华南理工大学成人高等教育
更新时间:2023-03-08 04:56:59 阅读量: 高等教育 文档下载
华南理工大学成人高等教育 《高等数学》作业复习题(专科)
(理工类专科各专业适用)
第一章 函数与极限
一、选择题 1、函数y? A、[?2,1) C、[?2,1)
2、函数y?sin(3x?2)的定义域是[ ]. A、[0,), B、(,??), C、(2,3), D、(??,??).
?2x,x?03、设函数f?x???,则f??1?为[ ].
3x-2,x?0?4?x2?1的定义域是[ ]. x?1(1,2], B、[?2,2], (1,2], D、(1,2].
2323A、 2, B、 -2, C、0, D、1.
4、下列函数中,[ ]是奇函数.
A、y?1?x3, B、y?ex?xcosx, C、y?xcos
5、下列函数中, [ ]是周期函数.
A、y?1?sinx, B、y?xcosx, C、y?cosx2, D、y?sin2x.
1
21, D、y?sinx?cosx. x二、填空题
1、方程函数y?(x?1)2,x?(??,1]的反函数为_________.
2、极限lim2n?________.
n??3n?41xx?03、极限limln[(1?x)]= . 4、极限lim1sinx?________. x??x5、函数y?三、计算题
x的间断点是 . 2(1?x)1、求下列数列的极限: (1)lim(n??12?); 2nn
(2)lim (3)lim
2
n?1;
n??n2?1n??n?1; n (4)limn2?1;
n??2n
(5)lim(n??n?1?n).
2、求下列函数的极限: (1) lim(x32x?3?2x?8);
(2) lim(exx?0?x);
3
(3) limx?5?5x;
x?0
(4)limx2?42;
x?2x?
(5) limx2?2x?1x??2x2?x?3;
(6)xlim???(x?1?x).
4
3、利用两个重要极限求下列极限: (1) limtan2xx?0x;
(2) lim1?cosxx?0x2;
(3) lim(12xx???x);
x?2 (4)lim?1?;
x????1?x??
1(5)lim(1?2x)x.
x?0
5
4、 当x?0时,下列哪个函数是比x的高阶无穷小?哪个函数是x的等价无穷小. (1)
?(x)?x2, (2)?(x)?sinx.
5、讨论下列分段函数在分段点的连续性:
?1?x3,x?1?(1) f?x???1?x ; ?0,x?1? (2)
?xsinx,x?0f(x)??x?0?0,.
6
参考答案: 一.选择题 1-5 ADBCD. 二、填空题
1、y?1?x x?[0,??), 2、2,3、1,4、0,5、x??1. 3三、计算题
1、(1)0;(2)0;(3)0;(4)
12;(5)0. 2、(1) 1;(2) 1 ;(3)510;(4)4;(5)12,(6) 0.3、(1) 2;(2)
12;(3)e2;(4)e;(5)e2. 4、x2?o?x?;故函数?(x)?sinx是x的等价无穷小 5、(1)x?1为间断点;(2)x?0为连续点.
7
sinxx.
即第二章 导数与微分
一、选择题
1、若函数f(x)在某点可导,则函数在该点( ). A、极限不一定存在, B、不一定连续, C、一定连续, D、不可微.
f(2h)?f(0)?1,则f?(0)?( ).
h?0h1A、2, B、, C、1, D、0.
2f(h)?f(0)3、设f?(0)?2,则lim( ).
h?02h1A、2, B、, C、1, D、0.
22、设lim4、函数y?x在点x?0 处( );
A、连续, B、可导, C、不一定可导, D、间断. 5、设limx?0f(x)?A,其中f(0)?0,则A可表示为( ). xA、f(x), B、0, C、f?(x), D、f?(0). 二、填空题
1、方程函数y?e2?ln2?sinx,则f?(x)?_________. 2、极曲线y?ex在点(0,1)处的切线方程是 . 3、设y?lnx2,则dy? . 4、设曲线y?x2?1在点M的切线的斜率为2,则点M的坐标为________. 5、设y?(x2?1)3,则y'? . 三、计算题
1、求下列函数的导数: (1)
8
;
(2) y?(sin(1?2x))2;
(3)y?e?3xsin2x; (4)
2、方程y2?x3?lny确定了y是x的函数y?y(x),求函数的导数y?.
3、参数方程?
4、 设y?xe,求y?,y??,y??? 及y
9
x(4).
?x?1?sint所确定的函数y?y(x),求函数的导数y?.
?y?t?cost .
参考答案: 一.选择题 1-5 CACAD. 二、填空题
1、cosx , 2、y?x?1,3、三、计算题 1、(1)?3x?2,4、?1,2?,5、6x(x2?1)2. x??21?(2)?4sin?1?2x?cos?1?2x?;(3)?3e?3xsin2x?2e?3xcos2x;?;x?22x(4)2x?2xe.
