第4课时 选择合理的计算方法 峄城 马铭良

更新时间:2024-03-18 05:03:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

选择合理的计算方法

教学内容:青岛版小学数学六年级下册p90第四个红点,p91应用与反思。 教学目标

1.在交流、讨论、对比的活动中,经历对所学的计算方法回顾和整理的过程,掌握估算和精确计算的意义和方法。

2.根据问题情境,能选择合理的计算方法,能进行有条理的思考,并形成解决问题的基本策略。

3.在问题解决的过程中,发展学生的数感,培养学生解决实际问题的能力。初步形成评价与反思的意识。

教学重难点

教学重点:根据问题情景,灵活选择合理的计算方法。 教学难点:梳理选择合理的计算方法解决问题的思维过程。 教具、学具 教师准备:课件 学生准备:计算器 教学过程

一、问题回顾,再现新知。

1.走近生活,感受选择合理计算方法的普遍性。

质疑:同学们在自己买东西或跟着家长购物的时候,你们会进行思考和计算吗?你是如何算的?谁愿意举例说明一下?

课堂预设:

①买东西前先估算一下自己带的钱够吗? ②根据钱的多少估算能买多少,买什么样的。 ③买完后,核算一下找的钱对吗? ??

谈话:同学们真能干,已经学会把我们学的估算和精确计算灵活的运用到生活中。今天王老师也去购物了,王老师会给我提出什么样的问题呢?

课件出示:

王老师买了190本《数学小词典》,每本3.80元。她带了800元,够吗?应2.自主活动,探究合理的计算方法。 找回(或再付)多少元? 同学们,我们比一比看哪个小组能又快又合理解决这两个问题? 钱, 2.小组合作,探究合理的计算方法。 探究提示(课件出示):

●如果只解决问题(1)800元钱够吗,怎样能快速做出判断?你会选择什么方法计算?为什么选择这种计算方法?

●问题(2)应找回(或再付)多少元?计算你会选择什么方法计算?为什么选择这种计算方法?你可以用几种计算出结果?

●小组成员逐一说。组长做好记录。

学习探究提示,理解后学生开始自主活动,教师巡视指导。 3.汇报交流,感知合理的计算方法。 哪一组的同学愿意分享一下自己的成果。 (1)汇报问题:800元钱够吗? 学生可能有两种方法:

①估算:3.80≈4 190≈200 4×200=800,估计结果偏大,所以够了。 质疑:为什么采用估算方法?

预设:此题不需要求精确值,估算更容易计算。 质疑:结果估大了还是估小了?

预设:是估大的,因为每个乘数都看大了,800元足够了。 质疑:还有不同的估算方法吗?(再交流不同的估算方法 )

预设1: 3.8×190≈4×190=760(元);估计结果偏大,800元足够了。

2: 3.8×190≈3.8×200=760(元);估计结果偏大,800元足够了。 质疑:常用的估算方法有哪些?举例说明什么情况下用“大估”,什么情况下用“小估”?

师生小结:在结果要求不精确的情况下,估算更节省时间;常用的估算方法有“四舍五入”法、“大估”、“小估”等。一般情况下的估算策略是“四舍五入”,具体情境灵活掌握。如:买东西估计钱够不够用“大估”;而“看一本180页的数,每天看23页,需要几天看完?”则用“小估”。

②精确计算:3.80×190=722(元) 722<800,所以够了。 教师引导学生思考:哪个方法能快速地作出判断呢?

学生讨论后得出结论:只需做出判断如:“够不够”、“能不能”而不需要求出准确结果时可以选择估算,更便于快速得出结论。

(2)汇报问题:应找回(或再付)多少元? 学生可能有一种方法。 ①精确计算:3.80×190=722 质疑:为什么此题采用精确计算? 预设:此题需要求准确答案(精确值)。 质疑:你采用什么方法计算3.80×190? 预设: 口算 3.80×190 =3.80×200-3.80 ×10

笔算 3.80×190=722(元) 3.8 0 × 1 9 0 3 4 2 3 8 7 2 2 .0 0 800-722=78(元) 答:应找回78元。 用计算器算 3.80×190=722(元) 800-722=78(元) 答:应找回78元。 ②讨论与交流:在什么情境下需要进行精确计算?这三种计算方法计算结果的共同点是什么?各种算法分别有哪些优势?最常用的方法是哪一种?为什么?

