定积分(与应用)习题及答案

更新时间:2024-04-06 17:19:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第五章 定积分

(A层次)

?2031.?sinxcosxdx; 2.?x0a2a?xdx; 3.?223dxx211?x2;

4.?7.?1?1xdx5?4xdx; 5.?4dxx?11; 6.?341dx1?x?1;

e21?dx; 8.?2; 9.?1?cos2xdx;

?2x?2x?20x1?lnx032xsinxdx;10.?xsinxdx; 11.?2?4cosxdx; 12.?4

?5x?2x2?1???2??4454lnx1xdx13.??; 14.; 15.dxxarctgxdx; ?2?10sinxx4?3?016.?2e2xcosxdx; 17.??3?2?xsinx?dx; 18.?sin?lnx?dx; 01?e?019.?2?cosx?cosxdx; 20.?44?sinxxsinxdx; dx; 21.?01?cos2x1?sinx22.?1202??1?x1?xxlndx; 23.?dx; 24.?2lnsinxdx; 40??1?x1?x?25.? (B层次)

??0?dxdx???0?。

1?x21?x????1.求由?edt??costdt?0所决定的隐函数y对x的导数

00ytxdy。 dx2.当x为何值时,函数I?x???te?tdt有极值?

2x03.

dcosxcos?t2dt。 ?dxsinx???x?1,x?12?4.设f?x???12,求?f?x?dx。

0x,x?1??2 1

5.lim2??arctgtdt?0xx???x?12。

?1x?sinx,0?x??6.设f?x???2,求??x???f?t?dt。

0?其它?0,?1,当x?0时??1?x7.设f?x????1,当x?0时??1?ex,求?f?x?1?dx。

028.lim1n??n2?n?n2n???n2。

kn2kn?9.求lim?n??k?1e。

1n?ne10.设f?x?是连续函数,且f?x??x?2?f?t?dt,求f?x?。

011.若?2ln2xdte?1?12t??61,求x。

12.证明:2e???212e?xdx?2。

2???x?a?2?2x13.已知lim??4xedx,求常数a。 ??ax???x?a??2??1?x,14.设f?x????x??e,xx?0x?0,求?f?x?2?dx。

1315.设f?x?有一个原函数为1?sinx,求?2xf??2x?dx。

2?016.设f?x??ax?b?lnx,在?1,3?上f?x??0,求出常数a,b使?f?x?dx最

13小。

17.已知f?x??e?x2,求?f??x?f???x?dx。

02100118.设f?x??x2?x?f?x?dx?2?f?x?dx,求f?x?。 19.?

?0?f?cosx?cosx?f??cosx?sinx?dx。

22

20.设x?0时,F?x???x2?t2f???t?dt的导数与x2是等价无穷小,试求

0x??f???0?。 (C层次)

1.设f?x?是任意的二次多项式,g?x?是某个二次多项式,已知

?10f?x?dx?b?1??1?,求????f0?4f?f1g?x?dx。 ?????a6??2??2.设函数f?x?在闭区间?a,b?上具有连续的二阶导数,则在?a,b?内存在?,

b?a?b?13使得?f?x?dx??b?a?f???b?a?f?????。 ?a?2?243.f?x?在?a,b?上二次可微,且f??x??0,f???x??0。试证

?b?a?f?a???af?x?dx??b?a?f?b??f?a?。

b24.设函数f?x?在?a,b?上连续,f??x?在?a,b?上存在且可积,f?a??f?b??0,试证f?x??1bf??x?dx(a?x?b)。 ?a211005.设f?x?在?0,1?上连续,?f?x?dx?0,?xf?x?dx?1,求证存在一点x,

0?x?1,使f?x??4。

6.设f?x?可微,f?0??0,f??0??1,F?x???tfx2?t2dt,求lim0x?0x??F?x?。 4x7.设f?x?在

4b?a,b?上连续可微,若f?a??f?b??0,则

f?x?dx?maxf??x?。 ??b?a?2aa?x?b8.设f?x?在?A,B?上连续,A?a?b?B,求证lim?k?0baf?x?k??f?x?dx

k?f?b??f?a?。

9.设f?x?为奇函数,在???,???内连续且单调增加,F?x????x?3t?f?t?dt,

0x证明:(1)F?x?为奇函数;(2)F?x?在?0,???上单调减少。

3

10.设f?x?可微且积分??f?x??xf?xt??dt的结果与x无关,试求f?x?。

0111.若f???x?在?0,??连续,f?0??2,f????1,证明:

