An event-driven framework for the simulation of networks of spiking neurons
更新时间:2023-05-16 23:56:01 阅读量: 实用文档 文档下载
Abstract. We propose an event-driven framework dedicated to the design and the simulation of networks of spiking neurons. It consists of an abstract model of spiking neurons and an efficient event-driven simulation engine so as to achieve good performance
Anevent-drivenframeworkforthesimulationof
networksofspikingneurons
OlivierRochel,DominiqueMartinez
LORIA-Campusscienti queB.P.239
F-54506Vand uvre-les-NancyCedex
E-mail:{rochel,dmartine}@loria.fr
Abstract.Weproposeanevent-drivenframeworkdedicatedtothe
designandthesimulationofnetworksofspikingneurons.Itconsists
ofanabstractmodelofspikingneuronsandane cientevent-driven
simulationenginesoastoachievegoodperformanceinthesimulation
phasewhilemaintainingahighlevelof exibilityandprogrammability
inthemodellingphase.Ourmodelofneuronsencompassesalargeclass
ofspikingneuronsrangingfromusualleakyintegrate-and- reneuronsto
moreabstractneurons,e.g.de nedascomplex nitestatemachines.As
aresult,theproposedframeworkallowsthesimulationoflargenetworks
thatcanbecomposedofuniqueordi erenttypesofneurons.
1Introduction
Inanevent-drivensimulation,thesimulatedtime(oftencalledvirtualtime)isadvancedbycomputingthestateofthesystemateventoccurenceinstantsonly,whereasinatime-drivensimulationitisadvancedusingarbitrarytimesteps[2].Mappingsuchanevent-drivenschemetoapulsedcoupledneuralnetworkisstraightforward:thepulses(orspikes)areinstantaneous,canoccuratanytime,andthereforecanbeseenasthe“events”thatdeterminetheevolutionofthesystem.Inthecontextofaspikingneuralnetworksimulation,abasicevent-drivensimulationenginethusfollowsthisscheme:
1.Findthenexteventtobeprocessed,thatis,thenextneuronthatshould re(orreceive)aspike.
2.Updatethestateoftheneuronconcernedbythisevent
3.Schedulepossibleeventsinducedbythatchange
4.Ifsomeeventsarepending,returntothe rststep.Otherwise,thesim-ulationends.
Abstract. We propose an event-driven framework dedicated to the design and the simulation of networks of spiking neurons. It consists of an abstract model of spiking neurons and an efficient event-driven simulation engine so as to achieve good performance
Previousresearchhasproventhatsuchanevent-drivenapproachiswellsuitedtothesimulationoflargenetworksofspikingneurons,sinceitleadstofastsimulationswhilehandlingthedi culttaskofdealingwiththehighpreci-sionrequiredinthecomputationofspiketimes[7].However,theevent-drivensoftwaresimulatorsthathavebeendevelopedsofararespeci ctoparticularmodelsofneuronsornetworks.Forexample,theevent-drivensimulatorsin
[11,4,8,7]areratherdedicatedtointegrate-and- reneurons,theonein[1]isdedicatedtoneuronssimilartoautomatawitha nitenumberofstates.
Incontrast,weproposeinthispaperanevent-drivenframeworkinwhichtheneuronmodelsareonlylimitedbythefactthattheycanbeimplementedinanevent-drivenfashion.Thisencompassesalargeclassofspikingneuronsrang-ingfromusualleakyintegrate-and- reneuronstomoreabstractneurons,e.g.de nedascomplex nitestatemachines.Asaresult,theproposedframeworkfeaturesahighlevelof exibilitythatallowsthesimulationoflargenetworkscomposedofuniqueordi erenttypesofneurons.
2
2.1SpikingneuronmodelsAbstractneuronmodel
We rstneedtode neanabstractmodelofneuronstobeusedwithinourevent-drivenframework.Accordingtothebasicalgorithmdescribedabove,thefollowingrequirementsmustbeful lledbysuchaneuron:wemustknowhowitsinternalstateisa ectedbythereceptionofaspike,howitsinternalstateismodi edwhenemittingaspike,andwhenitsnext ringwilloccur. i},Wethereforede neanabstractmodelofneuronsasaset{xi,ri,si,twith
xi∈XisthestatevariableoftheneuronandXisagivenstatespace.Thisvariablecanchangeonlyatthetimesofsomeeventsoccuringinthesystem.
ri:X×S×R→Xisthefunctionthatdescribesthechangeofthestatevariabledrivenbythereceptionofapulsefromasynapses∈S,whereSisthesetofallsynapses,attimetr∈R.Wewillbemorespeci caboutthesynapsesinsection2.2.
si:X→Xcaracterizesthechangeofstatevariablecausedbythe ringoftheneuron(resetfunction).
