数值分析习题集及答案

更新时间:2023-12-09 01:20:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

数值分析习题集

(适合课程《数值方法A》和《数值方法B》)

长沙理工大学

第一章 绪 论

1. 设x>0,x的相对误差为δ,求lnx的误差.

2. 设x的相对误差为2%,求x的相对误差.

3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出

它们是几位有效数字: 4. 利用公式(3.3)求下列各近似值的误差限:

*****x1?1.1021,x2?0.031,x3?385.6,x4?56.430,x5?7?1.0.

n************(i)x1?x2?x4,(ii)x1x2x3,(iii)x2/x4,其中x1,x2,x3,x4均为第3题所给的数.

5. 计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6. 设Y0?28,按递推公式

1783100 ( n=1,2,…)

Y计算到Y100.若取783≈27.982(五位有效数字),试问计算100将有多大误差?

Yn?Yn?1?27. 求方程x?56x?1?0的两个根,使它至少具有四位有效数字(783≈27.982).

8. 当N充分大时,怎样求

???N1dx1?x2?

29. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10. 设

误差增加,而相对误差却减小. 11. 序列

S?12gt2假定g是准确的,而对t的测量有±0.1秒的误差,证明当t增加时S的绝对

{yn}满足递推关系yn?10yn?1?1(n=1,2,…),若y0?2?1.41(三位有效数字),y10时误差有多大?这个计算过程稳定吗?

计算到

612. 计算f?(2?1),取2?1.4,利用下列等式计算,哪一个得到的结果最好?

113,(3?22),,99?702.63(2?1)(3?22) 213. f(x)?ln(x?x?1),求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若

改用另一等价公式 计算,求对数时误差有多大?

ln(x?x2?1)??ln(x?x2?1)

14. 试用消元法解方程组

?x1?1010x2?1010;x1?x2?2.假定只用三位数计算,问结果是否可靠?

1?absinc,0?c?22,且测量a ,b ,c 的误差分别为15. 已知三角形面积其中c为弧度,

?a,?b,?c.证明面积的误差?s满足

s??s?a?b?c???.sabc

第二章 插值法

1. 根据(2.2)定义的范德蒙行列式,令

1Vn(x)?Vn(x0,x1,?,xn?1,x)??11 证明Vn(x)是n次多项式,它的根是x0,?,xn?1,且

x0?xn?1x2x0???nx0?x2?xn

2nxn?xn?1?1Vn(x)?Vn?1(x0,x1,?,xn?1)(x?x0)?(x?xn?1).

2. 当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式.

3. 给出f(x)=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值. x 0.4 0.5 0.6 0.7 lnx -0.916291 -0.693147 -0.510826 -0.357765 0.8 -0.223144

4. 给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,

研究用线性插值求cos x 近似值时的总误差界.

maxl2(x)x?x?khx0?x?x3k05. 设,k=0,1,2,3,求.

xj6. 设

为互异节点(j=0,1,…,n),求证:

i) ii) 7. 设

?xl(x)?xkjjj?0nnk(k?0,1,?,n);

?(xj?0j?x)klj(x)???k?1,2,?,n).2f(x)?C?a,b?且f(a)?f(b)?0,求证maxa?x?bx?61f(x)?(b?a)2maxf?(x).8a?x?b

x8. 在?4?x?4上给出f(x)?e的等距节点函数表,若用二次插值求e的近似值,要使截

断误差不超过10,问使用函数表的步长h应取多少? 9. 若yn?2,求?yn及?yn.

10. 如果f(x)是m次多项式,记?f(x)?f(x?h)?f(x),证明f(x)的k阶差分

n44?kf(x)(0?k?m)是m?k次多项式,并且?m?lf(x)?0(l为正整数).