??f?x??f???x??sinxdx?3。

0?12.求曲线y???t?1??t?2?dt在点(0,0)处的切线方程。

0x13.设f?x?为连续函数,对任意实数a有

????a?asinxf?x?dx?0,求证

f?2??x??f?x?。

14.设方程2x?tg?x?y???x?y0d2ysectdt,求2。

dx215.设f?x?在?a,b?上连续,求证:

h?0lim?1x?f?t?h??f?t??dt?f?x??f?a?(a?x?b) h?ax2?1?x?016.当x?0时,f?x?连续,且满足?f?t?dt?x,求f?2?。

17.设f?x?在?0,1?连续且递减,证明

??f?x?dx??f?x?dx,其中???0,1?。

001?18.设f??x?连续,F?x???f?t?f??2a?t?dt,f?0??0,f?a??1,试证:

0xF?2a??2F?a??1。

19.设g?x?是?a,b?上的连续函数,f?x???g?t?dt,试证在?a,b?内方程

axg?x??f?b??0至少有一个根。 b?axxab20.设f?x?在?a,b?连续,且f?x??0,又F?x???f?t?dt??(1)F??x??2 (2)F?x??0在?a,b?内有且仅有一个根。 21.设f?x?在?0,2a?上连续,则?2a01 dt,证明:

f?t?f?x?dx???f?x??f?2a?x??dx。

0a22.设f?x?是以?为周期的连续函数,证明:

?0?sinx?x?f?x?dx??0?2x???f?x?dx。

4

2??23.设f?x?在?a,b?上正值,连续,则在?a,b?内至少存在一点?,使

??af?x?dx??f?x?dx??1b1bf?x?dx。 ?a2x1f?u?1?24.证明?lnf?x?t?dt??lndu??lnf?u?du。

000f?u?25.设f?x?在?a,b?上连续且严格单调增加,则?a?b??f?x?dx?2?xf?x?dx。

aabb26.设f?x?在?a,b?上可导,且f??x??M,f?a??0,则?f?x?dx?abM?b?a?2。 227.设f?x?处处二阶可导,且f???x??0,又u?t?为任一连续函数,则

1af?u?t??dt??0a?1a?f??u?t?dt?,?a?0?。 ?a0?b?a?b?28.设f?x?在?a,b?上二阶可导,且f???x??0,则?f?x?dx??b?a?f? ?。a?2?29.设f?x?在?a,b?上连续,且f?x??0,?f?x?dx?0,证明在?a,b?上必有

abf?x??0。

30.f?x?在?a,b?上连续,且对任何区间??,????a,b?有不等式

???f?x?dx?M???1??(M,?为正常数),试证在?a,b?上f?x??0。

第五章 定积分

(A)

?1.?2sinxcos3xdx

0?解:原式???a0202114cosxdx??cosx?

4403?2.?x2a2?x2dx

解:令x?asint,则dx?acostdt 当x?0时t?0,当x?a时t???2

原式??2a2sin2t?acost?acostdt

0 5

a4 ?444a?02sin2tdt?82?st?dt ??1?co420??2a?a1? ??sin4t?a4

828416043.?3dxx211?x2

解:令x?tg?,则dx?sec2?d? 当x?1,3时?分别为

2sec? 原式???32d?

tg?sec?4??, 43? ???3?sin??dsin?

?24? ?2?4.?1?123 3xdx5?4x

1512?u,dx??udu 442解:令5?4x?u,则x? 当x??1,1时,u?3,1 原式??5.?4115?u2du? 3861??dxx?11

解:令x?t,dx?2tdt

当x?1时,t?1;当x?4时,t?2 原式??212dt?2tdt?2 ?2??dt??111?t?1?t??222 ?2t1?ln?1?t?1?2?2ln

3??6.?341dx1?x?1

6

解:令1?x?u,则x?1?u2,dx??2udu 当x?31,1时u?,0 4201?2uu?1?1 原式??1du?2?2du?1?2ln2

0u?1u?127.?e2dxx1?lnxe211

11?lnxe21e21解:原式??dlnx??11?lnxd?1?lnx?

?21?lnx8.?dx

?2x2?2x?20?23?2

解:原式??0?2dx1??x?1?2?arctg?x?1??2

0?arct??g1?? ?arct1g?4??4??2

9.??01?cos2xdx

?0解:原式??2cos2xdx?2?cosxdx

0? ?2?coxdxs?2???coxs?dx

202???????2?sin ?2?sinx0x???22 2??10.?x4sinxdx

???解:∵x4sinx为奇函数

∴?x4sinxdx?0

????11.?2?4cos4xdx

?2??420解:原式?4?2?2cosxdx?2?0?2cosx?dx

22 7

? ?2?20?1?cos2x??202dx?2?2?1?2cos2x?cos22x?dx

0?2?2 ?2x0?cos2xdx????20?1?cos4x?dx

2 ???2sin2x0?1???2cos4xd4x 240???2313 ???sin4x??

