarowitz,1999).However,wecannottotallyexcludethattheinvariantsequenceI1alsohaspropertiesinvolvedintheretentionoffusionproteininthecytosol.
Therefore,thenuclearexportofP6wasfurtherinvestigated,treatingBY-2cellstransfectedwiththeaforementionedre-combinantplasmidswithleptomycinB,whichspeci callyinhib-itstheCRM-1pathwayinvolvedinthenuclearexportofmanyproteins(Fornerodetal.,1997;Kudoetal.,1998).WhenBY-2cellsexpressingEGFP:Awereincubatedwith100nMlepto-mycinB,6hafterbombardment,the uorescentproteinaccu-mulatedabundantlyinthenucleus(Figure8C,panel2),whereasno uorescencewaspresentinthiscompartmentinuntreatedcontrolcells(Figure8C,panel1),thuscon rmingthatEGFP:Amoleculesareactivelyexportedfromthenucleus.ThefusionproteinEGFP:P6formedlargeaggregatesinthecytoplasmandwasundetectableinthenucleusoftransfectedtobaccocells(Figure8C,panel3),butwhenthelatterweretreatedwithleptomycinB,itwasfoundinboththecytoplasmandinthenucleus(Figure8C,panel4).Thenuclearcompartmentcon-taineddiffuse uorescence,accompaniedasexpectedbymanysmallaggregatesbecauseP6wasabletoself-interact.ThisresultprovesthatP6isactivelytransportedbetweenthenucle-ocytoplasmiccompartments.SimilarexperimentswerealsoperformedwithpointmutatedEGFP:P6versionstodeterminethefunctionalimportanceofdifferentresiduesinthenuclearexportofP6.Asexpected,themutantEGFP:P6m1hadthesamesubcellularlocalizationinBY-2cellstreatedwithleptomycin
B
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
Figure8.TheLeu-EnrichedSequenceofDomainAIsResponsiblefortheNuclearExportofP6.
(A)SchematicrepresentationofEGFP:Aandmutatedversions.EGFP,domainA,andmotifI1ofP6arerepresentedasinFigure5.TheemptyspaceandtheredstarindicatethedeletionandthepointmutatedmotifI1,respectively.
(B)SubcellularlocalizationinBY-2cellsofEGFP:AI1andEGFP:Am(images1to4).The uorescentimages(1and3)observedbyCLSMaresuperposedonthecorrespondingdifferentialinterferencecontrastimages(2and4).
(C)EffectofleptomycinBonthesubcellularlocalizationofEGFP:Afusionproteinsandofwild-typeandpointmutatedformsofEGFP:P6.FluorescentcellswereselectedunderanHBOlamp,collectedinBY-2cellculturemediumcontaining100nMleptomycinB(imagestotheright)ornoleptomycin(imagestotheleft),andincubated6hat248Cwithgentleshaking.Thepoint-mutatedaminoacidswithintheI1sequenceareindicated.Bars¼10mm.
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
938ThePlantCell
(datanotshown)ornot(Figure5B,panels5and6)becausemutationsoftheLeuresiduesaresuf cientpersetoimpairtheexportofthefusionprotein.The uorescenceinthecytoplasmevenafterleptomycinBtreatmentsuggeststhatnotallEGFP:P6m1moleculesenteredthenucleusbecausetheywereretainedinthecytoplasmor,alternatively,thatotherresiduesoftheI1sequencemightcontributetotheexport.IncontrastwithEGFP:P6m1,leptomycinBhadonlylittleeffectonthenuclearexportofEGFP:P6m2becausealmostno uorescencecouldbedetectedwithinthenucleus(Figure8C,panels5and6)inmostBY-2cellsobservedbyCLSM;onlyfewcellsexhibitedahighly uorescentnucleus.ThedifferenceobservedintheresponsetoleptomycinBtreatmentmightbeduetothefactthat(1)theresiduesmutatedinEGFP:P6m2areindeedessentialforexportashypothesizedpreviouslyor(2)thattheirmutationsmodifytheconformationofEGFP:P6inamannerthatinterferessomehowwiththeactivityoftheinhibitor.TheEGFP:P6m3mutantmainlyaccumulatedinthenucleoplasmwhenthecellswereincubatedinthepresenceofleptomycinB,whereasitdidnotinuntreatedcells;onlylowlevelsofEGFP:P6m3werefoundinthecytoplasmoftreatedcells(Figure8C,panels7and8).ThisresultsuggeststhattheEKImotifisnotpartoftheNES,orifitis,ithasaminorin uenceontheexportofP6bytheCRM-1pathway.
Together,thesedataleadtotheconclusionthatP6containsatitsNterminusanNESandthatitsLeuresiduesinvolvedinthenuclearexportofP6arerecognizedbytheCRM-1pathway.TheactivityofthisexportpathwaylimitstheaccumulationofP6inthenucleusthatcouldbedeleteriousfortheCaMVinfectiouscycle.DISCUSSION
DuringthecourseofaCaMVinfection,P6formselectron-denseviroplasmsthatarethoughttobevirionfactoriesthatserveasascaffoldforvirusreplicationandassembly.Inthisstudy,wehaveinvestigatedbyinvitroandinvivoexperimentalapproachesthemechanismleadingtotheformationoftheseviroplasms.OurresultsshowthatP6self-interacts,asalreadysuggested(Haasetal.,2000),andfurtherdemonstratethat,atleastinvitro,theP6–P6interactionsareexclusivelymediatedbytheN-terminalregionencompassingresidues1to83(subdomainA1).NootherP6sequencewasabletointeractinvitrowithfull-lengthP6.ThefactthatfusionofdomainAtounrelatedproteinsdrovethisinteractioninvitrodemonstratesthattheNterminusofP6issuf cientpersetopromoteself-interactionindependentlyfromneighboringsequences.OurresultsonlypartiallyagreewiththoseobtainedbyLiandLeisner(2002),whousedtheyeastdoublehybridsystemtoshowthat,inadditiontotheNterminus,threeotherdomainsofP6areabletobindfull-lengthP6,namelythemini-TAVdomain,thedownstreamadjacentsequence,andtheC-terminalregionexceptfora90-amino-acid-longse-quence.Possiblytheadditionalinteractingdomainscharacter-izedinthedoublehybridsystembindtoP6withanaf nitythatistoolowfordetectioninfarproteingelblotexperiments.In-completerenaturationofthedomainsinquestioncouldalsointerferewithactivityintheinvitroassays.Ontheotherhand,wecannottotallyexcludethepossibilitiesthatsomeoftheinter-actionsdetectedinyeastbyLiandLeisner(2002)mightbemediatedbyyeastRNAorproteins.Indeed,domainsofP6identi edbytheseauthorstobeinvolvedinP6–P6interactionshavenucleicacidbindingpropertiesand/orinteractwithcellularproteins,inparticularnuclear-localizedproteins(Parketal.,2001;Bureauetal.,2004).