11. 证明?(fkgk)?fk?gk?gk?1?fk. 12. 证明k?0n?1n?1n?1?f?gkk?fngn?f0g0??gk?1?fk.k?0

13. 证明

??j?02yj??yn??y0.

n?1n14. 若f(x)?a0?a1x???an?1x?anx有n个不同实根x1,x2,?,xn,证明

?f?(x)j?1jnxkj??0,0?k?n?2;?1an,k?n?1.15. 证明n阶均差有下列性质: i)

若F(x)?cf(x),则

F?x0,x1,?,xn??cf?x0,x1,?,xn?;

Fx,x,?,xn??f?x0,x1,?,xn??g?x0,x1,?,xn?.

ii) 若F(x)?f(x)?g(x),则?0174f?20,21,?,27?f?20,21,?,28?f(x)?x?x?3x?1????. 16. ,求及

17. 证明两点三次埃尔米特插值余项是

并由此求出分段三次埃尔米特插值的误差限.

R3(x)?f(4)(?)(x?xk)2(x?xk?1)2/4!,??(xk,xk?1)

18. 求一个次数不高于4次的多项式P(x),使它满足P(0)?P(?k?1)并由此求出分段三次

埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式P(x),以便使它能够满足以下边界条件

P(0)?P?(0)?0,P(1)?P?(1)?1,P(2)?1.

20. 设

f(x)?C?a,b?,把?a,b?分为n等分,试构造一个台阶形的零次分段插值函数?n(x)并证明当n??时,?n(x)在?a,b?上一致收敛到f(x).

2f(x)?1/(1?x),在?5?x?5上取n?10,按等距节点求分段线性插值函数Ih(x),21. 设

计算各节点间中点处的Ih(x)与f(x)的值,并估计误差.

a,b?上的分段线性插值函数Ih(x),并估计误差.

22. 求f(x)?x在?2423. 求f(x)?x在?24. 给定数据表如下: 0.25 xj a,b?上的分段埃尔米特插值,并估计误差.

0.30 0.5477 0.39 0.6245 0.45 0.6708 0.53 0.7280 yj 0.5000 试求三次样条插值S(x)并满足条件 i) ii)

2f(x)?C?a,b?,S(x)是三次样条函数,证明 25. 若

S?(0.25)?1.0000,S?(0.53)?0.6868; S?(0.25)?S?(0.53)?0.

i)

??f?(x)?dx???S?(x)?dx???f?(x)?S?(x)?dx?2?aaab2b2b2baS?(x)?f?(x)?S?(x)?dx;

ii) 若f(xi)?S(xi)(i?0,1,?,n),式中xi为插值节点,且a?x0?x1???xn?b,则

?baS?(x)?f?(x)?S?(x)?dx?S?(b)?f?(b)?S?(b)??S?(a)?f?(a)?S?(a)?.

26. 编出计算三次样条函数S(x)系数及其在插值节点中点的值的程序框图(S(x)可用(8.7)

式的表达式).

第三章 函数逼近与计算

1. (a)利用区间变换推出区间为?a,b?的伯恩斯坦多项式.

?上求1次和三次伯恩斯坦多项式并画出图形,并与相应的(b)对f(x)?sinx在?马克劳林级数部分和误差做比较. 2. 求证:

0,?/2(a)当m?f(x)?M时,m?Bn(f,x)?M. (b)当f(x)?x时,Bn(f,x)?x.

0,2??的最佳一致逼近多项式.

3. 在次数不超过6的多项式中,求f(x)?sin4x在?a,b?上连续,求f(x)的零次最佳一致逼近多项式.

4. 假设f(x)在?5. 选取常数a,使0?x?1maxx3?ax达到极小,又问这个解是否唯一?

0,?/2?上的最佳一次逼近多项式,并估计误差.

6. 求f(x)?sinx在?0,17. 求f(x)?e在??上的最佳一次逼近多项式.

x?1,1?上与零偏差最小?r是否唯一?

8. 如何选取r,使p(x)?x?r在?20,19. 设f(x)?x?3x?1,在??上求三次最佳逼近多项式.

43***T(x)?T(2x?1),x?0,1??T(x),T(x),T(x),T3(x). nn01210. 令,求

11. 试证12. 在??T*n(x)?是在?0,1?上带权

??1x?x2的正交多项式.

?1,1?上利用插值极小化求1f(x)?tg?1x的三次近似最佳逼近多项式.

?x?1,1?上的插值极小化近似最佳逼近多项式为Ln(x),若f?Ln13. 设f(x)?e在?有界,

证明对任何n?1,存在常数?n、?n,使

?nTn?1(x)?f(x)?Ln(x)??nTn?1(x)(?1?x?1).