2420x3sin2xdx 12.?4?5x?2x2?15x3sin2x解:∵4为奇函数

x?2x2?1x3sin2xdx?0 ∴?4?5x?2x2?1513.??3xdx 2sinx4??解:原式????3xdctgx

4??3x???3ctgxd x ??xctg?44??13?3???lnsin?x ?? ??49?4???13?32???ln??ln ?? ?49?22???13?13???ln ? ???49?22??14.?4lnxx1dx

4解:原式?2?lnxdx

1 8

?2?xlnx???11?44xdlnx?

??41?? ?2?4ln2??xdx?

1x??12 ?8ln2?2?xdx

14? ?8ln2?4 15.?xarctgxdx

0111解:原式??arctgxdx2

2021x1?1?2 ??xarctgx??dx? 2002?1?x? ??8?1111dxdx? 2?02?01?x21111 ??x?arctg x82020 ????4?1 216.?2e2xcosxdx

0?解:原式??2e2xdsinx

0??x ?e2xsin?20??2sinx?2e2xdx

0?x ?e?2?2e2xdcos0??2x0?x2?2?2cosx?2e2xdx ?e?2ecos0?xdx ?e?2?4?2e2xcos

0?? 故?2e2xcosxdx?01?e?2 5??17.?

2?xsinx?dx 0?9

解:原式?? ??xsinx?0?2dx??x20?1?cos2xdx 21?21?2xdx?xcos2xdx ??0022?1 ?x36?01?2xdsin2x ?04??1?2?xsin2x??sin2x?2xd?x ?0?0??64??3 ??36?1?xdco2sx ?04?1??3????xco2sx0??co2sxdx?? ??0??6464??318.?sin?lnx?dx

1e1e解:原式?xsin?lnx?1??xcos?lnx??dx

1xe ?esin1??cos?lnx?dx

1e1?e? ?esin1??xcos?lnx?1??xsin?lnx??dx?

1x??e ?esin1?ecos1?1??sin?lnx?dx

1e 故?sin?lnx?dx?1ee?sin1?cos1?1? 2?19.?2?cosx?cos3xdx

?4??解:原式??2?cosx1?cos2xdx

4?? ??0??4coxs??sinx?dx??2coxssinxd x00??33?2??2?2s?2?????coxs?2? ???cox?33?????04442 ??

33

10

?20.?40sinxdx

1?sinx?解:原式??40sinx?1?sinx?dx 21?sinxx?sin2? ??4??tgx?dx 20cosx???? ???40dcoxs2??4secx?1dx 20cosx????14?4???tgx?x?02??2 ?coxs04?21.??0xsinxdx 21?cosx解:令x??2?t,则

???????t?sin??t????2??2?原式????2?dt

???21?cos2??t??2?tcots?dt ????22221?sint1?sint2???cots? ???22.?xln120202?cots?2??sgindt??arctt?0 241?sint1?xdx 1?x120解:原式??1?x?x2lnd?1?x??212??? ?12x1?xx1?x1?x??1?x???1? ?ln??2??dx 2021?x021?x?1?x?221xdx ?ln3??2ln208x?11 11

1dx ?ln3??2dx??22

00x?1811111x?1 ?ln3??ln

822x?10 ???1213?ln3 281?x2dx 23.???1?x4????1?x2dx?2?01?x4解:原式??01?12xdx 1?x22x ?2???011???x???2x????21??d?x??

x??1x?2xarctg ?22?2?

0??24.?2lnsinxdx

0xx??解:原式??2ln?2sin?cos?dx令x?2t2?4?ln2?lnsint?lncost?dt

0022?????? ?ln2?2??4lnsintdt??4lncotdts?

002?????

t??u2??????ln2?2??4lnsintdt???2lnsinudu?

024?? ??2??ln2?2?2lnsintdt

0 故?2lnsinxdx??0?2ln2

25.?

??0?dx1?x21?x???????0?

12

11解:令x?,则dx??2dt

tt1dt20??t?dtt原式?? ????1?t21?t?01?t21?t???2tt?????∴2???0?????dxdxx?dx ????2?2?2?001?x1?x1?x1?x1?x1?x??????????? ??故?

????01???dx?arctgx? 2021?x0?dx? ?2?41?x1?x???(B)

1.求由?etdt??costdt?0所决定的隐函数y对x的导数

00yxdy。 dx解:将两边对x求导得

dy?cosx?0 dxdycosx??y ∴dxe ey2.当x为何值时,函数I?x???te?tdt有极值?

