改良hummers合成氧化石墨烯
更新时间:2023-05-27 10:55:01 阅读量: 实用文档 文档下载
- 改良黄牛一年能长多少斤推荐度:
- 相关推荐
AnimprovedHummersmethodforeco-friendlysynthesisofgrapheneoxide
JiChen,BowenYao,ChunLi,GaoquanShi
*
DepartmentofChemistry,TsinghuaUniversity,Beijing100084,People’sRepublicofChina
ARTICLEINFOABSTRACT
Articlehistory:Received4June2013Accepted21July2013Availableonline27July2013
AnimprovedHummersmethodwithoutusingNaNO3canproducegrapheneoxidenearlythesametothatpreparedbyconventionalHummersmethod.Thismodi cationdoesnotdecreasetheyieldofproduct,eliminatingtheevolutionofNO2/N2O4toxicgassesandsim-plifyingthedisposalofwastewaterbecauseoftheinexistenceofNa+andNO3Àions.Forthe rsttime,wealsodevelopedaprototypemethodofpost-treatingthewastewatercol-lectedfromthesystemsofsynthesizingandpurifyinggrapheneoxide.ThecontentofMn2+ionsinthepuri edwastewaterwasmeasuredtobelowerthantheguidelinevaluefordrinkingwater.
Ó2013ElsevierLtd.Allrightsreserved.
1.Introduction
Graphenehasauniqueatom-thicktwo-dimensionalstruc-ture,excellentelectronic,mechanical,opticalandthermalproperties[1].Therefore,ithasbeenwidelyexploredfortheapplicationsinelectronics[2],catalysis[3],sensors[4],andenergyconversionandstorage[5,6],etc.Forthesepurposes,themass-productionofgraphenematerialsatlowcostsisoneoftheessentialrequirements.Actually,graphenesheetsalreadyexistinnatureandweneedtoexfoliatethemfromtheirprecursors[7].Theexfoliationofgraphitetographenecanberealizedeitherphysicallyorchemically[1].Amongthevariousmethods,chemicalreductionofgrapheneoxide(GO)toreducedgrapheneoxide(rGO)isuniqueandattractivebecauseofitscapabilityofproducingsingle-layergrapheneinlargescaleandatrelativelylowcost[8].Furthermore,GOandrGOareprocessibleandtheycanbefabricatedorself-assem-bledintomacroscopicmaterialswithcontrolledcompositionsandmicrostructuresforpracticalapplications[9].
GOistheprecursorofrGO;thus,itplaysacrucialroleincontrollingthestructure,propertyandtheapplicationpoten-tialofrGO[10À16].ThepioneeringworkonthesynthesisofGOwasreportedbyBrodiein1859[17].Inthismethod,one
equalweightofgraphitewasmixedwiththreeequalweightsofKClO3andreactedinfumingHNO3at60°Cfor4days.Sta-udenmaierimprovedBrodiemethodbyreplacingabouttwothirdsoffumingHNO3withconcentratedH2SO4andaddingKClO3inmultipleportions[18].Thissmallmodi cationen-ablestheoverallreactioninasinglevessel;thussimplifyingthesynthesismethod.However,thisreactionstillneedsalongtimeof4days.ThemostimportantandwidelyappliedmethodforthesynthesisofGOwasdevelopedbyHummersandOffemanin1958(Hummersmethod)[19].Inthiscase,theoxidationofgraphitewasachievedbyharshtreatmentofoneequalweightofgraphitepowdersinaconcentratedH2SO4solutioncontainingthreeequalweightsofKMnO4and0.5equalweightofNaNO3.TheHummersmethod,atleast,hasthreeimportantadvantagesoverprevioustech-niques.First,thereactioncanbecompletedwithinafewhours.Second,KClO3wasreplacedbyKMnO4toimprovethereactionsafety,avoidingtheevolutionofexplosiveClO2.Third,theuseofNaNO3insteadoffumingHNO3eliminatestheformationofacidfog.
Hummersmethodhasbeenpaidthemostintensiveatten-tionbecauseofitshighef ciencyandsatisfyingreactionsafety.However,itstillhasthefollowingtwo aws:(1)theoxi-
*Correspondingauthor:Fax:+861062771149.