112331541655?(x)?1?x?x?x?x?x?1,1??28243843840,试将?(x)降低到3次多14. 设在上

项式并估计误差. 15. 在??1,1?上利用幂级数项数求f(x)?sinx的3次逼近多项式,使误差不超过0.005.

?a,a?上的连续奇(偶)函数,证明不管n是奇数或偶数,f(x)的最佳逼近多项式

16. f(x)是?Fn*(x)?Hn也是奇(偶)函数.

?ax?b?sinx?dx为最小.并与1题及6题的一次逼近多项式误差作比较.

17. 求a、b使?1g(x)?C?a,b?,定义 f(x)18. 、

20?2(a)(f,g)??f?(x)g?(x)dx;(b)(f,g)??f?(x)g?(x)dx?f(a)g(a);aabb 问它们是否构成内积?

1

x6dx?01?x19. 用许瓦兹不等式(4.5)估计的上界,并用积分中值定理估计同一积分的上下界,

并比较其结果.

20. 选择a,使下列积分取得最小值:21. 设空间

?1?1(x?ax2)2dx,?x?ax2dx?11.

???span?1,x?,?2?span?x100,x101?,分别在?1、?2上求出一个元素,使得其为

x2?C?0,1?的最佳平方逼近,并比较其结果.

?1?span?1,x2,x4?f(x)?x?1,1??22. 在上,求在上的最佳平方逼近.

sin?(n?1)arccosx?un(x)?1?x223. 是第二类切比雪夫多项式,证明它有递推关系

un?1?x??2xun?x??un?1?x?.

24. 将

近多项式并画出误差图形,再计算均方误差.

f(x)?sin1x??1,1?2在上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼

?1,1?上展成切比雪夫级数.

25. 把f(x)?arccosx在?26. 用最小二乘法求一个形如y?a?bx的经验公式,使它与下列数据拟合,并求均方误差.

19 25 31 38 44 xi 2yi 19.0 32.3 49.0 73.3 97.8 27. 观测物体的直线运动,得出以下数据: 0.9 1.9 时间t(秒) 0 3.0 3.9 5.0 110 10 30 50 80 距离s(米) 0 求运动方程. 28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下: 10 15 20 25 30 35 40 45 时间 0 5 浓度 0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 用最小二乘拟合求y?f(t).

29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT算法的程序框图. 31. 现给出一张记录?50 4.62 55 4.64 xk???4,3,2,1,0,1,2,3?,试用改进FFT算法求出序列?xk?的离散频谱

?Ck?(k?0,1,?,7).

第四章 数值积分与数值微分

1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具

有的代数精度:

(1)(2)(3)

??h?hf(x)dx?A?1f(?h)?A0f(0)?A1f(h); ;

?2h?2h1f(x)dx?A?1f(?h)?A0f(0)?A1f(h)?1f(x)dx??f(?1)?2f(x1)?3f(x2)?/3;

.

(4)?h0f(x)dx?h?f(0)?f(h)?/1?ah2?f?(0)?f?(h)?1?x22. 分别用梯形公式和辛普森公式计算下列积分:

1(1?e)xdx,n?8dx,n?10??04?x20x(1); (2);

1(3)1; (4)

3. 直接验证柯特斯公式(2.4)具有5次代数精度. 4. 用辛普森公式求积分0并计算误差. 5. 推导下列三种矩形求积公式:

(1)(2)(3)

?9?xdx,n?4?60?sin2?dx,n?6.

?1e?xdx??baba?baf?(?)(b?a)22; f?(?)f(x)dx?(b?a)f(b)?(b?a)22;

a?bf?(?)f(x)dx?(b?a)f()?(b?a)3224. f(x)dx?(b?a)f(a)?6. 证明梯形公式(2.9)和辛普森公式(2.11)当n??时收敛到积分7. 用复化梯形公式求积分a超过?(设不计舍入误差)?

?baf(x)dx.

?bf(x)dx1,问要将积分区间?a,b?分成多少等分,才能保证误差不

28. 用龙贝格方法计算积分??0e?xdx,要求误差不超过10.