TheroleofsubdomainA1intheformationofviroplasmswasinvestigatedbytransientexpressionintobaccoBY-2cellsoffull-lengthP6anddeletedversionsofP6fusedtoEGFP.Expressionoffull-lengthP6fusionproteingaverisetoviroplasmslocatedintheproximityofthenucleus,whicharestructurallysimilartothosefoundinCaMV-infectedplants.Indeed,inbothcases,theviroplasmsappearedbyconfocalmicroscopyanalysisasag-gregatesofmultiplehollowmacromolecularstructures,anditissuggestedthattheymightbeproducedstepwisebytheassem-blyofthedonut-likestructuresthatcouldbevisualizedinsometransfectedtobaccocells.SimilarhollowstructureswerealsoobservedwhenNSP2andNSP5proteins,thetwomajorviralcomponentsofdenseviroplasmsinducedbyrotaviruses,werecoexpressedinculturedhostcellsintheabsenceofotherrotaviralproteinsandofrotavirusreplication(Fabbrettietal.,1999).WeassumethatthehollowcenteroftheP6aggregatescorrespondstotheelectron-lucentholesofviroplasmsobservedbyelectronmicroscopyinCaMV-infectedcells(Xiongetal.,1982).
TheresultsobtainedbytransientexpressionoftruncatedversionsofP6clearlydemonstratethat,althoughthe83N-terminalaminoacidsofP6arenecessary,theyarenotsuf -cientfortheformationofviroplasmsandthatconsequentlyotherregion(s)ofP6areimplicatedinthisprocess.Thedomainbetweenaminoacids289and379,referredtoasD3byLiandLeisner(2002),mightbeoneofthesesequencesbecausetheseauthorshaveshownthatitplaysanimportantroleinP6self-associationwhentestedinvivousingtheyeasttwohybridsystem.ThisregionofP6isalsoengagedininteractionsneededfortranslationaltransactivation(DeTapiaetal.,1993;Parketal.,2001).Inanyevent,our ndingssuggestthattheN-terminallymediatedP6–P6interactionisaprerequisiteforfurtherinter-actionsbetweenotherP6sequencesand/orforstabilizationofmacromolecularstructuresbecauseformationofviroplasmswastotallyimpairedwhenanN-terminallytruncatedP6(P6DA)wasexpressedintobaccocells.
ComputeranalysisofsubdomainA1indicatedthatitformsanamphipathica-helixatitsNterminus(residues4to31).ThelattercontainsaLeuzippermotifthatcouldformaparallelcoiled-coilstructure(Lupas,1997),stronglysuggestingthatsuchaconfor-mationisimplicatedintheinteractionbetweenP6molecules.Thishypothesisiscon rmedbytheresultsoffarproteingelblotassaysshowingthattheintermolecularinteractionislostifkeyhydrophobicaminoacidsoftheLeuzippermotifsaresubstitutedbypolarresidues.InvolvementofsuchaninteractionintheformationofviroplasmsisevidencedbythefailureofP6carryingthesepointmutationsinthea-helixtoformaggregatesintransfectedtobaccocells.Currently,wehypothesizethatthecoiled-coilformationbetweentheNterminiofinteractingP6moleculesinducesconformationalchangesthatallowotherregionsofP6toparticipateintheaggregationprocess.Indeed,mutationsofaminoacidsthatarenotlocatedatthecoiled-coilinteractingsurfacedidnotpreventtheformationofsmall
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
CaMVP6IsaNucleocytoplasmicProtein939
aggregates;however,theyimpairedassemblyoftheseaggre-gatesintoviroplasms.Itisevidentthatafurtherunderstandingofthemechanismofviroplasmformationwillalsorequirecharac-terizationoftheotherdomainsofP6implicatedinthisprocessaswellaspossiblecellularstructuresand/orfactorsthatmightbeinvolved,suchasendomembranesand/orthemicrotubularnetwork.Nevertheless,nohost-speci cfactorsseemtobeneededbecauseviroplasmsthatformedintobaccocells,anon-hostforCaMV,aresimilartothosefoundinhostcells.Asnotedearlier,membranecomponentsmayfunctionintheearlystepsofP6self-assembly,characterizedbyformationofsmallaggregatesasthelatterdisappearedupontreatmentoftobaccocellswithnonionicdetergent,whereastheviroplasmslocatedatthenuclearperipherywereunaffected(datanotshown).Furtherinvestigationswillberequiredtodeterminewhetherbindingtoendomembranesisessentialfortheself-assemblyofP6andwhetheritshydrophobicNterminus,whichpresentsfeaturesofapeptidesignal(BlobelandDobberstein,1975),playsarole.Becauseviroplasmformationdoesnotvisuallyperturbthemicrotubuleortheactin lamentnetworksinBY-2cells,itwillbeofparticularinteresttodeterminewhetherviroplasmformationinvolvesthecytoskeleton,asdescribedinanimalcellsforaggresomesandfortheviralfactoriesinducedbylargecytoplasmicDNAvirusessuchasAfricanswinefevervirus(Kopito,2000;Heathetal.,2001).Johnstonetal.(1998)pro-posedamodelinwhichsmallaggregatesaredeliveredbyretrogradetransportalongmicrotubulestotheperipheryofthenucleuswheretheyareassembledintolargestructures.
