改良hummers合成氧化石墨烯

更新时间:2023-05-27 10:55:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

AnimprovedHummersmethodforeco-friendlysynthesisofgrapheneoxide

JiChen,BowenYao,ChunLi,GaoquanShi

*

DepartmentofChemistry,TsinghuaUniversity,Beijing100084,People’sRepublicofChina

ARTICLEINFOABSTRACT

Articlehistory:Received4June2013Accepted21July2013Availableonline27July2013

AnimprovedHummersmethodwithoutusingNaNO3canproducegrapheneoxidenearlythesametothatpreparedbyconventionalHummersmethod.Thismodi cationdoesnotdecreasetheyieldofproduct,eliminatingtheevolutionofNO2/N2O4toxicgassesandsim-plifyingthedisposalofwastewaterbecauseoftheinexistenceofNa+andNO3Àions.Forthe rsttime,wealsodevelopedaprototypemethodofpost-treatingthewastewatercol-lectedfromthesystemsofsynthesizingandpurifyinggrapheneoxide.ThecontentofMn2+ionsinthepuri edwastewaterwasmeasuredtobelowerthantheguidelinevaluefordrinkingwater.

Ó2013ElsevierLtd.Allrightsreserved.

1.Introduction

Graphenehasauniqueatom-thicktwo-dimensionalstruc-ture,excellentelectronic,mechanical,opticalandthermalproperties[1].Therefore,ithasbeenwidelyexploredfortheapplicationsinelectronics[2],catalysis[3],sensors[4],andenergyconversionandstorage[5,6],etc.Forthesepurposes,themass-productionofgraphenematerialsatlowcostsisoneoftheessentialrequirements.Actually,graphenesheetsalreadyexistinnatureandweneedtoexfoliatethemfromtheirprecursors[7].Theexfoliationofgraphitetographenecanberealizedeitherphysicallyorchemically[1].Amongthevariousmethods,chemicalreductionofgrapheneoxide(GO)toreducedgrapheneoxide(rGO)isuniqueandattractivebecauseofitscapabilityofproducingsingle-layergrapheneinlargescaleandatrelativelylowcost[8].Furthermore,GOandrGOareprocessibleandtheycanbefabricatedorself-assem-bledintomacroscopicmaterialswithcontrolledcompositionsandmicrostructuresforpracticalapplications[9].

GOistheprecursorofrGO;thus,itplaysacrucialroleincontrollingthestructure,propertyandtheapplicationpoten-tialofrGO[10À16].ThepioneeringworkonthesynthesisofGOwasreportedbyBrodiein1859[17].Inthismethod,one

equalweightofgraphitewasmixedwiththreeequalweightsofKClO3andreactedinfumingHNO3at60°Cfor4days.Sta-udenmaierimprovedBrodiemethodbyreplacingabouttwothirdsoffumingHNO3withconcentratedH2SO4andaddingKClO3inmultipleportions[18].Thissmallmodi cationen-ablestheoverallreactioninasinglevessel;thussimplifyingthesynthesismethod.However,thisreactionstillneedsalongtimeof4days.ThemostimportantandwidelyappliedmethodforthesynthesisofGOwasdevelopedbyHummersandOffemanin1958(Hummersmethod)[19].Inthiscase,theoxidationofgraphitewasachievedbyharshtreatmentofoneequalweightofgraphitepowdersinaconcentratedH2SO4solutioncontainingthreeequalweightsofKMnO4and0.5equalweightofNaNO3.TheHummersmethod,atleast,hasthreeimportantadvantagesoverprevioustech-niques.First,thereactioncanbecompletedwithinafewhours.Second,KClO3wasreplacedbyKMnO4toimprovethereactionsafety,avoidingtheevolutionofexplosiveClO2.Third,theuseofNaNO3insteadoffumingHNO3eliminatestheformationofacidfog.

Hummersmethodhasbeenpaidthemostintensiveatten-tionbecauseofitshighef ciencyandsatisfyingreactionsafety.However,itstillhasthefollowingtwo aws:(1)theoxi-

*Correspondingauthor:Fax:+861062771149.

E-mailaddress:gshi@(G.Shi).

0008-6223/$-seefrontmatterÓ2013ElsevierLtd.Allrightsreserved./10.1016/j.carbon.2013.07.055

226

CARBON

64(2013)225–229

dationprocedurereleasestoxicgassessuchasNO2andN2O4;(2)theresidualNa+andNO3Àionsaredif culttoberemovedfromthewastewaterformedfromtheprocessesofsynthe-sizingandpurifyingGO.Tourandco-workersimprovedtheHummersmethodbyexcludingNaNO3,increasingtheamountofKMnO4,andperformingthereactionina9:1(byvolume)mixtureofH2SO4/H3PO4[20].Thismodi cationissuccessfulinincreasingthereactionyieldandreducingtoxicgasevolution,whileusingtwiceasmuchKMnO4and5.2timesasmuchH2SO4asthoserequiredbyHummersmethodandalsointroducinganewcomponentofH3PO4tothereactionsystem.