E-mailaddress:gshi@(G.Shi).
0008-6223/$-seefrontmatterÓ2013ElsevierLtd.Allrightsreserved./10.1016/j.carbon.2013.07.055
226
CARBON
64(2013)225–229
dationprocedurereleasestoxicgassessuchasNO2andN2O4;(2)theresidualNa+andNO3Àionsaredif culttoberemovedfromthewastewaterformedfromtheprocessesofsynthe-sizingandpurifyingGO.Tourandco-workersimprovedtheHummersmethodbyexcludingNaNO3,increasingtheamountofKMnO4,andperformingthereactionina9:1(byvolume)mixtureofH2SO4/H3PO4[20].Thismodi cationissuccessfulinincreasingthereactionyieldandreducingtoxicgasevolution,whileusingtwiceasmuchKMnO4and5.2timesasmuchH2SO4asthoserequiredbyHummersmethodandalsointroducinganewcomponentofH3PO4tothereactionsystem.
Recently,Baek’sgroupstudiedtheprocessofetchingthebasalplanesofhighlyorderedpyrolyticgraphite(HOPG)withahotmixtureofH2SO4andHNO3[21].Inthiscase,thegraph-enelayersofHOPGwereeffectivelycutandexfoliatedafteralong-termtreatment.ThisobservationindicatesthattheH2SO4/HNO3mixtureusedinHummersmethodactsasachemical‘‘scissor’’andachemical‘‘drill’’forgrapheneplanestofacilitatethepenetrationofoxidationsolution.Ontheotherhand,KMnO4isoneofthestrongestoxidants,espe-ciallyinacidicmedia[22].WiththeassistanceofKMnO4,acompleteintercalationofgraphitewithconcentratedH2SO4canbeachieved,forminggraphitebisulfateinwhicheverysingle-layergrapheneissandwichedbythelayersofbisulfateions[23,24].ThiscompleteintercalationensurestheeffectivepenetrationofKMnO4solutionintographenelayersfortheoxidationofgraphite.Accordingly,KMnO4canalsotaketheroleofNaNO3andthelatterisunnecessaryforthesynthesisofGOusingHummersmethod.Inthisarticle,wedemon-stratethatGOcanbeproducedusinganimprovedHummersmethodwithoutusingNaNO3.ThismethoddecreasesthecostandenvironmentaldutyofGOproduction.
2.
Experimental
2.1.
Synthesisandpuri cationofGO
GOwaspreparedbytheoxidationofnaturalgraphitepowder(325mesh,QingdaoHuataiLubricantSealingS&TCo.Ltd.,Qingdao,China)accordingtoHummersmethodwithamodi- cationofremovingNaNO3fromthereactionformula[19].Typically,graphitepowder(3.0g)wasaddedtoconcentratedH2SO4(70mL)understirringinanicebath.Undervigorousagitation,KMnO4(9.0g)wasaddedslowlytokeepthetemper-atureofthesuspensionlowerthan20°C.Successively,thereactionsystemwastransferredtoa40°Coilbathandvigor-ouslystirredforabout0.5h.Then,150mLwaterwasadded,andthesolutionwasstirredfor15minat95°C.Additional500mLwaterwasaddedandfollowedbyaslowadditionof15mLH2O2(30%),turningthecolorofthesolutionfromdarkbrowntoyellow.Themixturewas lteredandwashedwith1:10HClaqueoussolution(250mL)toremovemetalions.Theresultingsolidwasdriedinairanddilutedto600mL,makingagraphiteoxideaqueousdispersion.Finally,itwaspuri edbydialysisforoneweekusingadialysismembrane(BeijingChemicalReagentCo.,China)withamolecularweightcutoffof8000À14,000gmolÀ1toremovetheremainingmetalspecies.Theresultantgraphiteoxideaqueousdispersionwas
thendilutedto1.2L,stirredovernightandsonicatedfor30mintoexfoliateittoGO.TheGOdispersionwasthencen-trifugedat3000rpmfor40mintoremovetheunexfoliatedgraphite.Forcomparison,GOwasalsopreparedbyconven-tionalHummersmethod[19],andpuri edusingthesamepro-ceduresdescribedabove.TheGOproductspreparedbytheimprovedandconventionalHummersmethodsarenomi-natedasGO1orGO2,respectively.