TransientexpressionofEGFP-taggedP6ledtotheunex-pecteddiscoverythatP6,considereduntilnowasacytoplasmicprotein,isactuallyanucleocytoplasmicshuttlingprotein.Thepresenceofthisviralproteinwithinthenucleuswascon rmedbyitsimmunodetectioninnucleipreparedfromCaMV-infectedturnipleavesandCLSM-generatedopticalserialsectionsthroughtheorganelles.Ourresults,obtainedwithtransfectedtobaccocells,indicatethatonlyasmallfractionofP6,probablymoleculesthatarenotengagedintheaggregationprocess,entersthenucleus.Indeed,EGFP:P6mainlyformedinclusionbodiesinthecytoplasmandwasalmostundetectableinthenucleusoftobaccocells.OnlyinhibitionoftheexportprocessbyleptomycinBsystematicallypermittedobservationofdiffuseEGFP:P6andsmallaggregateswithinthenucleus.OurresultsalsoindicatethattheexportofP6probablyoccursveryrapidlyininfectedcells,sothatonlylowamountsarepresentinthenucleusatanytime.ThestrongP6nuclearexportactivityprobablypreventsaccumulationofP6withinthenucleus,whichcouldbedeleteriousforCaMVinfectivity.Inaddition,itismorethanlikelythatthenucleocytoplasmictransportis nely
Table1.OligonucleotidesUsedasPrimerstoGeneratethePCRProductsClonedintopGEX-2TK,pCK-EGFP,pETP42,andpETKaKS.6VectorsNameA
ABam(þ)AEco(ÿ)A1Eco(ÿ)A2Bam(þ)A2Eco(ÿ)B
Bsrmut(þ)Bsrmut(ÿ)P6Bsr(þ)PBsr(þ)P6DABsr(þ)QBsr(þ)P6Xba(ÿ)AXba(ÿ)A1Xba(ÿ)BXba(ÿ)QXba(ÿ)C
ANco(þ)ANco(ÿ)D
NESmut(þ)DNES(ÿ)NES(þ)Di1(ÿ)
Sequence
CloningofsequencescorrespondingtoCaMVP6truncatedversionsgccggatccATGGAGAACGAAAAACTCgatgaattcTCATGGAATTCCCTGATGAGGcacgaatccCTAAGCCATCAACGGATTTGggcggatccTCCAATATCTTGTCAAAAGATcacgaattcCTATTCTGCTCTGAGAGGAGC
CloningofsequencescorrespondingtoCaMVP6proteinanditstruncatedversions
GACTGGGGTTGTACTAAGGCCGCCTTAGTACAACC
catgtacaagATGGAGAACATAGAAAAACTCATAGTACAACCgcatgtacaagCTCAAGATCAGAAGTACTATTCgcatgtacaagATCCCACAAAAATCTGAGCTTAAgcatgtacaagCCAATCCCACAAAAATCTGAGgattctagaTCAATCCACTTGCTTTGAAGACgattctagaTCATGGAATTCCCTGATGAGGgattctagaTCAAGCCATCAACGGATTTGTgattctagaTCAGGAGATCTCTTTTGGGGC
gattctagaTCAAAATATGTCTTTCTCTGTGTTCTTG
CloningofthesequencecorrespondingtotheP6N-terminaldomain(aminoacids1to112)
gatccatggATGGAGAACATAGAAAAACTCctaccatggtAATTCCCTGATGAGGACGSite-directedmutagenesis
AAAATACAAATGCAAGAACACGATCTACTCTTGCATGAGGAGTTTTTGTAAGAGCAAAAATAAGCTTATATGTTCTCCATCTTGTACAGC
RestrictionSiteBamHIEcoRIEcoRIBamHIEcoRI
BsrGIBsrGIBsrGIBsrGIXbaIXbaIXbaIXbaIXbaI
NcoINcoI
Forwardprimer(þ)andreverseprimer(ÿ).Restrictionsitesintheprimersequencesarerepresentedbybold-facedlower-caseletters.PCRproductswereclonedintopGEX-2TK(A),pCK-EGFP(BandD),pETP42(C),andpETKaKS.6(D)vectors.
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
940ThePlantCell
regulatedduringtheviralcycle(inotherwords,thatitoccursonlyatspeci cstages).Thesewouldexplainthedif cultyween-counteredtodetectP6innucleifrominfectedplants.