学生讨论后得出结论:当计算的结果需要准确结果时,需要进行精确计算。而口算、笔算、计算器算都是精确计算的方法。

③师生小结:这三种方法计算结果都是精确值,其中口算速度快,只适合比较简单或能简便计算的题目;用计算器虽然可以计算难题,并且速度快,但是,离开了计算器就寸步难行;最常用的是笔算,因为它应用广泛,对题目不挑剔,正确率较高。

说明:可能有的学生会认为:第一题的精确计算既能回答第一问,而且顺势解答第二问,估算是多此一举。对这部分学生老师要及时给予表扬和认可。同时强调要注意看探究提示第一个红点内容:快速判断。

4.抽象概括,总结提升。

质疑:我们再一起回顾一下解这道题的思路过程,需要经历一个怎么样的思考的过程?又怎样选择合理的计算方法?(板书课题:选择合理的计算方法)

小组内展开讨论交流,在学生回答过程中,课件补充逐一呈现教科书P90解决问题策略流程图:

审题 选择合理的计算方法 计算、得出结论

谈话:看来同学们不但会选择合理的方法解决问题,而且很善于及时总结、梳理,非常好。下面就让我们亲自去实践一下,如何选择合理的计算方法解决实际问题。

二、分层练习,巩固提高。 (一)基本练习,巩固新知。

1.下面各题需要什么结果,选择哪种计算方法更合理,为什么? ①会计汇总公司本月的销售总额。

②李军和父母到超市购买生活用品,外出前筹划所带钱数。 ③科学家计算卫星运行的轨道。 ④设计电子零件的大小规格。

⑤一本故事书280页,每天看22页,半个月(一个月按30天计算)能看完吗?

分析:本题是检验学生能否根据问题的需要,灵活选择计算方法。 学生明确思路后再逐一解决。

汇报交流时,重点让学生说说选择哪种计算方法更合理,为什么选择这种计算方法。

2.课本P92第9题。课件出示:

学校食堂计划购买1500千克大米,如果平均每天吃95千克,这些大米够吃半个月吗?(一个月按30天计算)如果够了,还剩下多少千克?如果不够,还需要购进多少千克?

学生独立读题后,思考:

(1)要解决“这些大米够吃半个月吗?”的问题,需要估算还是精确计算? (2)要解决“剩下多少千克”或“需要购进多少千克”的问题呢?为什么? (3)要解答“剩下多少千克”或“需要购进多少千克”需要先求什么,再求什么?你是用什么方法计算的?

汇报交流后,独立尝试解决,班内汇报。 (1)这些大米够吃半个月吗?

预设:①可以把1500千克平均分成15份,看每份的千克数比95千克多还是少。

1500÷15=100(千克)

100千克﹥95千克 所以够吃半个月。

②可以估算每天95千克,半个月需要多少千克,再和1500千克比较大小。

95×15≈1500(千克)

1500千克=1500千克 所以够吃半个月。

③还可以求出1500千克里面有多少个95千克就可以吃几天,再和15天比较大小。

1500÷95≈15(天) 15天=15天 所以,够吃半个月。

(2)如果够了,还剩下多少千克? 预设:95×15

=100×15-5×15 =1500-75

=1425(千克) 1500-1425=75(千克) (二)综合练习,应用新知。 1.课本92页第10题。课件出示:

要求:

①认真审题,了解信息,确定问题,选择合理的方法(判断估算还是精确计算)。

②学生独立完成。

③集体订正,让算的快的学生说一说计算的方法以及问题(1)精确计算的理由,问题(2)估算的理由。

2.课本P93页13题:

教师质疑:这两道题目需要精确计算吗?说说你的想法。

学生汇报:预设1:(1)题可以用估算的方法,因为此题问的是“能榨出50千克油吗”,只要解答出“能”或“不能”就可以了。

预设2:(2)题要用精确计算的方法,因为此题要求5000克药片中的药物成分是多少,需要精确计算出具体的克数,否则过少会影响药物疗效,过多会给人们带来伤害。

展示学生的解题过程:

(1)18%×250≈20%×250=50(千克),把18%往大了估才等于50千克,所以不能榨出50千克油。

(2)12%×5000=600(克) 2%×5000=100(克) 答:这两种药物分别需要600克、100克。 (三)拓展练习,发展新知。 1.课本93页第14题。

用计算器计算下列各题,你有什么发现?