2x0解:I??x??xe?x,令I??x??0得x?0

2 当x?0时,I??x??0 当x?0时,I??x??0

∴当x?0时,函数I?x?有极小值。

dcosx2cos?tdt。 ?sinxdxcostd?a22? cos?tdt?cos?tdt解:原式??a???sinx?dx?cosxd?sinx2??cos?tdt??cos?t2dt? ??a?a?dx?3.

????????????22s?sinx??sinx??co?scosx??cosx? ??co? 13

2 ??co?ssincoxs?co?sco2sx??sinx? 22 ??co?ssinxcoxs?sinxco?s??sinx 2 ??sinx?coxs?cos?sinx

???????????x?1,x?12?4.设f?x???12,求?f?x?dx。

0x,x?1??2解:?f?x?dx???x?1?dx??00212112xdx 2218?1? ??x2?x??x3?

?2?061315.lim2??arctgtdt?0xx???xx?12??arctgtdt?型?0?2。

解:limx???x?12x???lim?arctgx?21?12x?122x2??

?limx???x2?1?arct?gx?limx???x2x1?1arct2gx2x

x??1?22 ?lim1?2?arctgx??

x???4x?1x?sinx,0?x??6.设f?x???2,求??x???f?t?dt。

0?0,其它?解:当x?0时,??x???f?t?dt??0dt?0

00xx 当0?x??时,??x???x11?cosxsintdt? 022x?x 当x??时,??x???f?t?dt??f?t?dt??f?t?dt??00?0?x1sintdt??0dt?1 ?2当?0时?0,??1 故??x????1?cosx?,当0?x??时。

?2当x??时??1,

14

?1,当x?0时??1?x7.设f?x????1,当x?0时??1?ex?1,当x?1时??x解:f?x?1????1,当x?1时??1?ex?1,求?f?x?1?dx。

02

?202dx1f?x?1?dx????11??x?1?dx 01?ex?112dx1?ex?1?ex?1??dx?1? ?? x?1?01x1?e1 ?1?ln1?ex?1 ?ln?1?e? 8.lim1n??n2??10?ln2

?n?2n???n2。

??12n?1? 解:原式?lim??????n??nn??n?n ?lim?n??i?1n1i12???xdx?

0nn39.求lim?n??k?1nekn2kn。

n?nen解:原式?lim?n??k?1ekn2kn1?e1 nex?x1dx?arctge?arctg?e ??001?e2x4110.设f?x?是连续函数,且f?x??x?2?f?t?dt,求f?x?。

01解:令?f?t?dt?A,则f?x??x?2A,

01 15

从而?f?x?dx???x?2A?dx?00111?2A 2即A?11?2A,A?? 22∴f?x??x?1 11.若?2ln2xdte?1t??6,求x。

解:令et?1?u,则t?ln1?u2,dt? 当t?2ln2时,u?3 当t?x时,u?ex?1 ∴?2ln2x??2udu 21?udte?1t??3ex?1?2udu?2arctgu1?u2u?3ex?1

???? ?2??arctgex?1??

?3?6从而x?ln2 12.证明:2e?121???212e?xdx?2。

2?11??x2证:考虑??,?上的函数y?e,则

22?? y???2xe?x,令y??0得x?0

2?1? 当x???,0?时,y??0

2???1? 当x??0,?时,y??0

2?? ∴y?e?x2在x?0处取最大值y?1,且y?e?121?212?x21?x2在x??12处取最小值e?12

1 故??212edx??edx???2121dx

16

即2e?121???212e?xdx?2。

x2???x?a?2?2x13.已知lim????a4xedx,求常数a。

x???x?a??2a???2a解:左端?lim?1???e

x????x?a? 右端????ax??2xe?d??2x???2?2x??a??a?2x2de?2x

2?2x ??2??xe???????a2xe?2xdx??

? ?2a2e?2a?2?axd?e2x

??a?2x ?2a2e?2a?2??xe?????ae?2xdx??

? ?2a2?2a?1e?2a ∴2a2?2a?1e?2a?e?2a 解之a?0或a??1。

2??1?x,14.设f?x????x??e,????x?0x?0,求?f?x?2?dx。

13解:令x?2?t,则

?31f?x?2?dx??f?t?dt??1?tdt??e?tdt?2?1?1010??171? 3e15.设f?x?有一个原函数为1?sinx,求?2xf??2x?dx。

2?0?解:令2x?t,且f?x???1?sin2x??sin2x

?

