信号与系统(杨晓非)1,2,3章习题答案

更新时间:2023-07-23 07:30:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

重邮 信号与系统考试答案 考研必备

信号与系统习题解答

1.1

(1) f(t)= (t)1

解 P lim

2

2

|f(t)|dt

11

lim dt 2 20

2

E总 lim |f(t)|dt lim dt

f(t) (t)为功率信号。(2) f(t)= (t)- (t-1)

解 f(t)是矩形脉冲信号,故为能量信号。

(3)f(t) 6t (t)

解:书中已作证明斜坡信号为非公非能信号。

(4)f(t) 5ej( 0t )解 |f(t)| 5

1 P lim

T T

2

|f(t)|dt

2

2

1 limT T

2

2

25dt 25

2

2

2

T

E总 lim

T

|f(t)|dt lim 25dt

2

2

f(t)为功率信号

(5) f(t) e tsin2t (t)

2

解:E总 lim |f(t)|dt lim (e tsin2t)2dt

e 2t(ej2t e j2t)1 2tj4t j4t

lim ( )lim e(e e 2)dt2 (2j)400

1

( )lim [e (2 j4)t e (2 j4)t]dt

4 0

重邮 信号与系统考试答案 考研必备

1e (2 j4)te (2 j4)t

( )lim[ ]|0

4 2 j42 j4111 ( )[ 1]

42 j42 j412 j4 2 j41 ( )[ 1]

44 165E

P lim总 0

2

f(t) e tsin2t (t)为能量信号(6)f(t)

1

(t)1 t

2

解:E总 lim f(t)dt lim

1

2 (1 t)

1

) 1 1

1

E

P lim总 0

2

f(t)为能量信号 lim(

1.2 判断下列信号是否为周期信号,如果是周期信号,试确定其周期。(1) f(t) 3cos(2t) 2cos( t)

T2

解 1 2 是无理数

2T1 改组合正弦信号f(t)是非周期信号

(2)显然f(t) |cos(2t)|为周期信号(3)f(t) 3e

j(2t 45。)

为周期信号

(4)f(t) cos(t) cos(t) cos(t)236

13

22

3T1 2 /T2 2 /

2

4s 6s

3

T' mT1 12s

T 5 12 60s

f(t)为周期信号,周期为60s.

重邮 信号与系统考试答案 考研必备

(3)f(t) 3e tsin(3t ) 3e tIm[ej(3t )] 3e tcos(3t )

2(4)f(t) je

(j100t 2)

e2e

j

(j100t 2)

ee

2

j(100t )

2

Re[f(t)] e 2cos(100t

)

2

(5)f(t) sin(t ) 2为周期信号,周期为 (s).

68

(6)f(k) ( )

78

2 2 7 8 47

f(k)为周期序列,N 7. 1.3.

(1)f(t) 6 6ej (2)f(t) jcos(2t 2 )4

t )

4

1.4 (波形略) 1.5 (1)

设f t 0 t 3 ,是确定下列个信号的零值时间区间。 f 1 t 0

2 t

2 t

(2)

f 1 t f 2 t 0

(3)

3

f 2t 0 t

2

f 1 t f 2 t 0

(4)

1 t

(5)

t f 0 2

t 6

1.6 试绘出题图1-6所示各连续信号波形的表达式。 (a) (b) (c)

f1 t 2 t 1 t 1 t 2 f2 t 2 4 t 1

f3 t 5sin t t t 1

(d)

f4 t 2 t 4t2 t t 1 2 t 1 t 1 2 t 2 t 2

重邮 信号与系统考试答案 考研必备

1.7试证明 (t)=lim

0

( t)

2

2

.

( 2 t2)

(t)lim22

0( t)

0

lim

t 0

0 t 0

1.8 (1)f(t) sin( t ) (t) sin( ) (t)

1 11

(2) f(t) sin( t) (t ) sin( ) (t ) 0.707 (t )

4444

(3) f(t) sin( t ) '(t) sin( ) '(t) cos( ) (t)

1 1 1

(4) f(t) sin( t) '(t ) sin( ) '(t ) cos( ) (t )