??5cS?a?21?()2sin2?d?0a9. 卫星轨道是一个椭圆,椭圆周长的计算公式是,这里a是椭圆

的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h为近地点距离,H为远地点距离,R?6371公里为地球半径,则a?(2R?H?h)/2,c?(H?h)/2.我国第一颗人造

卫星近地点距离h?439公里,远地点距离H?2384公里,试求卫星轨道的周长.

n10. 证明等式

法求?的近似值.

nsin?????33!n2??55!n4??试依据nsin(?/n)(n?3,6,12)的值,用外推算

11. 用下列方法计算积分

(1) 龙贝格方法;

?31dyy并比较结果.

(2) 三点及五点高斯公式;

(3) 将积分区间分为四等分,用复化两点高斯公式.

f(x)?12. 用三点公式和五点公式分别求

差.f(x)的值由下表给出: 1.0 1.1 x 1(1?x)2在x?1.0,1.1和1.2处的导数值,并估计误

1.2 0.2066 1.3 0.1890 1.4 0.1736 f(x) 0.2500 0.2268 第五章 常微分方程数值解法

1. 就初值问题y??ax?b,y(0)?0分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解

2. 用改进的尤拉方法解初值问题

y?12ax?bx2相比较。

?y??x?y,0?x?1;??y(0)?1,

x取步长h=0.1计算,并与准确解y??x?1?2e相比较。

3. 用改进的尤拉方法解

?y??x2?x?y;??y(0)?0,

?x2取步长h=0.1计算y(0.5),并与准确解y??e?x?x?1相比较。

4. 用梯形方法解初值问题

证明其近似解为

?y??y?0;??y(0)?1,

n?2?h?yn???,2?h??

?x并证明当h?0时,它原初值问题的准确解y?e。

5. 利用尤拉方法计算积分

??y??x?y,0?x?1;? 1)?y(0)?1,

?y??3y/(1?x),0?x?1;? 2)?y(0)?1.

x0edtt2

在点x?0.5,1,1.5,2的近似值。

6. 取h=0.2,用四阶经典的龙格-库塔方法求解下列初值问题:

7. 证明对任意参数t,下列龙格-库塔公式是二阶的:

8. 证明下列两种龙格-库塔方法是三阶的:

h?y?y?(K2?K3);n?n?12??K?f(x,y);nn?1?K2?f(xn?th,yn?thK1);???K3?f(xn?(1?t)h,yn?(1?t)hK1).

h?y?y?(K1?3K3);n?n?14??K1?f(xn,yn);??hhK?f(x?,y?K1);nn?233??K?f(x?2h,y?2hK);nn2?3331) ? h?y?y?(2K1?3K2?4K3);n?n?19?K?f(xn,yn);??1?hhK?f(x?,y?K1);nn?222??K?f(x?3h,y?3hK).nn2?3442) ?

9. 分别用二阶显式亚当姆斯方法和二阶隐式亚当姆斯方法解下列初值问题:

y??1?y,y(0)?0,

?xh?0.2,y?0,y?0.181,y?1?ey(1.0)01取计算并与准确解相比较。

10. 证明解y??f(x,y)的下列差分公式

yn?1?是二阶的,并求出截断误差的首项。 11. 导出具有下列形式的三阶方法: 12. 将下列方程化为一阶方程组:

1h??1?yn??3yn??1)(yn?yn?1)?(4yn24

??b1yn??1?b2yn??2). yn?1?a0yn?a1yn?1?a2yn?2?h(b0yny???3y??2y?0,1)y(0)?1,y?(0)?1;

y???0.1(1?y2)y??y?0,2)y(0)?1,y?(0)?0;

13. 取h=0.25,用差分方法解边值问题

xy??,y(t)??,r?x2?y2,33rr3)

x(0)?0.4,x?(0)?0,y(0)?0,y?(0)?2.

x??(t)???y???y?0;??y(0)?0,y(1)?1.68.