?20xf??2x?dx???0t11?f??t?dt??tf??t?dt 2240?1?1??? ??????tdft?tft?ftdt?00???4?04??1?2tsin2t0?1?sint??0 ??0???4? ???16.设f?x??ax?b?lnx,在?1,3?上f?x??0,求出常数a,b使?f?x?dx最

13小。

17

解:当?f?x?dx最小,即??ax?b?lnx?dx最小,由f?x??ax?b?lnx?0知,

1133y?ax?b在y?lnx的上方,其间所夹面积最小,则y?ax?b是y?lnx的切线,

而y??111,设切点为?x0,lnx0?,则切线y??x?x0??lnx0,故a?,xx0x0b?lnx0?1。

3?a?于是I???ax?b?lnx?dx??x2?bx???lnxdx

11?2?133 ?4a?2?1?lna???lnxdx

13??4?令Ia21?0得a? a2从而x0?2,b?ln2?1

???又Ia32?0,此时?1f?x?dx最小。 a2217.已知f?x??e?x,求?f??x?f???x?dx。

01解:f??x???2xe?x

2

?f??x?f???x?dx??011012f??x?df??x???f??x??

2011221??x? ???2xe??2??2e?2

018.设f?x??x2?x?f?x?dx?2?f?x?dx,求f?x?。

0021解:设?f?x?dx?A,?f?x?dx?B,则f?x??x2?Bx?2A

0012 ∴A??f?x?dx??x2?Bx?2Adx?11?B?2A

0032228∴B??f?x?dx??x2?Bx?2Adx??2B?4A

00314解得:A?,B?,于是

3342f?x??x2?x?

3311????19.?

?0?f?cosx?cosx?f??cosx?sinx?dx。

218

解:原式??f?cosx?cosxdx??sinxf??cosx?dcosx

00?? ??f?cox s?coxdxs?sinxf?coxs?0??f?coxs?coxsdx?00?? ?0

20.设x?0时,F?x???x2?t2f???t?dt的导数与x2是等价无穷小,试求

0x??f???0?。

?x?解:limx0x?02?t2f???t?dtx3x0?3??limx?0x02xf???t?dtx2

?limx?02?f???t?dtx?lim2xf????? ????0,x?? x?0x ?2f???0??1 故f???0??

(C)

1.设f?x?是任意的二次多项式,g?x?是某个二次多项式,已知

1 2?10b?1??1?f?x?dx??f?0??4f???f?1??,求?g?x?dx。

a6??2??解:设x??b?a?t?a,则

I??g?x?dx??g??b?a?t?a??b?a?dt

a0b1 ??b?a??g??b?a?t?a?dt

01 令g??b?a?t?a??f?t?

?1??b?a? 于是f?0??g?a?,f???g??,f?1??g?b?

22???? 由已知得I??b?a??b?a?????ga?4g?gb??? 6?2????2.设函数f?x?在闭区间?a,b?上具有连续的二阶导数,则在?a,b?内存在?,

19

b?a?b?13使得?f?x?dx??b?a?f???b?a?f?????。 ?a?2?24证:由泰勒公式

f?x??f?x0??f??x0??x?x0??f??????x?x0?2 2! 其中x0,x??a,b?,?位于x0与x之间。 两边积分得:

f?????2?x?x0?dx a2!f?????3b?baf?x?dx??f?x0?dx??f??x0??x?x0?dx??aabb ??b?a?f?x0?? 令x0?

f??x0??b?x0?2??a?x0?2?2??6??b?x?03??a?x0?

?a?b,则 2?ba22?a?ba?b1a?ba?b?????????f?x?dx??b?a?f???f?????b????a???

2??2???2??2?2????33f???????a?b??a?b? ????a????b?6?22??????? ???a?b?13 ??b?a?f????b?a?f?????,???a,b?。

?2?243.f?x?在?a,b?上二次可微,且f??x??0,f???x??0。试证

?b?a?f?a???af?x?dx??b?a?f?b??f?a?。

b2证明:当x??a,b?时,由f??x??0,f???x??0知f?x?是严格增及严格凹的,从而f?x??f?a?及f?x??f?a??bbaaf?b??f?a??x?a? b?a故?f?x?dx??f?a?dx??b?a?f?a?

?bab?f?b??f?a???f?x?dx???f?a??x?a??dx

ab?a??f?b??f?a?1?b?a?2

b?a2f?b??f?a? ??b?a?

2 ??b?a?f?a??4.设函数f?x?在?a,b?上连续,f??x?在?a,b?上存在且可积,f?a??f?b??0,

20

1b试证f?x???f??x?dx (a?x?b)。

2a证明:因为在?a,b?上f??x?可积,故有

?baf??x?dx??f??t?dt??f??t?dt

axxaxb 而f?x???f??t?dt,?f?x???f??t?dt

xbb1?x???ftdt?f??t?dt? ???x?a?2?b1x1b f?x????f??t?dt??f??t?dt???f??t?dt

?x?a?2a2? 于是f?x??5.设f?x?在?0,1?上连续,?f?x?dx?0,?xf?x?dx?1,求证存在一点x,

00110?x?1,使f?x??4。

证:假设f?x??4,x??0,1?