i:X→R+∪{+∞}givesthetimeofthenext ring,giventhepresent t
statevariable,withtheadditionalhypothesisthatnoevent-drivenchangeofstatevariablewilloccuruntilthen.Weneedtoprovidethespecialvalue+∞asawaytosignifythatno ringcanoccurwithoutfurtherevents.
i’sto ndthenext ringeventpending.Thesimulationengineusesthet
This,togetherwithamethodtotakecareof(possiblydelayed)receptionevents
Abstract. We propose an event-driven framework dedicated to the design and the simulation of networks of spiking neurons. It consists of an abstract model of spiking neurons and an efficient event-driven simulation engine so as to achieve good performance
scheduledinstep3)oftheabove-mentionedalgorithm,permitsthecompletionofstep1).siorriwillthenbeusedtocompletethesecondstep.
2.2Connectivity
Theabstractmodeldescribedinthe
previoussectionisimplicitelybasedontheassumptionthattheconnec-
tivityofthespikingneuralnetworkstobesimulatedisofaveryclassi-
caltype:thereexistsa( xed)setoforientedconnectionsbetweentheneurons,andaneuronhasonlyoneFigure1outputchannel(oneaxon)suchthat
aspikeemittedbyaneuronwillalwaysbetransmittedtoallitssuccessors(alltheneuronslinkedtoitsaxon).Thelatterassumptionexplainswhythefunctionsidoesnotprovideanyexplicitwayoftargetingparticularneurons.
Suchaconnectivitypermitsthatthestep3)oftheevent-drivensimulationalgorithm(receptioneventsscheduling)isperformedinacentralizedwaybythesimulationengine,asitonlyrequirestheknowledgeofthelistofsuccessorsforeachneuron.Indeed,itispossiblethatmorethanoneconnectionexistsbetweenapairofneurons(e.g.withdi erenttimedelays),soasingleneuroncanappearmorethanonceinthesuccessorlist.Then,at ringtime,thesimulationenginewillscheduleexactlyoneeventpersynapseinthesuccessorlist.Moreover,inorderforareceiverneurontoreacttoanincomingspike,itwillhavetoknowwhichsynapseisconcerned,whichrequiresthatallsynapsesbeidenti edinthesuccessorlist.Thesynapseidentitycorrespondstothesparameteroftherifunctiongivenintheprevioussection.
Figure1(left)showsasamplenetworkconnectivity,with3neurons(A,B,C)withthesynapseidentitiesexpressedasa1,..,c2,c3.Ontheright,thecorre-spondingsuccessorlistforeachneuronisrepresented.
2.3Relationtoothermodels
Letusnowconsideraleakyintegrate-and- reneuroni,whosemembranepo-tentialViobeysthefollowingequation
dVi= Vi+Iidt(1)
whereIicorrespondstoaconstantinputcurrent.Theneuronisfurtherde nedbyathresholdmechanism,i.e.itwill rewheneverVi>θianditspotentialwillbesettozero(Vi=0)at ringtimes.Forthesakeofsimplicity,weconsiderthatIi>θiinthefollowing.Wefurtherassumeinthefollowingthatwhenevertheneuronireceivesaspikethroughasynapses,attimetr,themembranepotentialVi(tr)instantaneouslyjumpsofanamplitudews.
Abstract. We propose an event-driven framework dedicated to the design and the simulation of networks of spiking neurons. It consists of an abstract model of spiking neurons and an efficient event-driven simulation engine so as to achieve good performance
Torewritetheaboveintegrate-and- reneuronaccordingtoourmodelweconsiderthatthestatevariablexiisde nedasthevector(Vi0,t0i)inwhich0Vi0=Vi(t0i)representsthepotentialatthetimetiofthelatestevent(emissionorreceptionofaspike).Theintegrate-and- reneuronisnowfullydescribedby:
Vi(tr)+wsri(xi,s,tr)=tr 0si(xi)= ti(xi) 0t i(xi)=itI V00ti+logii(2)(3)ifVi0≥θi,otherwise.(4)
. twhereVi(tr)isfoundbyintegratingEq.(1):Vi(tr)=Ii+(Vi0 Ii)expt0riMoregenerally,torephraseathreshold-basedspikingneuronwithinthe
event-drivenframeworkdescribedabove,the ringtimehastobecomputedexplicitely.Thisispossiblefortheleakyintegrate-and- re(seeabove).How-ever,itiscommonthatnoanalyticalsolutionisavailableifoneconsidersmorebiologicallyplausiblesynapticinteractions,suchastheuseofpostsynapticcurrentsgivenbyalphafunctions.Insuchacase,wecanstilluseanumericalschemetoestimatethenext ringtimewithagivenprecision,asstatedin
[7].AsimilartechniquehasbeenusedbyHanselandal.in[5].Notehoweverthatwhenthefocusofastudyismainlyonmodellingpreciselytheshapeofapostsynapticpotential,aframeworksuchastheSpikeResponseModel[3]isprobablybettersuitedthanours.