44444

1.9 (1) sin(t) (t )dt sin 0.70744 sin5t

(2) (t)dt 5Sa(5t) (t)dt 5

t

(3) e 2t (t) '(t) dt 1 2e 2t

2

t 0

3

t

(4) (t t 1) ()dt (t2 t 1)|2| (t)dt 2

2

3

(5) (t2 2) (t 5)dt 0

100

(6) (t2 2) (t 5)dt (52 2) (t 5)dt 27

10

(7) sin ( 5)d sin5 (t 5)

0t

t

(8) ( 2 1) ()d ( 2 1)2 ( )d 2 (t)

21

(9) (2t2 t 5) (t )dt [2t2 t 5]

104

10

t

1

4

t

t

14

[4t 1] 0

(10)

t

(1 ) ( )d [ ( ) ( )]d (t) (t)

t

k 1

1.13: f1(k) k k ,f2(k) ( ) k 1 .

(1)f1(k) f2(k) k k (a)

k 1

k 1 .

重邮 信号与系统考试答案 考研必备

(2)f1(k) f2(k) k k (a)(3)f1(k) f2(k) k(a)

k 1

k 1

k 1 .

k 1 .

k

(4)f1(k 1) f2(k 1) (k 1) k 1 a(5) f1(k 1) f2(k 1) (k 1)a

1.18. (1)偶、偶谐

(3)偶、偶谐奇谐(非唯一)

(5)奇偶谐

1.19 解:(1)

k

k .

k 2 .

(2)偶、奇谐 (4)奇、奇谐 (6)奇、奇谐 偶谐

UC US 2I I'

''

UC RI2 2I2 I2 2I2

I2 I IC

duc'''

I2 2I2dt

'''

UC (I US 2I' I'') 2(I' US 2I'' I''')IC C

'''US 2I I' I US 2I' I'' 2I' 2US 4I'' 2I'''

整理得:

'''

2I''' 5I'' 5I' 3I 2US US US

(2)

1t

U( )d U2 1'

UC U U'

2

1''

IC CUC UC U U'

211t

I IC I2 U U' U( )d

22 UC

2I I' U( )d U US

t

重邮 信号与系统考试答案 考研必备

整理得:

'

2U''' 5U'' 5U' 3U 2US

1.20 解:由题意 y(k)=y(k-1)+ αy(k-1)- βy(k-1)+f(k) ∴y(k)-(1+ α- β)y(k-1)=f(k)

1.21解:由题意 y(1)=f(1)+ βy(1)

Y(2)=f(2)+y(1)+ βy(1)

第k个月的全部本利为y(k),第k-1个月初的全部本利为y(k-1),则第k个月初存入银行的款数为

Y(k)-(1-β)y(k-1)=f(k)

2

y(k-1) 32

∴y(k)-y(k-1)=0

3

1.22解:由题意y(k)=

1.23 解:由题意 (1)yx=e

t

x(0) yf=

sin f( )d

t

x1(0)+x2(0)-- e输入线性

f1+f2-- f2(τ) dτ=y

f1+yf2

t

[ x1(0)+x2(0)]= e

t

x1(0)+ e

t

x2(0)=yx1+yx2满足零

t

sinτ[f1(τ)+f2(τ)]dτ=

t

sinτf1(τ) dτ+

t

sinτ

满足零状态线性

∴为线性系统 (2)y(t)=sin[x(0)t]+f(t)

x1(0)+x2(0)-- sin{[ x1(0)+x2(0)]t}≠sin[x1(0)t]+sin[x2(0)t]不满足零输入线性

(3) y(t) f(t)x(0)+

2

|

t

f(t)d 不满足分解性,所以是非线性系统;

(4) y(t) x(0)lgf(t) 是非线性系统; (5) y(t) lgx(0)+(6) y(t)=x(0)

f

(t) 不满足零线性输入,所以是非线性系统;

t

t

f( )d 不满足零输入线性

t[f

t

1

f

2

]d

y y

1

2

满足零状态线性,故为非线性系统;

重邮 信号与系统考试答案 考研必备

(7) y(k)=

1

2

k

x(0) f(k)f(k 2)

1

1

1

x1(0) x2(0)

满足零输入线性

2

1

[(0) x2(0)] kx1

2

k

x1(0)

y

2

k

x(0) yx yx

2

1

2

y(k) y

1

2

(k) [y(k) y

2

(k)][y(k 2)

1

2

(k 2)]

yf

(k)

1

yf

(k)

2

不满足零状态线性,因而是非线性系统;