Recently,Baek’sgroupstudiedtheprocessofetchingthebasalplanesofhighlyorderedpyrolyticgraphite(HOPG)withahotmixtureofH2SO4andHNO3[21].Inthiscase,thegraph-enelayersofHOPGwereeffectivelycutandexfoliatedafteralong-termtreatment.ThisobservationindicatesthattheH2SO4/HNO3mixtureusedinHummersmethodactsasachemical‘‘scissor’’andachemical‘‘drill’’forgrapheneplanestofacilitatethepenetrationofoxidationsolution.Ontheotherhand,KMnO4isoneofthestrongestoxidants,espe-ciallyinacidicmedia[22].WiththeassistanceofKMnO4,acompleteintercalationofgraphitewithconcentratedH2SO4canbeachieved,forminggraphitebisulfateinwhicheverysingle-layergrapheneissandwichedbythelayersofbisulfateions[23,24].ThiscompleteintercalationensurestheeffectivepenetrationofKMnO4solutionintographenelayersfortheoxidationofgraphite.Accordingly,KMnO4canalsotaketheroleofNaNO3andthelatterisunnecessaryforthesynthesisofGOusingHummersmethod.Inthisarticle,wedemon-stratethatGOcanbeproducedusinganimprovedHummersmethodwithoutusingNaNO3.ThismethoddecreasesthecostandenvironmentaldutyofGOproduction.

2.

Experimental

2.1.

Synthesisandpuri cationofGO

GOwaspreparedbytheoxidationofnaturalgraphitepowder(325mesh,QingdaoHuataiLubricantSealingS&TCo.Ltd.,Qingdao,China)accordingtoHummersmethodwithamodi- cationofremovingNaNO3fromthereactionformula[19].Typically,graphitepowder(3.0g)wasaddedtoconcentratedH2SO4(70mL)understirringinanicebath.Undervigorousagitation,KMnO4(9.0g)wasaddedslowlytokeepthetemper-atureofthesuspensionlowerthan20°C.Successively,thereactionsystemwastransferredtoa40°Coilbathandvigor-ouslystirredforabout0.5h.Then,150mLwaterwasadded,andthesolutionwasstirredfor15minat95°C.Additional500mLwaterwasaddedandfollowedbyaslowadditionof15mLH2O2(30%),turningthecolorofthesolutionfromdarkbrowntoyellow.Themixturewas lteredandwashedwith1:10HClaqueoussolution(250mL)toremovemetalions.Theresultingsolidwasdriedinairanddilutedto600mL,makingagraphiteoxideaqueousdispersion.Finally,itwaspuri edbydialysisforoneweekusingadialysismembrane(BeijingChemicalReagentCo.,China)withamolecularweightcutoffof8000À14,000gmolÀ1toremovetheremainingmetalspecies.Theresultantgraphiteoxideaqueousdispersionwas

thendilutedto1.2L,stirredovernightandsonicatedfor30mintoexfoliateittoGO.TheGOdispersionwasthencen-trifugedat3000rpmfor40mintoremovetheunexfoliatedgraphite.Forcomparison,GOwasalsopreparedbyconven-tionalHummersmethod[19],andpuri edusingthesamepro-ceduresdescribedabove.TheGOproductspreparedbytheimprovedandconventionalHummersmethodsarenomi-natedasGO1orGO2,respectively.

2.2.Instrumentsandcharacterizations

GOdispersionswerefreeze-driedandusedformorphologicalandstructuralcharacterizations.Ramanspectrawerere-cordedonaRenishawRamanspectrometerwitha514nmla-seratapowerof4.7mW.X-rayphotoelectronspectra(XPS)wererecordedonanESCALAB250photoelectronspectrome-ter(ThermoFisherScienti c)withAlKa(1486.6eV)astheX-raysourcesetat150Wandapassenergyof30eVforhighresolutionscan.UV–visiblespectraweretakenoutbytheuseofaU-3010UV–visiblespectrometer(Hitachi,Japan).Scanningelectronmicrographs(SEM)weretakenoutona eld-emissionscanningelectronmicroscope(Sirion-200,Ja-pan).Theatomicforcemicroscopic(AFM)imagesofGOsheetsweremeasuredusingascanningprobemicroscope(SPM-9600,Shimadzu).ThesamplesusedforSEMandAFMcharacterizationsweredepositedonsiliconwafersandmicasheets,respectively.Fouriertransforminfraredspectros-copy-attenuatedtotalre ectance(FTIR-ATR)spectrawerere-cordedonaFouriertransforminfraredspectrometer(BrukerVertexV70).ThezetapotentialsofGOaqueousdispersionsweremeasuredbytheuseofHORIBANanoparticleanalyzerSZ-100.X-raydiffraction(XRD)wascarriedoutonaD8Ad-vanceX-raydiffractometerwithCuKaradiation(k=0.15418nm,Bruker,Germany).