Obviously,ourabstractmodeldoesnotrequirethatthestatevariableoftheneuronshouldbederivedfromthetimecourseofanunderlyingmembranepotential.Otherchoicesarepossible:forexample,theneuronmodelsbasedon nitestateautomatain[1]couldbeusedaswell.Anotherpossiblechoiceistotakethetimeofthenext ring(assumingitalwaysexists)asthestatevariable.Interactionsfromotherneuronswillleadtoadvance(excitatoryconnections)ordelay(inhibitoryconnections)thattime.
3Simulationengine
Sofar,wehavedescribedanabstractmodelofanetworkofspikingneurons.Throughoutthedescription,thebasicinteractionswithanappropriatesim-ulationenginehavebeenunderlinedaswell.Wenowneedtocompletethedescriptionoftheengine,morepreciselytoexplainhowitcanhandletheevent owinadeterministicway.Thebasicalgorithmforasimulationenginehasalreadybeendescribedinsection1,andcorrespondstoaclassicalevent-drivensimulationalgorithm.Wenowfocusonsomekeypointsthatstronglydeter-minethee ciencyandcorrectnessofeventordering.
Abstract. We propose an event-driven framework dedicated to the design and the simulation of networks of spiking neurons. It consists of an abstract model of spiking neurons and an efficient event-driven simulation engine so as to achieve good performance
Usingagooddatastructureforeventordering(priorityqueue)isoftenseenasthecriticalpointwhenimplementinggeneral-purposeevent-drivensimula-tionframeworks[10].Inthecontextofspikingneuronsimulation,thatissuehasbeenaddressedinrecentworksonsimulationalgorithmsforsomespeci cspikingneuronsmodels,suchasintegrate-and- reneuronsin[7]or nitestateautomata-basedneuronsin[1].Itmustbenotedhoweverthatthesimulationenginehastodealwithtworatherdi erenteventtypes:thereceptionevents,oncescheduled,cannotbecancellednorrescheduledatanothertime,whilethe ringeventscanberescheduledorcancelledbyforthcomingreceptionevents.Thatparticularpointmeansthatitisalmostessentialtodesigntwodi erentdatastructuresaimedatproperorderingofeacheventtype.Asanexhaustivestudyofthepossibledatastructuresforimplementinggoodpriorityqueuesineachcaseisbeyondthescopeofthispaper,wewilljustpointoutaworthwhileoptimizationwhichisrelatedtothewaytheneuronsinteract,asexplainedbe-foreinsection2.2.Thesuccessorlistprovidesthebasicstoschedule,at ringtime,thereceptioneventsforeachsuccessorneuron.Whenusingtimedelayedreceptions,itisgenerallyworthwhiletomaintaintheselistsordered,soastoinsertinthependingeventlistonlytheeventassociatedwiththesmallertimedelay,thuse ectivelylimitingthepriorityqueuelength.Assoonasthiseventwillbeprocessed,thenexteventintheorderedlistwillbeexplicitelyscheduleduntilnoremainingconnectionisleft.
Anotherreasonthatcomplicatesthedesignoftheunderlyingdatastruc-turesreliesonthefactthatsomeevents(e.g.pulsereceptions)cansharethesametimestamp(synchrony).Untilnow,weassumedimplicitelythatthesim-ulationenginewasprovidedawayoforderingtheevents,i.e.sortingeventsbytheirtimestamps.Inordertofullyde nethesimulationofanetworkofspikingneurons,wehavethentoprovideanexplicitrulefororderingeventswithequaltimestamps.Multiplerulescanbeused,dependingonthechoiceoftheuser:data-structurebased(FIFO1-like),randomchoice,ormorespeci crulesde nedfromtheavailableparameters(synapseidentity,neuronidentity,typeofevent...).
4Conclusion
Wehavepresentedanevent-drivenframeworkthatconsistsofanabstractmodelofspikingneuronsandane cientevent-drivensimulationengine.Thisframeworkisdedicatedtothedesignandthesimulationofnetworksofspikingneuronsandpresentsahighlevelof exibilityandprogrammability.Thisallowstobuildandsimulatenetworksofclassicalspikingneuronssuchasintegrate-and- reneuronsorofmoreabstractneuronsspeci callydesignedfortheap-plicationathand.Wehaveusedthisevent-drivenframeworkinthesetwosituations:(1)forthesimulationofleakyintegrate-and- reneuronswiththeaimofcontourdetectionbysynchronization[6]and(2)forthesimulationof1Firstin, rstout
Abstract. We propose an event-driven framework dedicated to the design and the simulation of networks of spiking neurons. It consists of an abstract model of spiking neurons and an efficient event-driven simulation engine so as to achieve good performance
moreabstractneuronsspeci callydesignedfordetectinganodorindependentofitsconcentration[9].Asimulatorhasbeendeveloppedandthesoftwareshouldbesoonavailableathttp://www.loria.fr/ rochel/.