ThestudyofthebehaviorofP6mutantsinBY-2cellsrevealedthatthenuclearexportactivityisassociatedwiththeLeu-richsequence(residues11to20)attheNterminusofP6.Itsin-volvementinnuclearexportwasdemonstratedbytheincapacityofP6toexitthenucleuswhenLeuresiduesofthesequencewerepointmutatedandbythefactthatmutateddomainAofP6accumulatesinthenucleus,incontrastwiththewild-typeform.ThesequenceEKIisnotimplicatedintheexportofP6asevidencedbytheresultsofexperimentsperformedwithlepto-mycinB,butitisanimportantdeterminantfortheformationofviroplasms.ConcerningtheinvolvementoftheotherresiduesoftheI1invariantsequence,furtherinvestigationsarenecessarytode nitivelyanswerthisquestion.Interestingly,theNESispartofthea-helixthatisinvolvedinP6self-assemblyandthisfactmightexplainwhydeletionofthe rst90nucleotidesoftheCaMVORFVIabolishessystemicinfectionandsigni cantlyreducesthereplicationofthegenomeinsinglecells(KobayashiandHohn,2003).TheoverlapbetweendomainsinvolvedinP6exportandself-assemblyalsoraisesthequestionofhowthesetwoactivitiesareregulatedduringtheviralcycle.WehypothesizethatP6proteinshuttlingbetweenthenuclearandcytoplasmiccompart-mentsprimarilyinvolvesapopulationofP6monomers(ordimers)thathaveescapedtheaggregationprocess.Recentstudieshavedemonstratedthatimportinsful lladualfunctionasanuclearimportreceptorandcytoplasmicchaperonefornuclearimported
proteins(Ja
¨keletal.,2002).SuchanantiaggregationmechanismmightalsobeinvolvedforP6molecules.Thisdoesnot,however,excludethepossibilitythatP6couldbeincorporatedintoviroplasmsaftertheirexportfromthenucleus.
ThediscoverythatP6isanucleocytoplasmicshuttleproteinopensnewprospectsforunderstandingthemechanismsbywhichthisviralproteinregulatestheCaMVinfectiouscycle.Thefunction(s)ofP6inthenucleuscanonlybeamatterforspeculationatpresent.P6mighthavearolesimilartotheRevproteinofHIV-1(PollardandMalim,1998)incontrollingexportofCaMV35SRNAanditssplicedversionsbecauseitalsohasthecapacitytobindsingle-anddouble-strandedRNA(DeTapiaetal.,1993;Cerritellietal.,1998).ThepresenceofP6inthenucleolus,whereassemblyofribosomalsubunitsoccurs,raisesthepossibilitythatP6mightinteractdirectlywithribosomesbeforetheirexporttorenderthemcompetentfortranslationoftheCaMVpolycistronicmRNA.TheribosomalproteinsL18andL24,whichinteractwiththemini-TAV(Lehetal.,2000)andRNAbindingdomains(Parketal.,2001)ofP6,respectively,couldbetargetsforP6becausetheyparticipateintheformationofthe60Ssubunitinthenucleolus(Andersenetal.,2002).OtherfunctionsmightalsobeassociatedwiththenucleocytoplasmiclocalizationofP6(i.e.,inhibitionofnonsense-mediatedmRNAdecaytopreventdegradationofthe35SRNAanditssplicedversions)(forareview,seeMaquatandCarmichael,2001).Thesehypothesesaresupportedbythe ndingthatP6nuclearexportismediatedbytheCRM-1pathway(Kudoetal.,1998),whichisknowntobespeci callyusedforexportoftheribosomalsubunitsandofsomecellularmRNAs(forareview,seeWeis,2002).
METHODS
ConstructionofRecombinantPlasmids
RecombinantplasmidswereconstructedbyinsertionofviralsequencesintothepET3aderivativespETKaKS(Lehetal.,2000),pGEX-2TK(Amersham-PharmaciaBiotech,Uppsala,Sweden),andpCK-EGFP(Clontech,PaloAlto,CA).DNAfragments ankedbyappropriatere-strictioncloningsitesweregeneratedusingPCR;theoligonucleotidesusedforPCRarelistedinTable1.
CaMVORFVIanditsderivativeswereclonedeitherintotheKpnIandSacIsitesorintotheSacIsiteofthepETKaKSplasmid.ViralDNAsequenceswereampli edfromplasmidpMD324containingtheCaMVCabb-JIgenome(DelsenyandHull,1983)usingtwoprimersbearingattheir59terminiKpnIandSacIsites,respectively,orSacIsites.TheDNAfragmentsweredigestedwiththeappropriaterestrictionenzymesandintroducedintopETKaKScleavedwithKpnIandSacIorwithSacI.Allconstructswerecon rmedtobeerrorfreebysequencing.ExpressionoftherecombinantplasmidsinEscherichiacoligeneratesfusionproteinscontainingattheirNterminusthedecapeptideMet-Arg-Arg-Ala-Ser-Val-Gly-Ser-Gly-Thr,whichcanbephosphorylatedinvitrobyaproteinkinasefrombovineheartmuscle(thephosphorylationsiteisinbold-facedtype).
TheDNAsequenceencodingtheNterminusoftheCaMVP6protein(nucleotides1to336ofORFVI)wasampli edfromthepETKaKS.6recombinantplasmidencompassingthecompleteORFVIusingprimerscarryinganNcoIrestrictionsiteattheir59end.ThePCRfragmentwasdigestedwithNcoIandclonedintopETP42(Lauberetal.,1998),whichhadbeencleavedwiththesameenzymetoproducepET-A:P42.PlasmidspGST:A(ORFVInucleotides1to336),pGST:A1(ORFVInucleotides1to249),andpGST:A2(ORFVInucleotides250to336),codingfordifferentregionsoftheP6NterminusfusedtoGST,wereobtainedbyPCRampli cationofdifferentORFVIsequenceswithprimerscontaining59terminalBamHIandEcoRIsites(Table1).Theampli edDNAfragmentsweredigestedwiththeappropriaterestrictionendonucleasesandclonedintolinearizedpGEX-2TK.
ThepCK-EGFPvectorwasusedtoconstructtherecombinantplas-midscodingforfusionproteinsbetweenEGFPandwild-typeCaMVP6orP6mutants.ThecorrespondingORFVIsequenceswereampli edbyPCRfrompMD324usingtwoprimerscarryingattheir59endsBsrGIandXbaIsites,respectively(Table1).