2.3.

TheremovingofMn2+ionsfromwastewater

Typically,wastewaterwascollectedfromtheprocessof l-tratingGOfromthereactionsystemofimprovedHummersmethod.Successively,20mLofwastewaterwasdilutedandneutralizedbya0.2gmLÀ1KOHsolution.ThepHofthesolu-tionwasadjustedto$10andaprecipitatewasformed.Then,thissystemwaskeptundisturbedovernighttoagetheprecip-itate.Finallythesedimentwas ltrated.TheMn2+ionsinthepuri edwastewater(or ltrate)wastestbyaddingitforsev-eraldropsintoa3mLaqueoussolutionofNa2S2O8(0.1gmLÀ1)followedbyboilingthemixturefor1min.

3.Resultsanddiscussion

GOsamplesweresynthesizedbyusingHummersmethodwithout(GO1)orwith(GO2)usingofNaNO3andpuri edbydialysisandcentrifugation.Theyields(theweightofGOdi-videdbytheweightofgraphitepowder)ofGO1andGO2weremeasuredtobe92%±3%and96%±2%,respectively.Thisre-sultindicatesthatthesolutionofconcentratedH2SO4con-tainingKMnO4iscapableofoxidizinggraphitetoGOinayieldclosetothatofHummersmethodevenwithouttheassistanceofNaNO3.

CARBON

64(2013)225–229

227

Thecomposition,structureandmorphologyofGO1werecharacterizedtobenearlythesametothoseofGO2.Fig.1aistheUV–visiblespectrumoftheaqueousdispersionofGO1.Thespectrumhasamainabsorptionpeakat232nmandashoulderpeakat300nm,whichareattributedtopÀp*tran-sitionofC@CbondsandnÀp*transitionofC@Obonds,respectively.TheoverallfeatureofthisspectrumisidenticaltothatoftheGOsynthesizedusingconventionalHummersmethod(GO2,Fig.S1a)anditsadsorptionpeaksarealsosimilartothoseoftheGOsamplesreportedinliterature[20].ThedispersionofGO1showsaclearyellowcolor,indi-catingasuccessfuloxidationofgraphitetoGO[19].TheC/OatomicratiosofGO1(Fig.1b)andGO2(Fig.S1b)weremea-suredbyXPStobe2.36and2.23,respectively,re ectingtheirsimilardegreesofoxidation.Thesevaluesareamongtherangeof2.1À2.9fortheGOproductsreportedpreviously[19].TheC1sspectrumofGO1(Fig.1c)demonstratesfourtypesofcarbonbonds:C–C/C@C(284.6eV),C–O(286.6eV),C@O(287.8eV),andO–C@O(289.0eV).Thepeakintensitiesofintactcarbon(C–C/C@C)andoxygenatedcarbonatomsinthisXPSspectrumwerecalculatedtobe47.9%and52.1%(Fig.1c),correspondingly.ThosevaluesinthespectrumofGO2weremeasuredtobe46.5%and53.5%,respectively(Fig.S1c).Thisresultfurthercon rmsthattheyhavecompa-rableoxidizationdegrees.ItshouldbenotedherethattheoxidationdegreesofGOproductsvarywiththeirsynthesisconditions[11,15,20].EitherGO1orGO2hasamediumoxi-dationdegreecomparedwiththoseofless[15]andhighlyoxidizedcounterparts[20].ThezetapotentialsofGO1andGO2suspensionsweremeasuredtobeÀ43.8±1.3andÀ45.6±0.6mV,respectively,indicatingtheyarenegativelychargedbecauseofthepresenceofcarboxylgroups.AlthoughGO1hasaslightlyhigherzetapotentialthanthatofGO2,itsvalueisstilllowerthanÀ30mV,providingitwith

peakat2h=10.9°(Fig.2c),correspondingtoad-spaceof0.81nm,andthisvalueisinconsistentwiththatoffreeze-driedGO2(Fig.S2c).ThelargeinterlayerspacingofGO1sheetscanbeattributedtoitsoxygenatedfunctionalgroupsintroducedbytheharshoxidationtreatmentofgraphite[26].