2.2.Instrumentsandcharacterizations
GOdispersionswerefreeze-driedandusedformorphologicalandstructuralcharacterizations.Ramanspectrawerere-cordedonaRenishawRamanspectrometerwitha514nmla-seratapowerof4.7mW.X-rayphotoelectronspectra(XPS)wererecordedonanESCALAB250photoelectronspectrome-ter(ThermoFisherScienti c)withAlKa(1486.6eV)astheX-raysourcesetat150Wandapassenergyof30eVforhighresolutionscan.UV–visiblespectraweretakenoutbytheuseofaU-3010UV–visiblespectrometer(Hitachi,Japan).Scanningelectronmicrographs(SEM)weretakenoutona eld-emissionscanningelectronmicroscope(Sirion-200,Ja-pan).Theatomicforcemicroscopic(AFM)imagesofGOsheetsweremeasuredusingascanningprobemicroscope(SPM-9600,Shimadzu).ThesamplesusedforSEMandAFMcharacterizationsweredepositedonsiliconwafersandmicasheets,respectively.Fouriertransforminfraredspectros-copy-attenuatedtotalre ectance(FTIR-ATR)spectrawerere-cordedonaFouriertransforminfraredspectrometer(BrukerVertexV70).ThezetapotentialsofGOaqueousdispersionsweremeasuredbytheuseofHORIBANanoparticleanalyzerSZ-100.X-raydiffraction(XRD)wascarriedoutonaD8Ad-vanceX-raydiffractometerwithCuKaradiation(k=0.15418nm,Bruker,Germany).
2.3.
TheremovingofMn2+ionsfromwastewater
Typically,wastewaterwascollectedfromtheprocessof l-tratingGOfromthereactionsystemofimprovedHummersmethod.Successively,20mLofwastewaterwasdilutedandneutralizedbya0.2gmLÀ1KOHsolution.ThepHofthesolu-tionwasadjustedto$10andaprecipitatewasformed.Then,thissystemwaskeptundisturbedovernighttoagetheprecip-itate.Finallythesedimentwas ltrated.TheMn2+ionsinthepuri edwastewater(or ltrate)wastestbyaddingitforsev-eraldropsintoa3mLaqueoussolutionofNa2S2O8(0.1gmLÀ1)followedbyboilingthemixturefor1min.
3.Resultsanddiscussion
GOsamplesweresynthesizedbyusingHummersmethodwithout(GO1)orwith(GO2)usingofNaNO3andpuri edbydialysisandcentrifugation.Theyields(theweightofGOdi-videdbytheweightofgraphitepowder)ofGO1andGO2weremeasuredtobe92%±3%and96%±2%,respectively.Thisre-sultindicatesthatthesolutionofconcentratedH2SO4con-tainingKMnO4iscapableofoxidizinggraphitetoGOinayieldclosetothatofHummersmethodevenwithouttheassistanceofNaNO3.