Besidestheneedofamorein-depthstudyofthedatastructuresusedbythesimulationengine,futureworkswillincludethedesignofahierarchicalabstractmodelthatwillpermiteasiermodellingofcomplexnetworksandmoree cientsimulationsofhomogeneouspopulationofneurons.
References
[1]E.T.Claverol,A.D.Brown,andJ.E.Chad.Discretesimulationoflarge
aggregatesofneurons.Neurocomputing47,277–297,2002.
[2]A.Ferscha.ParallelandDistributedComputingHandbook,chapterParallel
andDistributedSimulationofDiscreteEventSystems.McGrawHill,1996.
[3]W.GerstnerandW.Kistler.SpikingNeuronModels:SingleNeurons,
Populations,Plasticity.CambridgeUniversityPress,2002.
[4]C.GrassmannandJ.K.Anlauf.Fastdigitalsimulationofspikingneu-
ralnetworksandneuromorphicintegrationwithspikelab.InternationalJournalofNeuralSystems,Vol9,No.5473–478,1999.
[5]D.Hansel,G.Mato,C.Meunier,andL.Nelter.Onnumericalsimulations
ofintegrate-and- reneuralnetworks.NeuralComputation10,467-483,1998.
[6]E.Hugues,F.Guilleux,andO.Rochel.Contourdetectionbysynchro-
nizationofintegrate-and- reneurons.2ndIntl.WorkshoponBiologicallyMotivatedComputerVision(BMCV),2002.
[7]G.LeeandN.H.Farhat.Thedoublequeuemethod:anumericalmethod
forintegrate-and- reneuronnetworks.NeuralNetworks14921–932,2001.
[8]M.MattiaandP.DelGiudice.E cientevent-drivensimulationoflarge
networksofspikingneuronsanddynamicalsynapses.NeuralComputation12,2305-2329,2000.
[9]O.Rochel,D.Martinez,E.Hugues,andF.Sarry.Stereo-olfactionwith
asni ngneuromorphicrobotusingspikingneurons.16thEuropeanCon-ferenceonSolid-StateTransducers(Eurosensors),2002.
[10]R.RonngrenandR.Ayani.Acomparativestudyofparallelandsequential
priorityqueuealgorithm.ACMTransactionsonModelingandComputerSimulation,Vol.7,No.2,pp.157–209,1997.
[11]L.Watts.Event-drivensimulationofnetworksofspikingneurons.Pro-
ceedingsoftheSixthNeuralInformationProcessingSystemsConference,pp.927-934.,1993.
正在阅读:
An event-driven framework for the simulation of networks of spiking neurons05-16
城轨交通概论6-9章作业11-29
Unit2 部分练习题06-27
数据挖掘中分类技术应用04-23
300子稿纸的模板_300格稿纸模板——【范文】.doc04-15
试论企业人才流失的原因及应对策略05-23
肖临骏:走进生活的地理教学如何设计07-03
社区志愿者活动记录02-20
- 1windows下zend framework配置
- 2A Framework for Automatic Adaptation of Tunable Distributed
- 3SolidWorks Simulation图解应用教程(五)
- 4Cadence-SI-Simulation - 图文
- 5Information flow based event distribution middleware
- 6Information flow based event distribution middleware
- 7A Discriminative CNN Video Representation for Event Detectio
- 8Supporting MPEG video VBR traffic in wireless networks
- 9Optical Fiber Communication System Simulation
- 10Open Framework for Collaborative Model Based Engineering
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- simulation
- framework
- networks
- spiking
- neurons
- driven
- event
- 上病下治:18个上下对应而效用神奇的穴位
- 小学教师应具备的基本素质
- 2011年中考化学专题训练-气体的制取、干燥与净化
- 2.1-2.5.4时域离散信号和系统的频域分析
- 制度Microsoft Word 文档
- 河南理工大学2011年道路与桥梁工程认识实习报告
- 算法分析与设计期末考试模拟试题一
- 六0二班美丽班级创建发言稿
- 2016大兴区高三理科综合能力测试一模(化学部分)试卷及答案
- 数学知识的记忆(修改稿)
- 陕西省中考化学模拟试卷11
- 2010年第一学期高三英语期中测试题及答案
- 尔雅职业规划试题及答案
- 企业主管培训教程
- 知识产权法-中南政法.吴汉东
- 017 第十七章变动成本法
- 买卖合同纠纷与借款、担保合同纠纷法律适用及《合同法司法解释二》专题讲座 2
- 企业培训系统解决方案
- 房地产业尾数定价法价格调整策略培训
- 大功率二极管泵浦固体激光器的应用和发展