14. 对方程y???f(x,y)可建立差分公式

试用这一公式求解初值问题

yn?1?2yn?yn?1?h2f(xn,yn),

验证计算解恒等于准确解

?y???1;??y(0)?y(1)?0,

15. 取h=0.2用差分方法解边值问题

x2?xy(x)?.2

?(1?x2)y???xy??3y?6x?3;??y(0)?y?(0)?1,y(1)?2.

第六章 方程求根

1. 用二分法求方程x?x?1?0的正根,要求误差<0.05。

2. 用比例求根法求f(x)?1?xsinx?0在区间[0,1]内的一个根,直到近似根xk满足精度

2|f(xk)|?0.005时终止计算。

323. 为求方程x?x?1?0在x0?1.5附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式。

22x?1?1/xk?1kx?1?1/x1),迭代公式;

2332x?1?xk?1kx?1?x2),迭代公式;

1x2?x?1,迭代公式xk?1?1/xk?1。 3)

试分析每种迭代公式的收敛性,并选取一种公式求出具有四位有效数字的近似根。 4. 比较求e?10x?2?0的根到三位小数所需的计算量;

1)在区间[0,1]内用二分法;

xkx?(2?e)/10,取初值x0?0。 k?12) 用迭代法

5. 给定函数f(x),设对一切x,f?(x)存在且0?m?f?(x)?M,证明对于范围内0???2/M的任意定数λ,迭代过程xk?1?xk??f(xk)均收敛于f(x)的根x?。

x6. 已知x??(x)在区间[a,b]内只有一根,而当a

|??(x)|?k?1,

试问如何将x??(x)化为适于迭代的形式?

将x?tgx化为适于迭代的形式,并求x=4.5(弧度)附近的根。

7. 用下列方法求f(x)?x?3x?1?0在x0?2附近的根。根的准确值x=1.87938524…,要求计算结果准确到四位有效数字。 1) 用牛顿法;

?32)用弦截法,取x0?1,x1?1.9; 3)用抛物线法,取x0?1,x1?3,x2?2。 8. 用二分法和牛顿法求x?tgx?0的最小正根。

9. 研究求a的牛顿公式

xk?1?证明对一切k?1,2,?,xk?1a(xk?),x0?0,2xk

a且序列x1,x2,?是递减的。

10. 对于f(x)?0的牛顿公式xk?1?xk?f(xk)/f?(xk),证明

Rk?(xk?xk?1)/(xk?1?xk?2)2

收敛到?f??(x)/(2f?(x)),这里x为f(x)?0的根。 11. 试就下列函数讨论牛顿法的收敛性和收敛速度:

?????x,x?0;f(x)??????x,x?0; 1)

23??x,x?0;f(x)??23??x,x?0. ?2)

3212. 应用牛顿法于方程x?a?0,导出求立方根a的迭代公式,并讨论其收敛性。

13. 应用牛顿法于方程值。

f(x)?1?a?0x2,导出求a的迭代公式,并用此公式求115的

f(x)?1?a?0nxn,分别导出求a的迭代公

14. 应用牛顿法于方程f(x)?x?a?0和

式,并求

k??nlim(na?xk?1)/(na?xk)2.15. 证明迭代公式

xk?1x(x?3a)?kk23xk?a

2?是计算a的三阶方法。假定初值x0充分靠近根x,求

lim(a?xk?1)/(a?xk)3.k??

第七章 解线性方程组的直接方法

1. 考虑方程组:

?0.4096x1?0.1234x2?0.2246x?0.3872x?12??0.3645x1?0.1920x2??0.1784x1?0.4002x2?0.3678x3?0.2943x4?0.4043;?0.4015x3?0.1129x4?0.1550;?0.3781x3?0.0643x4?0.4240;?0.2786x3?0.3927x4??0.2557;