CARBON
64(2013)225–229
227
Thecomposition,structureandmorphologyofGO1werecharacterizedtobenearlythesametothoseofGO2.Fig.1aistheUV–visiblespectrumoftheaqueousdispersionofGO1.Thespectrumhasamainabsorptionpeakat232nmandashoulderpeakat300nm,whichareattributedtopÀp*tran-sitionofC@CbondsandnÀp*transitionofC@Obonds,respectively.TheoverallfeatureofthisspectrumisidenticaltothatoftheGOsynthesizedusingconventionalHummersmethod(GO2,Fig.S1a)anditsadsorptionpeaksarealsosimilartothoseoftheGOsamplesreportedinliterature[20].ThedispersionofGO1showsaclearyellowcolor,indi-catingasuccessfuloxidationofgraphitetoGO[19].TheC/OatomicratiosofGO1(Fig.1b)andGO2(Fig.S1b)weremea-suredbyXPStobe2.36and2.23,respectively,re ectingtheirsimilardegreesofoxidation.Thesevaluesareamongtherangeof2.1À2.9fortheGOproductsreportedpreviously[19].TheC1sspectrumofGO1(Fig.1c)demonstratesfourtypesofcarbonbonds:C–C/C@C(284.6eV),C–O(286.6eV),C@O(287.8eV),andO–C@O(289.0eV).Thepeakintensitiesofintactcarbon(C–C/C@C)andoxygenatedcarbonatomsinthisXPSspectrumwerecalculatedtobe47.9%and52.1%(Fig.1c),correspondingly.ThosevaluesinthespectrumofGO2weremeasuredtobe46.5%and53.5%,respectively(Fig.S1c).Thisresultfurthercon rmsthattheyhavecompa-rableoxidizationdegrees.ItshouldbenotedherethattheoxidationdegreesofGOproductsvarywiththeirsynthesisconditions[11,15,20].EitherGO1orGO2hasamediumoxi-dationdegreecomparedwiththoseofless[15]andhighlyoxidizedcounterparts[20].ThezetapotentialsofGO1andGO2suspensionsweremeasuredtobeÀ43.8±1.3andÀ45.6±0.6mV,respectively,indicatingtheyarenegativelychargedbecauseofthepresenceofcarboxylgroups.AlthoughGO1hasaslightlyhigherzetapotentialthanthatofGO2,itsvalueisstilllowerthanÀ30mV,providingitwith
peakat2h=10.9°(Fig.2c),correspondingtoad-spaceof0.81nm,andthisvalueisinconsistentwiththatoffreeze-driedGO2(Fig.S2c).ThelargeinterlayerspacingofGO1sheetscanbeattributedtoitsoxygenatedfunctionalgroupsintroducedbytheharshoxidationtreatmentofgraphite[26].
RamanandinfraredspectralstudiesalsodemonstratethatbothGOproductsarestructurallythesame.TheRamanspec-trumofGO1(Fig.2d)orGO2(Fig.S2d)showsaG-bandat$1590cmÀ1andaD-bandat$1350cmÀ1.TheG-bandisasso-ciatedwithgraphiticcarbonsandtheD-bandisrelatedtothestructuraldefectsorpartiallydisorderedgraphiticdomains[27].TheD-bandsinbothspectraarestrong,con rmingthelatticedistortionsofgraphenebasalplanes.Furthermore,theFTIRÀATRspectraofGO1andGO2papers(Fig.2eandS2e)showthefollowingcharacteristicfunctionalgroupsofGO[20,28]:CÀOÀC($1000cmÀ1),CÀO(1230cmÀ1),C@C($1620cmÀ1)andC@O(1740–1720cmÀ1)bonds.TheOÀHstretchingvibrationsintheregionof3600–3300cmÀ1areattributedtothehydroxylandcarboxylgroupsofGOandresidualwaterbetweenGOsheets.Thesehydrophilicoxy-gen-containingfunctionalgroupsprovideGOsheetswithagooddispersibilityinwater[9].
Thermalgravimetricanalysis(TGA)curvesofGO1andGO2arecomparedinFig.3.Bothcurvesexhibitsimilarcharacter-istics:theweightlossbefore100°CiscausedbythereleaseoftrappedwaterbetweenGOsheets[28];thedistinctweightlossbetween200and230°CisattributedtothedecompositionoflessstableoxygenatedfunctionalgroupsonGOsheets[29].Aweakermasslossintherangeof230–700°Cisrelatedtotheremovalofmorestablefunctionalgroups.Thenearlyidenti-calTGAcurvesofbothGOsamplesre ecttheirclosecontentsofoxygenatedgroups.