(8)

y(k) kx(0) f(n) x1(0) x2(0) kx1(0) kx2(0)

n 0

k

yx(k) yx(k)

1

2

f

1

(k)

f

2

(k) [f(n)

n 0

1

k

f

2

(n)]

n 0

k

f

1

(n)

n 0

k

f

2

(n) 因而为线性系统;

1.24 (1)y(t)

t

f( )d 为线性系统;

t

x

f(t

t

td) f( td)d x td f(x)dx 因而是时不变系统;

t td

(2)y(t) f( )d 线性

f(t td) f( td)d x td

t

td

f(x)f(x)dx 时变

(3)y(t) |f(t)|

f1 f2 |f1 f2| |f1| |f2| 非线性

f(t td) |f(t td)| y(t td)

非时变

(4)y(t) ef(t) 非线性非时变

(5)y' 2y f' 2f 非线性非时变 (6)y' siny f' 线性时变

(7)[y'(t)]2 2y(t) f(t) 非线性非时变

(8)y'(t) 2y(t) tf(t) 线性时变 (9)y(k) (k 1)y(k 1) f(k) 线性时变

重邮 信号与系统考试答案 考研必备

(10)y(k) y(k 1)y(k 2) f(k) 非线性非时变

1.25 (1) (t)

t

dyf1(t)d 2td (t) 2t

y(t) [e (t)] (t) 2e (t) f2

dtdtdt

(2) R(t) ( )d

tt11

yf3(t) yf1( )d e 2td (t) e 2t|t0 (t) (1 e 2t) (t)

0022

1.26 解:由题意 y

2e 3e,y 4e 2e,yf 2 e 2e x1x2

x1

x2

3yf

t

3t

t

3t

t 3t t 3t t 3t

y t 2y 5y 4

e

t

6e 20e 10e 6 3e 6e

3t

6 27

e

t

2e

3t

1.27 解:由题意

(1) 2y t 3y1 y2 ,

y1 t y y yf

2t 3tx1x2

}3y1 y2 2y 2y 10e 8e, (2)

x1x2y2 t y y 3yf

x1x2

y2 y1 2yf 2 yf t

1.28 解:y1 k yx k yf k k

e

2t

2e,

3t

e

2t

e

3t

y t 。

1 k

y2 k yx k yf k 2 1 k

2 1 1

y1 y2 2yx k 2 k , yx k

2 2 1

y1 y2 2yf k 2 k 2 k

2

k

k

k

重邮 信号与系统考试答案 考研必备

1

yf k k k 。

2

1 1

y k 2yx k 4yf k 2 4 k 4 k

2 2 1

4 k 2 k

2

1.29 (1) f(t) 0(t 0)有y 2y 3 非因果非线性非时变

'2

(2)y(t) 2tf(t) f(t 5) 当t 0 f(t) 0

'k

k

kk

有y'(t) f(5) 非线性非因果时变

(3)yf(t) f(t) 非线性非时变因果 (4) yf(t) f(t)cos() 线性时变因果 (5) yf(t) f( t) 线性非时变非因果 (6) yf(K) f(K 2)f(K) 线性时变因果 (7) yf(K)

f(n) 线性时变因果

n 0

K

f(K K0) f(n K0)

n 0

K

m n K0

K K0 K0

f(m) y(K K0)

(8) yf(K) f(1 k) 线性非时变非因果

f(K) 0(K 0) yf(K) f(1) 0

1.30 (1) y 6y 12y 8y 5f f (2)y(

-y(k+2)+y(k+1)=f(k+1)+ f(k)

'''

''

'

''

(3) y(k)-y(k-2)=3f(k-1)-f(k-2)

1.31

重邮 信号与系统考试答案 考研必备

(1)y 3y y f f 3f

(2)y(k+2)-2y( k+1)+3y(k)=4f(k+2)-5f(k+1)+6f(k) (3)y(k+2)-2y(k+1)+4y(k)=f(k+1)+f(k) y(k)-2y(k-1)+4y(k-2)= f(k-1)+f(k-2)