由已知?f?x?dx?0,?xf?x?dx?1,得

0011 1??xf?x?dx?011?111???fxdx?x???f?x?dx ??0022?? ??x?01111f?x?dx?4?x?dx

0221??11???1?2 ?4????x?dx??1?x??dx??1

02???2???21111f?x?dx?4?x?dx

022 故?x?01 从而?x?01?f?x??4?dx?0 2∴f?x??4?0

因为f?x?在?0,1?连续,则f?x??4或f?x???4。从而?f?x?dx?4或?4,

01这与?f?x?dx?0矛盾。故f?x??4。

016.设f?x?可微,f?0??0,f??0??1,F?x???tfx2?t2dt,求lim0x?0x??F?x?。 x4 21

1x2解:令x?t?u,则F?x???f?u?du,显然F??x??xfx2

2022??F?x?F??x?fx2fx2?f?0?11? 于是lim4?lim。 ???lim?lim?f0?2x?0xx?04x3x?04x2x?0444x?0??????7.设f?x?在

4b?a,b?上连续可微,若f?a??f?b??0,则

f?x?dx?maxf??x?。 ??b?a?2aa?x?b?a?b??a?b?证:因f?x?在?a,b?上连续可微,则f?x?在?a,,b?上均满足拉?和?22????格朗日定理条件,设M?maxf??x?,则有

a?x?b?baf?x?dx??a?b2aa?b2af?x?dx??a?bf?x?dx

2bb ?? ??f?a??f???1??x?a?dx??a?bf?b??f???2??x?b?dx

2a?b2af???1??x?a?dx??a?bf???2??x?b?dx

2a?b2ab ?M?故

4x?adx?M?a?bx?bdx?2bM?b?a?2 4f?x?dx?M。 ??b?a?2abak?0b8.设f?x?在?A,B?上连续,A?a?b?B,求证lim?f?x?k??f?x?dx

k?f?b??f?a?。

证:?baf?x?k??f?x?1b1bdx??f?x?k?dx??f?x?dx

kkakabb?ka?ka 令x?k?u,则?f?x?k?dx?? 于是?bf?u?du

f?x?k??f?k?1b?k1bdx??f?x?dx??f?x?dx

akka?kka1b?k1a?kf?x?dx??f?x?dx ??kbkabf?x?k??f?x?1b?k1a?kdx?lim?f?x?dx?lim?f?x?dx 故lim?bak?0ak?0k?0kkk

22

?f?b??f?a?

9.设f?x?为奇函数,在???,???内连续且单调增加,F?x????x?3t?f?t?dt,

0x证明:(1)F?x?为奇函数;(2)F?x?在?0,???上单调减少。

证:(1) F??x???

f?x?为奇函数?x0??x?3t?f?t?dtt??u??0???x?3u?f??u?du

xx?0??x?3u?f?u?du???0?x?3u?f?u?du??F?x?

x ∴F?x?为奇函数。

?xx?? (2)F??x??x?f?t?dt?3?tf?t?dt ??0?0? ??f?t?dt?xf?x??3xf?x?

0x ??f?t?dt?2xf?x?

0x ???f?t??f?x??dt?xf?x?

0x 由于f?x?是奇函数且单调增加,当x?0时,f?x??0,

??f?t??f?x??dt?0 ??0?t?x?,故F??x??0,x??0,???,即F?x?在?0,???上

0x单调减少。

10.设f?x?可微且积分??f?x??xf?xt??dt的结果与x无关,试求f?x?。

01解:记??f?x??xf?xt??dt?C,则

01

?0?f?x??xf?xt??dt?f?x???0f?u?du?C

1x 由f?x?可微,于是 f??x??f?x??0

解之f?x??ke?x(k为任意常数)

11.若f???x?在?0,??连续,f?0??2,f????1,证明:

??f?x??f???x??sinxdx?3。

0?解:因?f???x?sinxdx??sinxdf??x?

00?? 23

?sinxf??x???0??0f??x?coxsd x ????0f??x?coxsd x ????coxsd?fx???f?x?coxs??00??0f?x?sinxdx ?f????f?0????0f?x?sinxdx ?1?2????0f?x?sinxdx?3??0f?x?sinxd x 所以??0?f?x??f???x??sinxdx?3。

12.求曲线y??x0?t?1??t?2?dt在点(0,0)处的切线方程。

解:y???x?1??x?2?,则y??0??2,故切线方程为:y?0?2?x?0?, 即y?2x。

13.设f?x?为连续函数,对任意实数a有

???a??asinxf?x?dx?0,f?2??x??f?x?。

证:两边对a求导

sin???a?f???a????1?sin???a?f???a??0 即f???a??f???a?