Post-treatmentofthewastewatercollectedfromthepro-cessesofGOsynthesisandpuri cationiscrucialforcommer-
tobeMn3O4containingasmallamountofMn(OH)2(Fig.5).Theef ciencyofremovingMn2+ionsfromthewastewaterhasbeentestedbytheadditionofthepuri edsupernatant
3natesthegenerationoftoxicgassesandsimpli estheproce-dureofpurifyingwasteliquid,thusdecreasesthecostofGOsynthesis.TheGOproductspreparedbyboththeimprovedandconventionalHummersmethodsarenearlythesamein
CARBON
64(2013)225–229
229
theirdispersibility,chemicalstructures,thicknesses,andlat-eraldimensions.Furthermore,theexclusionofNaNO3doesnotaffecttheyieldoftheoverallreaction.TheimprovedHummersmethoddescribedherecanbeusedtoprepareGOinlargescaleanditisone-steptowardsthesynthesisofgrapheneanditsderivativesthroughenvironmentallyfriendlyapproaches.
Acknowledgements
ThisworkwassupportedbynationalbasicresearchprogramofChina(973Program,2012CB933402),naturalsciencefoun-dationofChina(91027028,51161120361,21274074).
AppendixA.Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,at/10.1016/j.carbon.2013.07.055.
REFERENCES
[1]NovoselovKS,Fal’koVI,ColomboL,GellertPR,SchwabMG,
KimK.Aroadmapforgraphene.Nature2012;490(7419):192–200.
[2]WeissNO,ZhouH,LiaoL,LiuY,JiangS,HuangY,etal.
Graphene:anemergingelectronicmaterial.AdvMater2012;24(43):5782–825.
[3]HuangC,LiC,ShiG.Graphenebasedcatalysts.Energy
EnvironSci2012;5(10):8848–68.
[4]LiuY,DongX,ChenP.Biologicalandchemicalsensorsbased
ongraphenematerials.ChemSocRev2012;41(6):2283–307.[5]SunY,WuQ,ShiG.Graphenebasednewenergymaterials.
EnergyEnvironSci2011;4(4):1113–32.
[6]WasseiJK,KanerRB.Oh,theplacesyou’llgowithgraphene.
AccChemRes2013./10.1021/ar300184v[7]SegalM.Sellinggraphenebytheton.NatNanotechnol
2009;4(10):612–4.
[8]BaiH,LiC,ShiG.Functionalcompositematerialsbasedon
chemicallyconvertedgraphene.AdvMater2011;23(9):1089–115.
[9]LiC,ShiG.Three-dimensionalgraphenearchitectures.
Nanoscale2012;4(18):5549–63.
[10]ZhuY,MuraliS,CaiW,LiX,SukJW,PottsJR,etal.Graphene
andgrapheneoxide:synthesis,properties,andapplications.AdvMater2010;22(35):3906–24.
[11]WuZ-S,RenW,GaoL,LiuB,JiangC,ChengH-M.Synthesisof
high-qualitygraphenewithapre-determinednumberoflayers.Carbon2009;47(2):493–9.
[12]ZhangL,LiangJ,HuangY,MaY,WangY,ChenY.Size-controlledsynthesisofgrapheneoxidesheetsonalarge
scaleusingchemicalexfoliation.Carbon2009;47(14):3365–8.
[13]
ZhangL,LiX,HuangY,MaY,WanX,ChenY.Controlledsynthesisoffew-layeredgraphenesheetsonalargescaleusingchemicalexfoliation.Carbon2010;48(8):2367–71.
[14]
ZhaoJ,PeiS,RenW,GaoL,ChengH-M.Ef cientPreparationoflarge-areagrapheneoxidesheetsfortransparentconductive lms.ACSNano2010;4(9):5245–52.
[15]
XuY,ShengK,LiC,ShiG.Highlyconductivechemicallyconvertedgraphenepreparedfrommildlyoxidizedgrapheneoxide.JMaterChem2011;21(20):7376–80.
[16]
LiY,UmerR,SamadYA,ZhengL,LiaoK.Theeffectoftheultrasonicationpre-treatmentofgrapheneoxide(GO)onthemechanicalpropertiesofGO/polyvinylalcoholcomposites.Carbon2013;55:321–7.
[17]
BrodieBC.Ontheatomicweightofgraphite.PhilosTransRSocLondon1859;14:249–59.
[18]StaudenmaierL.VerfahrenzurDarstellungderGraphitsa¨ure.BerDtschChemGes1898;31(2):1481–7.