1.32

解:有题图可得,

0f 1y1 0y y1

y1 y 1f

所以,y 1f 0f 1y 1 1f 0y 整理得,y 1y 0y 1f ( 0 1 1)f 与给定微分方程可得,

a1 1,a0 0,b1 1,b0 0 1 1

重邮 信号与系统考试答案 考研必备

1、(1) y +5y +6y=0 y (0-)=-1,y(0-)=1解:特征方程 2 5 6 0

特征根: 1 2, 2 3. yh(t) C1e 2t C2e 3t

yh(0 ) C1 C2 1代入初始状态有: 解之:C1 2,C2 1

y(0) 2C 3C 112 h

yh(t) 2e 2t e 3t

(2) y y 0 y (0 ) 0,y(0 ) 2解: 2 1 0 , j

yh(t) C1cost C2sint 代入初始状态得:C1 2,C2 0 yh(t) 2cost t 0

2、(1)y (t)+3y (t)+2y(t)=f(t),y (0 ) 1,y(0 ) 0,f(t) (t)对微分方程两端关于t从0 到0 作积分有

0

0

y (t)dt 3 y (t)dt 2 y(t)dt (t)dt

0

0

0

0 0 0

y (0 ) y (0 ) 0 y(0 ) y(0 ) 0

得y (0 ) y (0 ) 1,y(0 ) y(0 ) 0

(2) y +6y +8y=f y (0 ) 1,y(0 ) 0,f (t)

0 0

y dt 6 y dt 8 ydt (t)dt

0

0

0

0 0 0

得:

,y 0 y 0 0 y 0 y 0 1

2 y 0 1 y 0

0 y 0 y 0

3)y 4y 3y f f,y 0 1,y 0 0,f t 上式可写为 y 4y 3y t t

t 0时微分方程左端只有y 含冲激,其余均为有限值,故有

0

0

y dt 4 y dt 3 ydt t dt t dt

0

0

0

0

0 0 0 0

得y 0 y 0 1,y 0 y 0 0

y 0 1 y 0 2

y 0 y 0 0

4)y 4y 5y f ,y 0 2,y 0 1,f t e 2t t

f t t 2e 2t t

重邮 信号与系统考试答案 考研必备

原方程可写为y 4y 5y t 2e

2t

t

0 0

0

0

y dt 4 y dt 5 ydt t dt 2 e 2t t dt

0

0

0

0 0 0

y 0 y 0 1,y 0 y 0 0

y 0 y 0 3

y 0 y 0 1

3. 1 y 4y 3y f,y 0 y 0 1,f t t

解:①求yx t

2

yx 4yx 3yx 0 4 3 0

1 1, 2 3

y t c1e t c2e 3t

yx(0_) C1 C2 1

' y(0_) C1 3C2 1 x

解之: C1 2 C2 1 yx(t) 2e t e 3t t 0 ②求yf(t) yf(t) Cf1e t Cf2e 3t yp(t)

设yf(t) P0带如原微分方程有 3P 1即P0

1

3

1

Cf2e 3t )

3

对原微分方程两端从0 到0 关于t积分有

故:yf(t) Cf1e

t

0_

0

ydt 4 ydt 3 yfdt (t)dt

0

0

0

''f

0_

'f

0_0_

'' y(0 ) yf(0 ) 0f

yf(0 ) yf(0 ) 0'

y f(0 ) 0

'

yf(0 ) 0

y'f(0 ) Cf1 3Cf2 0

有: 1'

yf(0 ) Cf1 Cf2 0

3

解之:Cf1

11

Cf2 26

重邮 信号与系统考试答案 考研必备

111

yf(t) ( e t e 3t ) (t)

263

③求全响应y(t)。

111

y(t) yx(t) yf(t) 2e t e 3t e t e 3t

263

t 0

3 t5 3t1 e e 263

(2)y 4y 4y f 3f , y'(0_) 2,y(0_) 1,f e解:① 4 4 0

2

'''' t

(t)

1,2 2。

yx(t) (Cx0 Cx2)e 2t

y'x(0 ) 2Cx0 Cx1 2

得Cx0 1,Cx1 4

yx(0 ) Cx0 1 yx(t) (1 4t)e 2tt 0(2)求yf(t)

yf(t) (Cf0 Cf1t)e 2t yfp(t)

设yfp(t) p1e 2t并代入原微分方程,有(p1e 2t)'' 4(p1e 2t)' 4(p1e 2t) (e t)' 3e t得p1 4p1 4p1 1 3