DeletionsandpointmutationswereintroducedinEGFP:P6andEGFP:Abysite-directedmutagenesis(Stratagene,LaJolla,CA).Therecombinantplasmidswereampli edbyPCRusingpfuTurbopoly-meraseaccordingtothemanufacturer’sinstructionsanddesignedinternaloligonucleotidesasprimers(Table1).ThemixturewasthenincubatedwithtwounitsofDpnIfor2hat378Ctodestroythetemplate.The59endsofPCRproductswerephosphorylatedbyT4polynucleotidekinaseinthepresenceof1mMATPforsubsequentligation.Error-freerecombinantplasmidswereidenti edbyDNAsequencing.
ProductionandPhosphorylationofRecombinantProteins
E.coliBL21/DE3(pLysS)strainwastransformedbyelectroporationwithpETKaKSandpGEX-2TKrecombinantplasmidscodingforfull-lengthP6orP6mutants.Expressionoftheheterologousproteinswasinducedwith1mMisopropylb-thiogalactosidefor2honcethebacterialculturehadreachedtheexponentialphase.Bacteriawerecollectedbycentrifu-gationat5000gfor5min,resuspendedinHMKbuffer(20mMTris-HCl,pH7.5,100mMNaCl,and12mMMgCl2),andlysedbysonication(threepulsesfor20sat50W).Aftercentrifugationat12,000gfor10min,thesupernatantwasdiscardedandtheinclusionbodiesresuspendedin500mLofHMKbuffer.
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
Full-lengthP6andtheP6fragmentsA,A1,andA2expressedfrompETKaKSandpGEX-2TKvectors,respectively,werelabeledinthepresenceof[g-32P]ATP(3000Ci/mmole)andbovineheartmuscleproteinkinase(10units)for2hatroomtemperature,accordingtotheinstructionsofthemanufacturer(Sigma-Aldrich,St.Louis,MO).ExcessradioactiveATPwaseliminatedby ltrationthroughaSephadexG50orG25column(Amersham-PharmaciaBiotech)dependingonthemolecularmassofthelabeledfusionproteins.ProteinGelBlotAnalysis
ProteinsfromrecombinantbacteriawereseparatedbySDS-PAGEandelectrophoreticallytransferredontoanitrocellulosemembrane(SchleicherandSchuell,Dassel,Germany).Themembraneswereblockedovernightin5%nonfatdriedmilkinPBSbuffer(140mMNaCl,2.7mMKCl,and8.1mMNa2HPO4,pH7.3)containing0.1%Tween20andthenincubatedfor4hatroomtemperaturewithspeci crabbitorsheeppolyclonalantibodiesraisedagainstP6(1:10,000dilution)orGST(1:5,000dilution),respectively.ThemembraneswerewashedwithPBSbufferandtreatedwithgoatanti-rabbitIgGantibodies,respectively,conjugatedeithertoalkalinephosphataseorperoxidase,atthedilutionrecommendedbythemanufacturer.FarProteinGelBlotAssays
Aproteinblottingoverlaytechniquewasusedtodetectinteractionsbetweenproteins.ProteinswereresolvedbySDS-PAGEandtransferredontoanitrocellulosemembrane.Membraneswerewashedseveraltimesat48CinHMbuffer(10mMTris-HCl,pH7.5,100mMNaCl,and25mMMgCl2)containing5%nonfatdriedmilkandincubatedfor12hat48Cwithgentleshakinginthesamebuffercontainingthe[32P]-labeledproteinintheoverlay.AfterthreewashesinHMbuffer,themembranesweredriedandradioactivecomplexesweredetectedbyautoradiography.TransientExpressioninTobaccoBY-2Cells
TheCaMVP6proteinanditsdeletedversionsfusedtoEGFPweretransientlyexpressedinBY-2tobaccosuspensioncells(NicotianatabacumcvBrightYellow2)maintainedasdescribedbyBanjokoandTrelease(1995).Cellsweresubculturedeach7dandharvested3daftermediumrenewalforbiolistictransfection.Cellswere lteredontoWhatmandisksandplacedfor2to4hon0.8%agarMSmediaplatessupplementedwith0.1Mmannitoland0.1Msorbitol.Particleprepara-tionandbombardmentassayswereperformedasdescribedbyHunoldetal.(1995)withmodi cations:2mgof1.1mmtungstenparticles(Bio-Rad,Hercules,CA)wereimmersedin1mLofabsolutealcoholfor20min.Driedparticleswerethensuccessivelymixedwith10mgofrecombinantplasmidDNA(pCK-EGFPvector)supplementedwith18%glycerol,0.75MCaCl2,and90mMspermidineina nalvolumeof90mL.The r-ingdistancewas11cmandtheheliumpressurewas7bars.Afterbom-bardment,cellsweretransferredto0.8%agarMSmediaplatesandincubatedinthedarkat288C.BY-2transfectedcellswerecollectedunderHBObinoculars(excitation/emissionwavelength488/505to545nm)20hafterbombardmentandculturedinMSliquidmediumbeforefurthertreatmentand/orCLSMobservations.VirusandHostPlant
Turnips(BrassicarapacvJustRightF1hybrid,providedbyTakiiandCo.,Kyoto,Japan)weremechanicallyinoculatedatthefourleafstage(Jacquotetal.,1998)withCaMVCabb-JIandgrowninagreenhouseat228Cfor5weeksbeforepreparationofprotoplastsfrominfectedleaves.
CaMVP6IsaNucleocytoplasmicProtein941
IsolationofTurnipNuclei
ProtoplastspreparedfromCaMV-infectedandnoninfectedturnipleaves(Kobayashietal.,1998)wereusedtoisolatenuclei.Approximately83106protoplastswerewashedtwiceinnucleibuffer(250mMsucrose,25mMMes,0.5mMEDTA,1mMMgCl2,1mMEGTA,pH5.5,andacompletecocktailofproteaseinhibitors[Roche,Indianapolis,IN]).Aftercentrifugationfor5minat100g,theprotoplastswereresuspendedin50mLofcoldnucleibuffercontaining1mMDTT,0.025%NonidetP-40,and1mMphenylmethylsulfonyl uorideandshakenslowlyfor20minat48C.Nucleiwereisolatedby lteringthesuspensionthrough50-mmmeshnylonandcollectedat48Cbycentrifugationfor5minat550g.Theywereresuspendedinthenucleibufferandcentrifugedat48Cthroughadiscontinuousgradientcomposedof18%Ficolland85%Percollfor15minat8000g.Thebandcontainingthenuclei,locatedbetweentheFicollandPercolllayers,wasdilutedthreefoldwith10mMPipes-KOH,pH7.0,andcentrifugedat600gduring10min.