[19]HummersWS,OffemanRE.Preparationofgraphiticoxide.JAmChemSoc1958;80(6):1339.
[20]
MarcanoDC,KosynkinDV,BerlinJM,SinitskiiA,SunZ,
SlesarevA,etal.Improvedsynthesisofgrapheneoxide.ACSNano2010;4(8):4806–14.
[21]
ShinY-R,JungS-M,JeonI-Y,BaekJ-B.Theoxidation
mechanismofhighlyorderedpyrolyticgraphiteinanitricacid/sulfuricacidmixture.Carbon2013;52:493–8.
[22]
DreyerDR,ParkS,BielawskiCW,RuoffRS.Thechemistryofgrapheneoxide.ChemSocRev2010;39(1):228–40.
[23]
AvdeevVV,MonyakinaLA,NikolskayaIV,SorokinaNE,SemenenkoKN.Thechoiceofoxidizersforgraphitehydrogenosulfatechemicalsynthesis.Carbon1992;30(6):819–23.
[24]
SorokinaNE,KhaskovMA,AvdeevVV,Nikol’skayaIV.ReactionofgraphitewithsulfuricacidinthepresenceofKMnO4.RussJGenChem2005;75(2):162–8.
[25]
LiD,MuellerMB,GiljeS,KanerRB,WallaceGG.Processableaqueousdispersionsofgraphenenanosheets.NatNanotechnol2008;3(2):101–5.
[26]
ChenC,YangQ-H,YangY,LvW,WenY,HouP-X,etal.Self-assembledfree-standinggraphiteoxidemembrane.AdvMater2009;21(29):3007–11.
[27]
KudinKN,OzbasB,SchnieppHC,Prud’hommeRK,AksayIA,CarR.Ramanspectraofgraphiteoxideandfunctionalizedgraphenesheets.NanoLett2008;8(1):36–41.
[28]
EiglerS,DotzerC,HirschA,EnzelbergerM,MuellerP.
FormationanddecompositionofCO2intercalatedgrapheneoxide.ChemMater2012;24(7):1276–82.
[29]
McAllisterMJ,LiJ-L,AdamsonDH,SchnieppHC,AbdalaAA,LiuJ,etal.Singlesheetfunctionalizedgraphenebyoxidationandthermalexpansionofgraphite.ChemMater2007;19(18):4396–404.
[30]
WorldHealthOrganization(WHO).ManganeseinDrinkingWater—BackgroundDocumentforDevelopmentofWHOGuidelinesforDrinking-WaterQuality.Geneva:WHO;2011.
正在阅读:
改良hummers合成氧化石墨烯05-27
放射性同位素与射线装置安全和防护状况评估报告 - 图文01-11
金融业及生活服务业试题11-10
关于印发《〈煤、泥炭地质勘查规范〉实施指导意见》的通知05-03
2022年卫生监督协管工作总结3篇07-31
人教版高中语文必修四 5.1《念奴娇·赤壁怀古》教案203-01
卸船机比较 - 图文06-05
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 石墨
- 改良
- 氧化
- 合成
- hummers
- 人教版体育与健康全一册-7.5 武术——初级刀教学-教案
- 高中数学 第一章1.3.2《等比数列及其前n项和》课时训练 北师大版必修5
- 八年级英语新目标上Unit 2教学辅导资料
- 中学第二学期政教工作计划简易版_1
- 我国高校银行贷款风险及防范研究
- Don&39;t Let Stereotypes Warp Your Judgment
- 二十世纪西方文学理论
- 2013贵州省数据结构(C++)最新考试试题库
- 世界上最著名的六种教育方法(摘抄)
- 财务管理 第二章 财务分析
- 现代试井解释方法
- 选修六unit2using language
- 铝合金门窗汇总表
- 英语作文高分方法
- 苏教版二年级语文《 要好好学字》教学设计
- 《法语1(修订本)》前10课练习答案
- 000苹果公司与深圳公司的ipad商标之争
- 人教版七年级语文(上册)古诗、词、文专题复习资料(重核)20110402
- _资金时间价值的计算公式.doc
- V型组合密封讲解