0

0

0

即p1 2

0

0

0

0

故yf(t) (Cf0 Cf1t)e 2t 2e t

由 yf''dt 4 yf'dt+4 yfdt= [ (t) e t (t)]dt 3 e t (t)dt

0

0

0

y'f(0 ) y'f(0 ) 1 y'f(0 ) 1 y'f(0 ) 1有

y(0) y(0) 0 f f yf(0 ) 0 y'f(0 ) 2Cf0 Cf1 2 1 解之:Cf0 2,Cf1 1 yf(0 ) Cf0 2 0

yf(t) [2e t (2 t)e 2t] (t)(3)求y(t)

y(t) yf(t) yx(t) 2e t (3t 1)e 2t

t 0

重邮 信号与系统考试答案 考研必备

y'' 2y' 2y f',y'(0 ) 1,y(0 ) 0,f (t)解:1.求yx(t)

2 2 2 0, 1,2 1 j

yx(t) e t(Cx1cost Cx2sint)

y'x(t) e t(Cx2cost Cx1sint) e t(Cx1cost Cx2sint)代入初始状态:yx(0 ) Cx1 0,y'x(0 ) Cx2 1 yx(t) e tsint2.求yf(t)

t 0

0

0

首先确定y'f(0 )与yf(0 )

0 0

0

0

0

0

yf''dt 2 yf'dt+2 yfdt= (t)dt

可得y'f(0 ) y'f(0 ) 1,yf(0 ) yf(0 ) 0; y'f(0 ) 1则 yf'' 2yf' 2yf (t)

y(0) 0 f

当t 1时,yf'' 2yf' 2yf 0 yf(t) e t(Acost sint)

代入初始条件:y'f(0 ) B 1,yf(0 ) A 0 yf(t) e tsint (t)3.求全响应y(t)y(t) yx yf 2e tsint

t 0

2.4 (1)y(k+2)+3y(k+1)+2y(k)=0,yx(0) 2,yx(1) 1 解:特征方程r 3r 2 0 (r+1)(r+2)=0 特征根: r1 1,r2 2

y(k)=Cx1r1 Cx2r2 Cx1( 1) Cx2( 2) 代入初始条件

k

k

k

k

2

Cx1 Cx2 2

解得Cx1 5,Cx2 3

C 2C 1x2 x1

yx(k) 5( 1)k 3( 2)k k 0

(2)y(k+2)+2y(k+1)+2y(k)=0. 解:

yx(0) 0,yx(1) 1.

重邮 信号与系统考试答案 考研必备

r2 2r 2 0 r1,2 1 jyx(k) Cx1( 1 j)k Cx2( 1 j)k yx(0) Cx1 Cx2 0

yx(1) ( 1 j)Cx1 ( 1 j)Cx2 1jj

Cx1 ,Cx2

22

jj

yx(k) ( )( 1 j)k ( 1 j)k

223 jk3 k

(2)e2 (2)ksink

4

k 0

(3)y(k+2)+2y(k+1)+y(k)=0 yx(0) yx(1) 1 解:

r2 2r 1 0 (r 1)2 0 r1 r2 1

yx(k) (Cx1 Cx2K)( 1)k

yx(0) Cx1 1

yx(1) (Cx1 Cx2)( 1) 1

Cx1 1

C 2 x2

yx(k) (1 2k)( 1)k k 0

(4)

y(k) 2y(k 1) 0 yx(0) 2

k解: 2 0 2 yx(k) Cx(2)

yx(0) Cx 2 故 yx(k) 2(2)k k>=0

(5)

y(k) 2y(k 1) 4y(k 2) 0 yx(0) 0,yx(1) 2

解:

2 2 4 0 即 ( 1)2 3 0

特征根 1,2 1 3j

yx(k) Cx1( 1 j)k Cx2( 1 j)k

重邮 信号与系统考试答案 考研必备

Cx1

1j*

Cx2 Cx1

1j

1( 1 j3)k( 1 j3)k

[ ] 故 yx(k)

jj3

=

2

k 1

e

j

2

k3

3

e2j

j

2 k3

23

2ksin

2

k k>=0 3

(6) y(k) 7y(k 1) 16y(k 2) 12y(k 3) 0

yx(0) 0, yx(1) 1, yx(2) 3

解: 7 16 12 0 即 ( 3)( 2) 0

3

2

2

1 3 2,3 2

yx(k) Cx0(3)k (Cx1 Cx2k)(2)k

带入初始条件有

yx(0) cx0 cx1 0

yx(1) 3cx0 2cx1 2cx2 1

(2) 9cx0 4cx1 8cx2 3 yx

解之得:故:

c c

c 2c 1 5c 8c

x0

x1

x1

x2

x1

x2

c

x

x0

1,

k

c

x1

1,

k

c

x2

1

y

2

(k) 3 (1 k)(2) k>=0

2.5(1) y(k) 3y(k 1) 2y(k 2) f(k),y( 1) 0,y( 2) 1 解:

3 2 0 1 1, 2 2

k

k

y

x

(k) cx1( 1) cx2( 2)

1 1

( 1) )cx2( 2) 0 即: yxcx1( 1 2 2

( 2) cx1( 1) cx2( 2) 1 yx

4cx1 cx2 4

2 0 cx1cx2

cx1 2kk

解之得: 故: y(k) 2( 1 4( 2) k 0 ) cx2 4

(2)y(k) 2y(k 1) y(k 2) f(k) f(k 1) y( 1) 1,y( 2)

重邮 信号与系统考试答案 考研必备

解:

y

x

(k) 2y(k 1)

x

y

x

(k 2) 0

2

2

2 1 0

x1

( 1) 0

1,2

1

y

x

(k) (c cx2k)( 1)

k

cx1 1 yx( 1) cx1 cx2 1

2( 2) 2 3 cx2 cx1cx2 yx

故:

y

x

(k) (1 2k)( 1)k

k

(3) y(k) y(k 2) f(k 2),y( 1) 2,y( 2) 1 解: 2 1 0;

1,2 j

yx(k) Acok Bsik

22

y( 1) B 2y( 2) A 1

yx(k) ( cos

2

k 2sin

2

k)

k 63.4 )k 02

2.6 (1) y(k) 2y(k 1) f(k),y( 1) 1,f(k) 2 (k)

kk

解: 2 0, 2 y(k) C(2) yp(k) C2 2

yp(k) p0,p0 2p0 2,p0 2

令k 0,y(0) 2y( 1) 2,y(0) 0 y(0) C 2,C 2

所以 y(k) 2(2) 2,k 0

k

其中yx(k) Cx(2)k 2(2)k,k 0

Cx

1,Cx 2 2

yf(k) Cf(2)k yfp(k)

y(k) yx 2(2)k 2 [ 2(2)k] [4(2)k 2] (k)

重邮 信号与系统考试答案 考研必备

(2) y(k) 3y(k 1) 2y(k 2) f(k)y( 1) 1,y( 2) 0,f(k) (k)解: 2 3 2 0 1 1, 2 2yx(k) Cx1( 1)k Cx2( 2)k

1

y( 1) y( 1) C Cxx1 x Cx1 122

1Cx2 4 y( 2) y( 2) C C xx1x

42 yx(k) ( 1)k 4( 2)k k 0

16

由y(k) f(k) 3y(k 1) 2y(k 2)得:令yfp P.则有P0 3P0 2P0 1,P0

yf(0) f(0) yf( 1) 2yf( 2) 1 yf(0) 1

y(1) f(1) 3y(0) 2y( 1) 2ff f yf(1) 2

11

y(0) C C 1C ff1f2 f162

解之得:

y(1) C 2C 1 2 C 4

f2ff1f2 36

141

yf(k) [ ( 1)k ( 2)k ] (k)

236

141

y(k) yx(k) yf(k) [( 1)k 4( 2)k ( 1)k ( 2)k ]

236

181

[( 1)k ( 2)k ] k 0236

1

gi(t) (1 e st) (t)

9

dgi(t)5 st

2.7 (a)解:hi(t) e (t)

dt9

10

hu(t) Rhi(t) e st (t)

3

(b)解:由图知ic ir il is

ducd2iluLdil

Lc2 iR l 其中:ic c dtdtRRdt

故有:LCiL

L12

iL iSi L iL iL is iLR55

55

(p2 2p 5)(p 1)2 4

2iL 5iL 5iS H(p) 故iL

重邮 信号与系统考试答案 考研必备

5

hiL(t) e tsin2t (t)

2dh1d5

huL LiL ×[e tsin2t (t)]

dt5dt2

1

[ e tsin2t (t) 2e tcos2t (t)]2

1 t t

[ecos2t esin2t] (t)