(a) 用高斯消去法解此方程组(用四位小数计算),

(b) 用列主元消去法解上述方程组并且与(a)比较结果。

2. (a) 设A是对称阵且a11?0,经过高斯消去法一步后,A约化为

ri(k?1)x?x?ai; (a) 证明

(k)?x(k)?x?,其中x?是方程组的精确解,求证: (b) 如果?(k?1)i(k)i?ri(k?1)(k?1)i??(k)iri(k?1)?aii

其中 (c) 设A是对称的,二次型

??aij?j?1i?1(k?1)j??aij?i(k)j?in。

Q(?(k))?(A?(k),?(k)) Q(?(k?1))?Q(?(k)j?1jj证明 。

(d) 由此推出,如果A是具有正对角元素的非奇异矩阵,且高斯-塞德尔方法对任意初始向

)???n(rj(k?1))2a量x是收敛的,则A是正定阵。

13. 设A与B为n阶矩阵,A为非奇异,考虑解方程组

(0)Az1?Bz2?b1,Bz1?Az2?b2,

其中z1,z2,d1,d2?R。

(a) 找出下列迭代方法收敛的充要条件 (b) 找出下列迭代方法收敛的充要条件 比较两个方法的收敛速度。 14. 证明矩阵

(m)(m?1)Az1(m?1)?b1?Bz2,Az2?b2?Bz1(m)(m?0);

n(m)(m?1)Az1(m?1)?b1?Bz2,Az2?b2?Bz1(m?1)(m?0);

?1aa??A??a1a????aa1??

111??a?1??a?2是收敛的。 对于2是正定的,而雅可比迭代只对2?5123??0204??A???3?12?1???0307??,试说明A为可约矩阵。 15. 设

16. 给定迭代过程,x?Cx(k)?g,其中C?Rn?n(k?0,1,2,?),试证明:如果C的

特征值?i(C)?0(i?1,2,?),则迭代过程最多迭代n次收敛于方程组的解。

(k?1)17. 画出SOR迭代法的框图。

18. 设A为不可约弱对角优势阵且0???1,求证:解Ax?b的SOR方法收敛。 19. 设Ax?b,其中A为非奇异阵。 (a) 求证AA为对称正定阵;

(b) 求证cond(AA)2?(cond(A)2)。

T2T第九章 矩阵的特征值与特征向量计算

1. 用幂法计算下列矩阵的主特征值及对应的特征向量:

3?2??7?3?43????463?A?A1??34?12??????31??3?, ??2?13?? , (b) (a)

当特征值有3位小数稳定时迭代终止。

2. 方阵T分块形式为

?T11T12?T1n???T?T222n?T???????Tnn?, ?其中Tii(i?1,2,?,n)为方阵,T称为块上三角阵,如果对角块的阶数至多不超过2,则称T 为准三角形形式,用?(T)记矩阵T的特征值集合,证明

n?(T)???(Tii).i?13. 利用反幂法求矩阵

的最接近于6的特征值及对应的特征向量。

4. 求矩阵

?621??231?????111??

与特征值4对应的特征向量。

5. 用雅可比方法计算

?400??031?????013??

的全部特征值及特征向量,用此计算结果给出例3的关于p的最优值。

6. (a)设A是对称矩阵,λ和x(||x||2?1)是A的一个特征值及相应的特征向量,又设P为

一个正交阵,使

?1.01.00.5??A??1.01.00.25????0.50.252.0??

Px?e1?(1,0,?,0)T

证明B?PAP的第一行和第一列除了λ外其余元素均为零。

(b)对于矩阵

T?2102??A??105?8????2?811??,

?212?x??,,??333?是相应于9的特征向量,试求一初等反射阵P,使λ=9是其特征值,

Px?e1,并计算B?PAPT。

7. 利用初等反射阵将

T正交相似约化为对称三对角阵。 8. 设A?Rn?n?134??A??312????421??

(2)a?0的平面旋转阵,试推导计算PijA第ia,aPi1j1ij,且不全为零,为使j1TAPij行,第j行元素公式及第i列,第j列元素的计算公式。

9. 设An?1是由豪斯荷尔德方法得到的矩阵,又设y是An?1的一个特征向量。

1P2?Pn?2y; (a)证明矩阵A对应的特征向量是x?P(b)对于给出的y应如何计算x? 10. 用带位移的QR方法计算

?120??310???121?A??2?11B????????013??, (b) ?011?? (a)

全部特征值。

11. 试用初等反射阵A分解为QR,其中Q为正交阵,R为上三角阵,

1??11?A??2?1?1????2?45??。

数值分析习题简答

(适合课程《数值方法A》和《数值方法B》)