RamanandinfraredspectralstudiesalsodemonstratethatbothGOproductsarestructurallythesame.TheRamanspec-trumofGO1(Fig.2d)orGO2(Fig.S2d)showsaG-bandat$1590cmÀ1andaD-bandat$1350cmÀ1.TheG-bandisasso-ciatedwithgraphiticcarbonsandtheD-bandisrelatedtothestructuraldefectsorpartiallydisorderedgraphiticdomains[27].TheD-bandsinbothspectraarestrong,con rmingthelatticedistortionsofgraphenebasalplanes.Furthermore,theFTIRÀATRspectraofGO1andGO2papers(Fig.2eandS2e)showthefollowingcharacteristicfunctionalgroupsofGO[20,28]:CÀOÀC($1000cmÀ1),CÀO(1230cmÀ1),C@C($1620cmÀ1)andC@O(1740–1720cmÀ1)bonds.TheOÀHstretchingvibrationsintheregionof3600–3300cmÀ1areattributedtothehydroxylandcarboxylgroupsofGOandresidualwaterbetweenGOsheets.Thesehydrophilicoxy-gen-containingfunctionalgroupsprovideGOsheetswithagooddispersibilityinwater[9].

Thermalgravimetricanalysis(TGA)curvesofGO1andGO2arecomparedinFig.3.Bothcurvesexhibitsimilarcharacter-istics:theweightlossbefore100°CiscausedbythereleaseoftrappedwaterbetweenGOsheets[28];thedistinctweightlossbetween200and230°CisattributedtothedecompositionoflessstableoxygenatedfunctionalgroupsonGOsheets[29].Aweakermasslossintherangeof230–700°Cisrelatedtotheremovalofmorestablefunctionalgroups.Thenearlyidenti-calTGAcurvesofbothGOsamplesre ecttheirclosecontentsofoxygenatedgroups.

Post-treatmentofthewastewatercollectedfromthepro-cessesofGOsynthesisandpuri cationiscrucialforcommer-

tobeMn3O4containingasmallamountofMn(OH)2(Fig.5).Theef ciencyofremovingMn2+ionsfromthewastewaterhasbeentestedbytheadditionofthepuri edsupernatant

3natesthegenerationoftoxicgassesandsimpli estheproce-dureofpurifyingwasteliquid,thusdecreasesthecostofGOsynthesis.TheGOproductspreparedbyboththeimprovedandconventionalHummersmethodsarenearlythesamein

CARBON

64(2013)225–229

229

theirdispersibility,chemicalstructures,thicknesses,andlat-eraldimensions.Furthermore,theexclusionofNaNO3doesnotaffecttheyieldoftheoverallreaction.TheimprovedHummersmethoddescribedherecanbeusedtoprepareGOinlargescaleanditisone-steptowardsthesynthesisofgrapheneanditsderivativesthroughenvironmentallyfriendlyapproaches.

Acknowledgements

ThisworkwassupportedbynationalbasicresearchprogramofChina(973Program,2012CB933402),naturalsciencefoun-dationofChina(91027028,51161120361,21274074).

AppendixA.Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,at/10.1016/j.carbon.2013.07.055.

REFERENCES

[1]NovoselovKS,Fal’koVI,ColomboL,GellertPR,SchwabMG,

KimK.Aroadmapforgraphene.Nature2012;490(7419):192–200.

[2]WeissNO,ZhouH,LiaoL,LiuY,JiangS,HuangY,etal.

Graphene:anemergingelectronicmaterial.AdvMater2012;24(43):5782–825.

[3]HuangC,LiC,ShiG.Graphenebasedcatalysts.Energy

EnvironSci2012;5(10):8848–68.

[4]LiuY,DongX,ChenP.Biologicalandchemicalsensorsbased

ongraphenematerials.ChemSocRev2012;41(6):2283–307.[5]SunY,WuQ,ShiG.Graphenebasednewenergymaterials.

EnergyEnvironSci2011;4(4):1113–32.

[6]WasseiJK,KanerRB.Oh,theplacesyou’llgowithgraphene.

AccChemRes2013./10.1021/ar300184v[7]SegalM.Sellinggraphenebytheton.NatNanotechnol

2009;4(10):612–4.

[8]BaiH,LiC,ShiG.Functionalcompositematerialsbasedon

chemicallyconvertedgraphene.AdvMater2011;23(9):1089–115.