2di

uL LL

dt

dhiL

dt

y 2y f (t) f(t) huL L

H(p)

2.8 (1)

p 1p 2 33

1 p 2p 2p 2

2t

t

t

t

h(t) (t) 3e (t)

3

g(t) h( )d ( )d 3 e 2 d (t) (1 e 2t) (t)

0o02

(2)y'(t) 2y(t) f''(t)

p2p2 2p 2p 4 44

H(p) p 2

p 2p 2p 2

h(t) '(t) 2 (t) 4e 2t (t)

g(t) h( )d '( )d 2 ( )d 4 e 2 d (t)

0

0

0

0

t

t

t

t

(t) 2 (t) 2 (t) 2e 2t (t) (t) 2e 2t (t)

2.9,求h(t)

(1) 2y'' 8y f H(p)

12p2 8

11

2p2 4

1

h(t) sin2t (t)

4

(2) y'' y' y f'

f

111 p

p 1 H(p) 2

p p 1(p )2 (p )2 2424p

重邮 信号与系统考试答案 考研必备

t

2h(t) ecos (t) sint (t)

22

t

2

(3) y'' 2y' y f' 2f

H(p)

p 2p 211

222

p 2p 1(p 1)(p 1)(p 1)

h(t) (e t te t) (t)

(4) y''' 6y'' 11y' 6y f' 2f H(

p 21

32

p 6p 11p 6(p 1)(p 2)(p 3)(p 1)(p 2)

p 2

=

h(t)=

pt

p 3p 1

pt

p 3

p 1

(

1 t1 3t

e) (t) e22

2.10 求h(k)

(1) y(k)+2y(k-1)=f(k-1)

解:H(E)=1 2E 1

1

1

h(k) ( 2)k 1 (k 1)

E 2

(2) y(k+2)+3y(k+1)+2y(k)=f(k+1)+f(k) H(E)=

E 1E 11

2

E 3E 2(E 1)(E 2)E 2

h(k) ( 2)k 1 (k 1)

(3) y(k)+y(k-1)+

1

y(k-2)=f(k) 4

E2

解: H(E)= 11

E2 E (E )2

42

h(k)=

E2

d12k 1

(E )H(E)EdE2

E

=1

2

dk 1

(E)dE

E

12

(k)

=(k+1)Ek

E

k

1 (k) (k 1)( ) (k). 2

12

(4) y(k)-4y(k-1)+8y(k-2)=f(k) 解: h(k)-4y(k-1)+8y(k-2)= (k)

重邮 信号与系统考试答案 考研必备

k>0时,有h(k)-4h(k-1)+8h(k-2)=0

2 4 8 0 12=2 j2=22

4

h(c)= (c)+4 (k-1)-8h(k-2) h(0)= (0)+4h(-1)-8h(-2)=1=p h(1)= (1)+4h(0)-8h(-1)=4=22故:p=1,Q=1. H(k)=(22)(sin

12

Q 22

p2

k k +sin) (k) 44k k k

=2(22)(sin+sin) (k)

44

k

(5)

y(k+2)+2y(k+1)+2y(k)=f(k+1)+2f(k) 解: h0(k+2)+2 h0(k+1)+2 h0(k)= (k)

3k 3k

+Qsin) 44

3k 3k 1

ho(2)=2[pcos+Qsin]=-2Q=1 所以Q=-

222

ho(k)=(

k

)(pcos

ho(1)= =p-

2[ pcos

1113k 3k

+Qsin]=2[p]

44222

11=0 p=+ 22

13k 13k

sin+cos] (k-1) 22244

k 13k 3 sin(-) (k-1) 244

k

所以 ho(k)=( =

)[-

h(k)= ho(k+1)+2 h0(k)

k 13 3 3k 3

=2sin[(k+1)- ] (k)+ 22sin(-) (k-1)

4444

k 1k3 3 3k 3

=2sin[(k+1)- ](k)+ 22sin(-) (k-1)

4444k3k

(k-1) =-2cos4

2.11 (1) y(k 2) y(k 1) 2f(k 1) f(k) (由图得)

k

移序得:y(k 1) y(k) 2f(k) f(k 1)设h0(k 1) h0(k) (k),有 1 h0(k) C( 1)k (k 1).

本文来源:https://www.bwwdw.com/article/qv0m.html

Top