要求:

(1)用计算器计算(注意别抄错数)上面的3道题,你发现了什么规律? (2)根据算式的特点写出下面6道题的得数。 (3)你能根据发现再举一个例子吗? (4)小组完成,全班交流订正。

小结:对于像本题这样麻烦的题目,我们利用一定的规律进行计算反而比用计算器计算的又对又快。当然我们要做一个善于观察思考的人,才能发现其中的规律。

2.补充题目,课件依次出示:为了节水,上海市政府免费为全市部分家庭更换了抽水马桶,每次用水量由原来的13升减小到现在的9升。

(1)如果平均每个家庭每天使用9次,每个家庭每天节水多少升? (2)每个家庭每天能节省水费0.0972元,一年能节省水费多少元? (3)据统计,全市一年大约节省水费2000万元。这些钱大约能资助多少个贫困山区的孩子完成小学阶段的全部课程?每个孩子需要490元。

教师提问:本题中的三个问题,需要选择什么计算方法?同位之间互相说一说。

交流汇报。

预设答案:

(1)精确计算:(13-9)×9=4×9=36(升) 答:每个家庭每天节水36 升。

(2)估算:365×0.0972≈365×0.1=36.5(元) 答:一年大约能节省水费36.5元。

(3)估算:20000000÷490≈20000000÷500=40000(个) 答:这些钱大约能资助40000个孩子完成小学阶段的课程。 三、梳理总结,提升认知。 1.梳理归纳。

质疑:当你遇到一个问题情境,并且要用计算解决的时候,需要经历一个怎么样的思考的过程?

小组内展开讨论交流,并整理。老师根据小组汇报情况予以评价点拨。 归纳解决过程如下(适时板书):审题 选择合理的计算方法 计算 验算 得出结论。

2.提升认知。

在日常生活中我们会遇到不同种类的问题,根据问题的情况我们要选择合理的计算方法(估算或精确计算),有时需要估算(板书),有时需要笔算(板书),当数据比较大时我们还可以借用计算器得出结论(板书)。无论用哪种方法计算都要求同学们要注意思考问题,分析问题,并在不断解决问题中提高自己的综合能力。

板书设计:

选择合理的计算方法

审题 选择合理的计算方法 进行计算 验算 得出结论

估算 精确计算 口算 笔算 计算器算

使用说明:

1.教学反思:回味课堂,感觉亮点之处有:

(1)引导探究交流,注重梳理过程。教学中放手让学生自己去探索,重视

学生的交流梳理。特别在反思梳理环节,更是给足学生思考讨论的时间和空间,完全放手给学生,让学生充分交流,大胆自主整理,然后在交流、质疑、相互补充中反思、评价,加上教师抓住重点问题的追问再及时给于强化,从而帮助学生实现思维的梳理和提升。

(2)强调方法策略,淡化计算结果。对于计算教学来说,选择合理的方法和工具进行计算,显得更为重要。课堂中让学生更多地关注计算这个工具怎么用更合理,更有效?充分让学生理解“不是说你那样算不行,而是这样算更有效、更快捷!”“怎么选择计算方法更好?”等问题。

(3)注重学法指导,突破重难点。在复习时,针对重点设计一些练习题,学生通过练习熟练选择合理的方法解决实际问题。逐步提高学生的分析、估算和计算能力,使学生思维的广度、深度不断得到增强,解决问题的能力得到提高。

2.使用建议:对于估算要放在实际问题情境中解决,才能体现估算的意义和优势,不要盲目地套用模式。

3.需要破解的问题:学生由于害怕答案估大或估小了影响正确答案,所以学生在练习的时候能估算的还是习惯性的进行精确计算如何指导学生灵活的选用合理的计算方法,值得我下一步探索。

本文来源:https://www.bwwdw.com/article/qtf8.html

Top