令a???x,即得f?2??x??f?x?。 14.设方程2x?tg?x?y???x?y2d20sectdt,求ydx2。

解:方程两边对x求导,得

2?se2c?x?y??1?y???se2c?x?y??1?y??

从而y??1?cos2?x?y??sin2?x?y?

y???2sin?x?y?co?sx?y??1?y?? ?2sin?x?y?co3s?x?y? 15.设f?x?在?a,b?上连续,求证:

24

求证

1x?f?t?h??f?t??dt?f?x??f?a? (a?x?b) limh?0?h?a证:设F?x?为f?x?的原函数,则 左边?lim?h?01?F?x?h??F?a?h??F?x??F?a?? h?F?x?h??F?x?F?a?h??F?a?? ?lim ??h?0??hh?? ?f?x??f?a??右边。 16.当x?0时,f?x?连续,且满足?解:等式两边对x求导,得 fx2?1?x?2x?3x2?1 令x2?1?x??2得x?1 将x?1代入得:f?2??5?1 故f?2??1。 5x2?1?x?0f?t?dt?x,求f?2?。

????17.设f?x?在?0,1?连续且递减,证明

??f?x?dx??f?x?dx,其中???0,1?。

001?证:??f?x?dx?????f?x?dx??f?x?dx??

01?1?0?? 则??f?x?dx??f?x?dx

001? ???f?x?dx????1??f?x?dx

?01? ???1???f??1??????1?f??2?,?1???,1?,?2??0,?? ?????1??f??1??f??2?? 由于f?x?递减,f??1??f??2? 故??f?x?dx??f?x?dx?0

001? 即??f?x?dx??f?x?dx。

001?18.设f??x?连续,F?x???f?t?f??2a?t?dt,f?0??0,f?a??1,试证:

0x 25

F?2a??2F?a??1。

证:F?2a??2F?a??? ??2a02a0f?t?f??2a?t?dt?2?f?t?f??2a?t?dt

0a0af?t?f??2a?t?dt??f?t?f??2a?t?dt f?t?f??2a?t?d?2a?t???f?t?f??2a?t?dt

02a2aaa ???2aa ??f?t?f?2a?t?a??f??t?f??2a?t???f?t?f??2a?t?dt

0a 在第一个积分中,令2a?t?u,则

?2aaf??t?f?2a?t?dt??f?u?f??2a?u?du

02a2a 而?f?t?f?2a?t?a??f?2a?f?0??f 故F?2a??2F?a??1

?a??1

19.设g?x?是?a,b?上的连续函数,f?x???g?t?dt,试证在?a,b?内方程

axg?x??f?b??0至少有一个根。 b?a证:由积分中值定理,存在???a,b?使 f?b???g?t?dt?g????b?a?

ab 即g????f?b??0 b?a 故?是方程g?x??f?b??0的一个根。 b?axxab20.设f?x?在?a,b?连续,且f?x??0,又F?x???f?t?dt??(1)F??x??2 (2)F?x??0在?a,b?内有且仅有一个根。 证:(1)F??x??f?x??ab1 dt,证明:

f?t?1?2 ??fx (2)F?a???b1dt?0,F?b???f?t?dt?0

af?t? 又F?x?在?a,b?连续,由介值定理知F?x??0在?a,b?内至少有一根。 又F??x??0,则F?x?单增,从而F?x??0在?a,b?内至多有一根。

26

故F?x??0在?a,b?内有且仅有一个根。 21.设f?x?在?0,2a?上连续,则?证:?2a02a0f?x?dx???f?x??f?2a?x??dx。

0af?x?dx??f?x?dx??0a2aaf?x?dx

令x?2a?u,dx??du,则

?2aaf?x?dx??f?2a?u?du??f?2a?x?dx

00aa 故?2a0f?x?dx???f?x??f?2a?x??dx

0a22.设f?x?是以?为周期的连续函数,证明:

??sinx?x?f?x?dx???2x???f?x?dx。

002??证:?2?0?sinx?x?f?x?dx

?2?0 ???sinx?x?f?x?dx?? 令x???u,则

??sinx?x?f?x?dx

???u????u?f???u?du ???sinx?x?f?x?dx??0?sin?02?2?? ???u???sinu?f?u?du(∵f?x?以?为周期) 故?0?sinx?x?f?x?dx??0?2x???f?x?dx

b?23.设f?x?在?a,b?上正值,连续,则在?a,b?内至少存在一点?,使

??af?x?dx??f?x?dx??xbax1bf?x?dx。 ?a2证:令F?x???f?t?dt??f?t?dt 由于x??a,b?时,f?x??0,故 F?a????f?t?dt?0

ab F?b???f?t?dt?0

ab 故由零点定理知,存在一点???a,b?,使得F????0 即?f?t?dt??f?t?dt?0

a?b? 27

?f?x?dx???f?x?dx

ab?b 又?f?x?dx??f?x?dx??f?x?dx?2?f?x?dx

aa?b??a 故?f?x?dx??f?x?dx?a?b?1bf?x?dx。 2?a1f?u?1?du??lnf?u?du。 0f?u?24.证明?lnf?x?t?dt??ln001x证:设x?t?u?1,则

?10lnf?x?t?du??x0xx?1lnf?u?1?du

0x?1 ??lnf?u?1?du?? 令u?1?v,则

lnf?u?1?du

?0x?1lnf?u?1?du??lnf?v?dv??lnf?u?du

xxx10011 ???lnf?u?du??lnf?u?du 故?lnf?x?t?dt??ln001x1f?u?1?du??lnf?u?du 0f?u?25.设f?x?在?a,b?上连续且严格单调增加,则?a?b??f?x?dx?2?xf?x?dx。

aabb证:令F?x???a?x??f?t?dt?2?tf?t?dt

aaxx 则F??x???f?t?dt??a?x?f?x??2xf?x?

ax ??f?t?dt??x?a?f?x?

ax ???f?t??f?x??dt

ax ∵a?t?x,f?x?在?a,b?严格单增

∴f?t??f?x??0

则F??x??0,从而F?b??F?a??0 即?a?b??f?t?dt?2?tf?t?dt?0

aabb故?a?b??f?x?dx?2?xf?x?dx

aabb 28

26.设f?x?在?a,b?上可导,且f??x??M,f?a??0,则?f?x?dx?abM?b?a?2。 2证:由假设对?x??a,b?,可知f?x?在?a,x?上满足微分中值定理,则有 f?x??f?x??f?a??f?????x?a?,???a,x? 又因f?x??M,x??a,b? 故f?x??M?x?a?

于是?bf?x?dx??bM?x?M2aaa?dx?2?b?a?。 27.设f?x?处处二阶可导,且f???x??0,又u?t?为任一连续函数,则

1?af?u?t??dt?f??1a?a0?a?0u?t?dt??,?a?0?。 证:由泰勒公式,有

f?x??f?x120??f??x0??x?x0??2!f??????x?x0? 其中?在x与x0之间 又因f???x??0,故

f?x??f?x10??f??x0??x?x0??2!f??????x?x20??0 即f?x??f?x0??f??x0??x?x0?

令x?u?t?,x1a0?a?0u?t?dt

则?aa0f?u?t??dt??f??1?a?a0u?t?dt???dt??a?0???f???1a?a?0u?t?dt???0???? ??1a??u?t??a?0u?t?dt??dt

即?a?1a?0f?u?t??dt?af??a?0u?t?dt??。

29

b?a?b?28.设f?x?在?a,b?上二阶可导,且f???x??0,则?f?x?dx??b?a?f? ?。a?2?证:对?x??a,b?,将f?x?在x0?a?b处展开,得 22a?b?1a?b??a?b??a?b?????? f?x??f????fx??f?x????????

2?2!2??2??2???其中?在x与

a?b之间。 2 由题设f???x??0,则f??????0。

a?b??a?b??a?b?? 从而f?x??f???f????x??

222??????ba?b??a?b??a?b?b?? 积分?f?x?dx??b?a?f??fx?????a??dx a2??2??2???a?b?即?f?x?dx??b?a?f?? a2??b29.设f?x?在?a,b?上连续,且f?x??0,?f?x?dx?0,证明在?a,b?上必有

abf?x??0。

证:由f?x??0得?f?x?dx?0,再由题设?f?x?dx?0,知?f?x?dx?0

aaabbb又由于f?x??0,对x??a,b?得,0??f?t?dt??f?t?dt?0

aabx即?xa?x??f?t?dt?0,从而f?x????f?t?dt??0 ?a?30.f?x?在?a,b?上连续,且对任何区间??,????a,b?有不等式

???f?x?dx?M???a1??(M,?为正常数),试证在?a,b?上f?x??0。

证:令F?x???f?t?dt,则F??x??f?x?

xF????F??? 又???????f?x??dx?M??? ??? 令???,则上式左端?F?????f???,右端?0。由此得f????0,由?的任意性知f?x??0。

30

31

本文来源:https://www.bwwdw.com/article/qqbr.html

Top