长沙理工大学

第一章 绪论习题参考答案

?(x*)1. ε(lnx)≈

x*n??r(x*)??。

?r(x)?2.

n?(x)x*n?nx*n?1?(x*)nx*n?(x*)??0.02n*x。

****xxxx12343. 有5位有效数字,有2位有效数字,有4位有效数字,有5位有效*x5数字,有2位有效数字。

******?4?3?3?34. ?(x1?x2?x4)??(x1)??(x2)??(x4)?0.5?10?0.5?10?0.5?10?1.05?10************?(x1x2x3)?x2x3?(x1)?x1x3?(x2)?x1x2?(x3)?0.214790825**x2x21**?(*)?*?(x2)?*2?(x4)?8.855668?10?6x4x4x4。

?r(R)??r(35. 6.

3V)?4?31?(V)/236?V33V1?(V)1???r(V)?0.0033334?3V3。

?(Y100)?100?111??10?3??10?310022。

7. x1?28?783?55.982,

??x2?28?783?128?783?1?0.0178655.982。

1?dx??arctgN?N1?x228.

11??(x)??(S)?S2?(S)?0.00529. 。

?r(S)?10. ?(S)?gt?(t)?0.1gt,

绝对误差增加,相对误差减小。

1?(y10)?1010?(y0)??108211. ,计算过程不稳定。

12.

gt?(t)2?(t)0.2??12ttgt2,故t增加时S的

6f?(2?1)6?0.005051,如果令2?1.4,则f1?(2?1)?0.004096,

f2?11?0.005233f??0.0051254363f?(3?22)?0.008(2?1)(3?22),3,,

f5?99?702?1,f4的结果最好。

f(30)??4.094622,开平方时用六位函数表计算所得的误差为13.

???10?4中

1222f(x)?ln(x?x?1),f(x)??ln(x?x?1)12,分别代入等价公式

计算

)?可得

4?(f1)?ln(1??x?x2?11?(x?x2?1)??60??10??3?10?2x?x2?1,

??(f2)?ln(1??x?x2?1)??x?x2?1?11??10?4?8.33?10?7602。

1000000000999999998?1.000000,x2??1.00000099999999999999999914. 方程组的真解为,

而无论用方程一还是方程二代入消元均解得x1?1.00,x2?1.00,结果十分可

x1?靠。

?tanc?c?15.

第二章 插值法习题参考答案

Vn(x)??(x?xi)i?0n?10?j?i?n?1?sbsinc?a?asinc?b?abcosc?c?a?b?c????sabsincabc

1.

?(xi?xj)i;

. (x?1)(x?2)(x?1)(x?2)(x?1)(x?1)L2(x)?0??(?3)??4?(1?1)(1?2)(?1?1)(?1?2)(2?1)(2?1) 2.

537?x2?x?23. 63. 线性插值:取x0?0.5,x1?0.6,y0??0.693147,y1??0.510826,则

0?j?i?n?1Vn?1(x0,x1,?,xn?1)??(x?xj)ln0.54?L1(0.54)?y0?y1?y0?(0.54?x0)??0.620219x1?x0;

二次插值:取

x0?0.4,x1?0.5,x2?0.6,y0??0.916291,y1??0.693147,y2??0.510826,则 ln0.54?L2(0.54)

(0.54?x0)(0.54?x2)(0.54?x0)(0.54?x1)(0.54?x1)(0.54?x2)?y0??y1??y2?(x0?x1)(x0?x2)(x1?x0)(x1?x2)(x2?x0)(x2?x1)

=-0.616707 .

1R1(x)?f(x)?L1(x)?f??(?)(x?x0)(x?x1)24. ,其中??[x0,x1]. 1|R1(x)|?max|cos??(x)|?max|(x?x0)(x?x1)|x0?x?x12x0?x?x1所以总误差界

(x1?x0)21?11???8??1???????1.06?10248?60180? .

25. 当

x?x0?l2(x)?(x?x0)(x?x1)(x?x3)(x2?x0)(x2?x1)(x2?x3)

4?7?h3 时,取得最大值

x0?x?x3max|l2(x)|?10?7727 .

本文来源:https://www.bwwdw.com/article/r3ut.html

Top