FluorescenceAnalysis
FluorescentBY-2tobaccocells,transfectedwithEGFPoraproteinfusedtoEGFP,wereobservedbetweenaslideandcoverslipwithaZeissLSM510confocalmicroscope(Jena,Germany).EGFPwasviewedbyexcitationat488nmwithanargonlaserusinganappropriateemission ltertocollectthegreensignalfromtheopticalsection.Fluorescentcellswerealsoobservedunderthesameconditionsafterincubationfor8hat248CwithgentleshakingintheBY-2cellculturemediumcontaining100nMleptomycinB.
Forimmuno uorescencestudies,protoplastsornucleipreparedasdescribedabovewereharvestedand xedfor15minwithgentleshakinginprotoplastornuclei-speci cmedium,respectively,containing4%glutaraldehyde.Thereafter,theywerewashedthreetimeswiththeappropriatemedium,oncewiththemediumdilutedvolumetovolumewithPBS,thenagainwithPBSand nallyresuspendedinPBSbuffer.Asampleofprotoplastsornucleiwasmountedonapoly-L-Lys–coatedcoverslip,allowedtosettlefor1hatroomtemperature,andthentreatedovernightat48Cina0.1%sodiumborohydridesolution.Protoplastsandnucleiwereincubatedfor1hinablockingsolution(5%acetylatedBSA[Aurion,Wageningen,TheNetherlands],5%normalgoatserum,and0.1%coldwater shskingelatinpreparedinPBS)andthenovernightwiththepolyclonalanti-P6antibodies.Aftersixwasheswith0.1%BSAcinPBS,protoplastsornucleiweretreatedwithgoatanti-rabbitantibodiescoupledtoAlexa488(MolecularProbes,Eugene,OR),respectively,for12h.Afterremovalofexcesssecondaryantibodiesbysixwashesin0.1%BSAcinPBS,theprotoplastsandnucleiweresubsequentlyexaminedwithaZeissLSM510confocalmicroscope.
ACKNOWLEDGMENTS
WethankMarcBergdollforthethree-dimensionalmodelingofP6andJohnStanleyforprovidinguswiththeCaMVCabb-JIgenomese-quence.WearemostgratefultoChristianeGaraudandJe
´ro meMuttererforadviceonCLSMandtoKenRichardsforcriticalreadingofthemanuscript.TheInter-InstituteConfocalMicroscopyPlatformwas
co nancedbytheRe
´gionAlsace,CentreNationaldelaRechercheScienti que,theUniversite
´LouisPasteur,andtheAssociationdelaRecherchepourleCancer.ThisworkwassupportedbytheCentre
NationaldelaRechercheScienti queandbytheUniversite
´LouisPasteurofStrasbourg.
ReceivedNovember1,2004;acceptedDecember9,2004.
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
942ThePlantCell
REFERENCES
Agama,K.,Beach,S.,Schoelz,J.,andLeisner,S.M.(2002).The59thirdofCauli owermosaicvirusGeneVIconditionsresistancebreakageinArabidopsisecotypeTsu-0.Virology92,190–196.
Andersen,J.S.,Lyon,C.E.,Fox,A.H.,Leung,A.K.L.,Lam,Y.W.,Steen,H.,Mann,M.,andLamond,A.I.(2002).Directedproteomicanalysisofthehumannucleolus.Curr.Biol.12,1–11.
Banjoko,A.,andTrelease,R.N.(1995).Developmentandapplicationofaninvivoplantperoxisomeimportsystem.PlantPhysiol.107,1201–1208.
Berger,B.(1995)put.Biol.2,125–138.
Blobel,G.,andDobberstein,B.(1975).Transferofproteinsacrossmembranes.I.Presenceofproteolyticallyprocessedandunpro-cessednascentimmunoglobulinlightchainsonmembrane-boundribosomesofmurinemyeloma.J.CellBiol.67,835–851.
Bureau,M.,Leh,V.,Haas,M.,Geldreich,A.,Ryabova,L.,Yot,P.,andKeller,M.(2004).P6proteinofCauli owermosaicvirus,atrans-lationalreinitiator,interactswithribosomalproteinL13fromArabi-dopsisthaliana.J.Gen.Virol.85,3765–3775.
Cecchini,E.,Gong,Z.,Geri,C.,Covey,S.N.,andMilner,J.J.(1997).TransgenicArabidopsislinesexpressinggeneVIfromCauli owermosaicvirusvariantsexhibitarangeofsymptom-likephenotypesandaccumulateinclusionbodies.Mol.PlantMicrobeInteract.10,1094–1120.
Cerritelli,S.,Fedoroff,O.,Reid,B.,andCrouch,R.(1998).Acommon40aminoacidmotifineukaryoticRNasesH1andcaulimovirusORFVIproteinsbindstoduplexRNAs.NucleicAcidsRes.26,1834–1840.Cole,A.B.,Kiraly,L.,Ross,K.,andSchoelz,J.E.(2001).UncouplingresistancefromcelldeathinthehypersensitiveresponseofNicotianaspeciestoCauli owermosaicvirusinfection.Mol.PlantMicrobeInteract.14,31–41.
Daubert,S.D.,andRouth,G.(1990).PointmutationsinCauli owermosaicvirusgeneVIconferhost-speci csymptomchanges.Mol.PlantMicrobeInteract.3,341–345.