[9]LiC,ShiG.Three-dimensionalgraphenearchitectures.

Nanoscale2012;4(18):5549–63.

[10]ZhuY,MuraliS,CaiW,LiX,SukJW,PottsJR,etal.Graphene

andgrapheneoxide:synthesis,properties,andapplications.AdvMater2010;22(35):3906–24.

[11]WuZ-S,RenW,GaoL,LiuB,JiangC,ChengH-M.Synthesisof

high-qualitygraphenewithapre-determinednumberoflayers.Carbon2009;47(2):493–9.

[12]ZhangL,LiangJ,HuangY,MaY,WangY,ChenY.Size-controlledsynthesisofgrapheneoxidesheetsonalarge

scaleusingchemicalexfoliation.Carbon2009;47(14):3365–8.

[13]

ZhangL,LiX,HuangY,MaY,WanX,ChenY.Controlledsynthesisoffew-layeredgraphenesheetsonalargescaleusingchemicalexfoliation.Carbon2010;48(8):2367–71.

[14]

ZhaoJ,PeiS,RenW,GaoL,ChengH-M.Ef cientPreparationoflarge-areagrapheneoxidesheetsfortransparentconductive lms.ACSNano2010;4(9):5245–52.

[15]

XuY,ShengK,LiC,ShiG.Highlyconductivechemicallyconvertedgraphenepreparedfrommildlyoxidizedgrapheneoxide.JMaterChem2011;21(20):7376–80.

[16]

LiY,UmerR,SamadYA,ZhengL,LiaoK.Theeffectoftheultrasonicationpre-treatmentofgrapheneoxide(GO)onthemechanicalpropertiesofGO/polyvinylalcoholcomposites.Carbon2013;55:321–7.

[17]

BrodieBC.Ontheatomicweightofgraphite.PhilosTransRSocLondon1859;14:249–59.

[18]StaudenmaierL.VerfahrenzurDarstellungderGraphitsa¨ure.BerDtschChemGes1898;31(2):1481–7.

[19]HummersWS,OffemanRE.Preparationofgraphiticoxide.JAmChemSoc1958;80(6):1339.

[20]

MarcanoDC,KosynkinDV,BerlinJM,SinitskiiA,SunZ,

SlesarevA,etal.Improvedsynthesisofgrapheneoxide.ACSNano2010;4(8):4806–14.

[21]

ShinY-R,JungS-M,JeonI-Y,BaekJ-B.Theoxidation

mechanismofhighlyorderedpyrolyticgraphiteinanitricacid/sulfuricacidmixture.Carbon2013;52:493–8.

[22]

DreyerDR,ParkS,BielawskiCW,RuoffRS.Thechemistryofgrapheneoxide.ChemSocRev2010;39(1):228–40.

[23]

AvdeevVV,MonyakinaLA,NikolskayaIV,SorokinaNE,SemenenkoKN.Thechoiceofoxidizersforgraphitehydrogenosulfatechemicalsynthesis.Carbon1992;30(6):819–23.

[24]

SorokinaNE,KhaskovMA,AvdeevVV,Nikol’skayaIV.ReactionofgraphitewithsulfuricacidinthepresenceofKMnO4.RussJGenChem2005;75(2):162–8.

[25]

LiD,MuellerMB,GiljeS,KanerRB,WallaceGG.Processableaqueousdispersionsofgraphenenanosheets.NatNanotechnol2008;3(2):101–5.

[26]

ChenC,YangQ-H,YangY,LvW,WenY,HouP-X,etal.Self-assembledfree-standinggraphiteoxidemembrane.AdvMater2009;21(29):3007–11.

[27]

KudinKN,OzbasB,SchnieppHC,Prud’hommeRK,AksayIA,CarR.Ramanspectraofgraphiteoxideandfunctionalizedgraphenesheets.NanoLett2008;8(1):36–41.

[28]

EiglerS,DotzerC,HirschA,EnzelbergerM,MuellerP.

FormationanddecompositionofCO2intercalatedgrapheneoxide.ChemMater2012;24(7):1276–82.

[29]

McAllisterMJ,LiJ-L,AdamsonDH,SchnieppHC,AbdalaAA,LiuJ,etal.Singlesheetfunctionalizedgraphenebyoxidationandthermalexpansionofgraphite.ChemMater2007;19(18):4396–404.

[30]

WorldHealthOrganization(WHO).ManganeseinDrinkingWater—BackgroundDocumentforDevelopmentofWHOGuidelinesforDrinking-WaterQuality.Geneva:WHO;2011.

本文来源:https://www.bwwdw.com/article/r1b4.html

Top