Daubert,S.D.,Schoelz,J.,Debao,L.,andShepherd,R.J.(1984).ExpressionofdiseasesymptomsinCauli owermosaicvirusgenomichybrids.J.Mol.Appl.Genet.2,537–547.
Delseny,M.,andHull,R.(1983).IsolationandcharacterizationoffaithfulalteredclonesofthegenomesofCauli owermosaicvirusisolatesCabbB-JI,CM4-184andBari.Plasmid9,31–41.
DeTapia,M.,Himmelbach,A.,andHohn,T.(1993).MoleculardissectionoftheCauli owermosaicvirustranslationtransactivator.EMBOJ.12,3305–3314.
Drucker,M.,Froissart,R.,He
´brard,E.,Uzest,M.,Ravallec,M.,Espe
´randieu,P.,Mani,J.-L.,Pugnie`re,M.,Roquet,F.,Fereres,A.,andBlanc,S.(2002).IntracellulardistributionofviralgeneproductsregulatesacomplexmechanismofCauli A99,2422–2427.Espinoza,A.M.,Medina,V.,Hull,R.,andMarkham,P.G.(1991).Cauli owermosaicvirusgeneIIproductsformsdistinctinclusionbodiesininfectedplantcells.Virology185,337–344.
Fabbretti,E.,Afrikanova,I.,Vascotto,F.,andBurrone,O.R.(1999).Twonon-structuralrotavirusproteins,NSP2andNSP5,formviroplasm-likestructuresinvivo.J.Gen.Virol.80,333–339.
Fornerod,M.,Ohno,M.,Yoshida,M.,andMattaj,I.W.(1997).CRM1isanexportreceptorforleucine-richnuclearexportssignals.Cell90,1051–1060.
Geri,C.,Cecchini,E.,Giannakou,M.,Covey,S.,andMilner,J.(1999).AlteredpatternsofgeneexpressioninArabidopsiselicitedbyCauli owermosaicvirus(CaMV)infectionandbyaCaMVgeneVItransgene.Mol.PlantMicrobeInteract.12,377–384.Go
¨rlich,D.,andKutay,U.(1999).Transportbetweenthecellnucleusandthecytoplasm.Annu.Rev.CellDev.Biol.15,607–660.
Haas,M.,Bureau,M.,Geldreich,A.,Yot,P.,andKeller,M.(2002).Cauli owermosaicvirus:Stillinthenews.Mol.PlantPathol.3,419–429.
Haas,M.,Leh,V.,Yot,P.,andKeller,M.(2000).Caracte
´risationdudomainedelaprote
´ineP6duVirusdelamosa ¨queduchou- eurimplique
´danslaformationdesviroplasmes.Virologie4,165.Heath,C.M.,Windsor,M.,andWileman,T.(2001).Aggresomesresemblesitesspecializedforvirusassembly.J.CellBiol.153,449–455.
Himmelbach,A.,Chapdelaine,Y.,andHohn,T.(1996).InteractionbetweenCauli owermosaicvirusinclusionbodyproteinandcapsidprotein:Implicationforviralassembly.Virology217,147–157.
Hunold,R.,Burrus,M.,Bronner,R.,Duret,J.P.,andHahne,G.(1995).Transientgeneexpressioninsun ower(HelianthusannuusL.)followingmicroprojectilebombardment.PlantSci.105,95–109.
Jacquot,E.,Geldreich,A.,Keller,M.,andYot,P.(1998).MappingregionsoftheCauli owermosaicvirusORFIIIproductrequiredforinfectivity.Virology242,395–402.
Ja
¨kel,S.,Mingot,J.-M.,Schwarzmaier,P.,Hartmann,E.,andGo
¨rlich,D.(2002).Importinsful ladualfunctionasnuclearimportreceptorsandcytoplasmicchaperonesforexposedbasicdomains.EMBOJ.21,377–386.
Johnston,J.A.,Ward,C.L.,andKopito,R.R.(1998).Aggresomes:Acellularresponsetomisfoldedproteins.J.CellBiol.143,1883–1898.
Kiss-Laszlo,Z.,Blanc,S.,andHohn,T.(1995).SplicingofCauli owermosaicvirus35SRNAisessentialforviralinfectivity.EMBOJ.14,3552–3562.
Kobayashi,K.,andHohn,T.(2003).Dissectionofcauli owermosaicvirustransactivator/viroplasminrevealsdistinctessentialfunctionsinbasicvirusreplication.J.Virol.77,8577–8583.
Kobayashi,K.,Nakayashiki,H.,Tsuge,S.,Mise,K.,andFurusawa,I.(1998).AccumulationkineticsofviralgeneproductsinCauli owermosaicvirus-infectedturnipprotoplast.Microbiol.Immunol.42,65–69.Kopito,R.R.(2000).Aggresomes,inclusionbodiesandproteinaggre-gation.TrendsCellBiol.10,524–530.
Kudo,N.,Wolff,B.,Sekimoto,T.,Schreiner,E.P.,Yoneda,Y.,Yanagida,M.,Horinouchi,S.,andYoshida,M.(1998).LeptomycinBinhibitionofsignal-mediatednuclearexportbydirectbindingtoCRM1.Exp.CellRes.1,540–547.
Lamond,A.I.,andSpector,D.L.(2003).Nuclearspeckles:Amodelfornuclearorganelles.Mol.Cell.Biol.4,605–611.
Lauber,E.,Bleykasten-Grosshans,C.,Erhardt,M.,Bouzoubaa,S.,Jonard,G.,Richards,K.,andGuilley,H.(1998).Cell-to-cellmove-mentofBeetnecroticyellowveinvirus:I.Heterologouscomplemen-tationexperimentsprovideevidenceforspeci cinteractionsamongthetriplegeneblockproteins.Mol.PlantMicrobeInteract.11,618–625.
Leh,V.(1999).EtudedesInteractionsentreProte
´inesEngageantlesProduitsdesORFIIIetORFVIduVirusdelaMosa
¨queduChou-Fleur.PhDdissertation(Strasbourg,France:Universite
´LouisPasteur).Leh,V.,Yot,P.,andKeller,M.(2000).TheCauli owermosaicvirustranslationaltransactivatorinteractswiththe60SribosomalsubunitproteinL18ofArabidopsisthaliana.Virology266,1–7.
Li,Y.,andLeisner,S.C.(2002).MultipledomainswithintheCauli owermosaicvirusgeneVIproductinteractwiththefull-lengthprotein.Mol.PlantMicrobeInteract.15,1050–1057.
Lupas,A.(1997).Predictingcoiled-coilregionsinproteins.Curr.Opin.Struct.Biol.7,388–393.
Maquat,L.,andCarmichael,G.(2001).QualitycontrolofmRNAfunction.Cell104,173–176.
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replicat
Maule,A.J.,Harker,C.L.,andWilson,I.G.(1989).ThepatternofaccumulationofCauli owermosaicvirusspeci cproductsininfectedturnips.Virology169,436–446.
Mazzolini,L.,Dabos,P.,Constantin,S.,andYot,P.(1989).FurtherevidencethatviroplasmsarethesiteofCauli owermosaicvirusgenomereplicationbyreversetranscriptionduringviralinfection.J.Gen.Virol.70,3439–3449.
Ochs,R.L.,Stein,T.W.,andTan,E.M.M.(1994).Coiledbodiesinthenucleolusofbreastcancercells.J.CellSci.107,385–399.
Palanichelvam,K.,Cole,A.B.,Shababi,M.,andSchoelz,J.E.(2000).Agroin ltrationofCauli owermosaicvirusgeneVIelicitshypersen-sitiveresponseinNicotianaspecies.Mol.PlantMicrobeInteract.13,1275–1279.
Park,H.-S.,Himmelbach,A.,Browning,K.S.,Hohn,T.,andRyabova,L.A.(2001).Aplantviral‘‘reinitiation’’factorinteractswiththehosttranslationalmachinery.Cell106,723–733.
Pollard,V.W.,andMalim,M.H.(1998).TheHIV-1Revprotein.Annu.Rev.Microbiol.52,491–532.
Rothnie,H.,Chapdelaine,Y.,andHohn,T.(1994).Pararetrovirusesandretroviruses:Acomparativereviewofviralstructureandgeneexpressionstrategies.Adv.VirusRes.44,1–67.CaMVP6IsaNucleocytoplasmicProtein943
Ryabova,L.A.,Pooggin,M.M.,andHohn,T.(2002).Viralstrategiesoftranslationinitiation:Ribosomalshuntandreinitiation.Prog.NucleicAcidRes.Mol.Biol272,1–39.
Schoelz,J.E.,Shepherd,R.J.,andDaubert,S.D.(1986).GeneVIofCaMVencodesahostrangedeterminant.Mol.Cell.Biol.6,2632–2637.
Shalla,T.A.,Shepherd,R.J.,andPetersen,L.J.(1980).ComparativecytologyofnineisolatesofCauli owermosaicvirus.Virology102,381–388.
Ward,B.M.,andLazarowitz,S.G.(1999)eofgeminivirusmovementproteinsforacell-basedexportassay.PlantCell11,1267–1276.
Weis,K.(2002).Nucleocytoplasmictransport:Cargotraf ckingacrosstheborder.Curr.Opin.CellBiol.14,328–335.
Xiong,C.,Bala
`zs,E.,Lebeurier,G.,Hindenlang,C.,Stoeckel,M.E.,andPorte,A.(1982).ComparativecytologyoftwoisolatesofCauli owermosaicvirus.J.Gen.Virol.61,75–81.
Zijlstra,C.,Scha
¨rer-Hernandez,N.,Gal,S.,andHohn,T.(1996).ArabidopsisthalianaexpressingtheCauli owermosaicvirusORFVItransgenehasalate oweringphenotype.VirusGenes13,5–17.
正在阅读:
The Open Reading Frame VI Product of Cauliflower mosaic virus Is a Nucleocytoplasmic Protei07-26
学习监察法心得体会12篇_心得体会范文05-02
ETF套利业务申请及操作流程04-02
易经占卜方法02-18
学校学生表彰大会流程02-11
野生动物观赏基地可行性研究报告03-28
回归分析10-03
絮凝剂制备装置使用说明书06-11
地藏禅寺因果教育实录(圣云法师讲因果)01-15
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Nucleocytoplasmi
- Cauliflower
- Reading
- Product
- mosaic
- Protei
- Frame
- virus
- Open
- VI
- 中心静脉穿刺置管术256例临床应用体会
- 中国电科38所四创电子招聘简章
- 基于多元回归模型的CPI影响因素分析
- 2015安徽中考英语试题分析李文艳
- 2015-2020年中国甲乙MEK市场研究与投资前景预测报告
- 星形胶质细胞和神经元之间 谷氨酸 谷氨酰胺的
- 导学案的使用 讲课稿
- 我国2008-2010GDP及财政收入结构
- 仁爱版九年级UNIT2TOPIC1SECTION D说课稿 英文
- 人防建设工程质量问题整改通知回复单(建设)
- 静脉配置中心的建设与设计特点
- 甲醇-水溶液精馏工艺设计 毕业设计
- 教师家访工作总结
- 2015年上半年宜宾市事业单位考试公告解读
- 山东省住房和城乡建设厅
- Leveraging Standard Electronic Business Interfaces to
- 材料近代分析测试方法复习3
- 2013年共青团员入党志愿书
- 建筑公司各岗位职责守则
- 电力设备预防性试验原理及方法(海螺) (1)