??3yx22、y??. 22y?13、
dy1?sint?. dx?cost4、y??(1?x)ex,y???(2?x)ex,y????(3?x)ex,y(4)?(4?x)ex.
10
第三章 中值定理与导数应用
一、选择题
1、函数y?x2的单调增加的区间是( ). A、???,???’ C、?0,???,
2、函数y?ex的图形在???,???( ).
A、下凹,
3、如果f?(x0)?0,f??(x0)?0,则( ).
A 、f(x0)是函数f(x)的极小值, B、f(x0)是函数f(x)的极大值,
C、f(x0)不是函数f(x)的极值, D、不能判定f(x0)是否为函数f(x)的极值. 4、函数y?lnx的单调区间是( ).
B、上凹, C、有拐点,
D、有垂直渐近线.
B、???,0?, D、??1,???.
) D、 (?1,??). A、 [?2,??), B、 (0,??), C、 [?1,??,
5、函数y?x3在点x?0 处( ).
A、取得最小值, B、导数为零, C、取得极大值, D、间断. 二、填空题
1、y?x3的驻点是_________.
2、函数y?x?sinx单调增加的区间是 . 3、当x?1时,函数y?x?2px?1取得极值,则常数p? . 4、函数f(x)?x在闭区间[?2,1]上的最大值点为x=
22x35、曲线y?的渐近线为 .
x?1
11
三、计算题
1、求下列函数的极限:
(1) limx2?2x?3?1;
x?1xlimex?x?1x2;
x?0sin(3) lim(1?1x?0xsinx);
(4) limx3x?0x?sinx.
(2)
12
2、求下列函数的极值. (1)y?x3(1?x); y?(x?1)3; y?xlnx;
(2)
(3)
13
3、求下列函数在给定区间上的最大值和最小值. (1)f(x)?x2?3x?2,在[?10,10]上;
(2)y?x4?4x3?8, x?[?1,1].
四、证明:当 x?0时,1?
14
1x?1?x. 2参考答案: 一.选择题 1-5 CAABB. 二、填空题
1、x?0 , 2、(??.??),3、p??1,4、x??2,5、x?1. 三、计算题 1、(1)4;(2)
1;(3)0;(4)6. 23327?3??3?2、(1)函数的极大值为y?????(1?)?;(2)该函数没有极值;(3)函数的
4256?4??4?极小值为ye??2??e?2lne?2??2. e3、(1)函数最大值为132,函数最小值为?0.25;(2)最大值为13,函数最小值为5.
15
第四章 不定积分
一、选择题
1、若f(x)是g(x)的一个原函数,则下列选项正确的是( ). A、f(x)?dd(g(x)?C) ; B、g(x)?(f(x)?C); dxdx C、
?f(x)dx?g(x); D、?g(x)dx?f(x).
x 2、 已知f?x?是2的一个原函数,且f?0??1,则f?x??( ) ln22x2x?c; B、 A、; ln2ln2x C、2ln2?c; D、2ln2.
x 3、若?f(x)dx?F(x)?C,则?f(2x)dx=( )
A、F(2x)?C ; B、 2F(x)?C;
C、
11F(2x)?C; D、F(x)?C. 22 4、
d??sinx????dx?=( ) ?dx?x????sinxcosx; B、 ;
xxsinxcosx?C; D、?C. xx A、
C、
5、d(arccosx)?( )
A、arccosx?C; B、 arccosx; C、arccosxdx; D、?
16
?11?x2?C.
二、填空题
1、设F1(x),F2(x)是f(x)的两个不同的原函数,且f(x)?0,则
F1(x)?F2(x)= .
2、 3、
df(x)dx=;?f?(x)dx=. ? dx
?f'(x?1)dx=
. .
4、 若 5、 若
??f(x)dx?F(x)?C,则?xf(x2)dx=f(x)dx?e2x?C,则f(x)=
.
三、计算题
1、用第一换元法求下列不定积分:
2(1) (2x?1)dx;
? (2)
2x?(2?x2)2dx;
x3dx; (3) ?41?x
17
(4) ?19?x2dx;
(5)dx ?xlnx; (6)
?sin3xdx.
2、用第二换元法求下列不定积分: (1)?x1?x?1dx;
18
(2)
?1;
x24?x2dx (3) ?dx1?1?x2.
3、用分部积分法求下列不定积分: (1)
?xlnxdx;
19
(2) xex?1dx;
?
(3)
4、已知f(x)的一个原函数为
20
xxcosdx. ?3sinx,计算?xf'(x)dx.. x
参考答案: 一.选择题 1-5 ADCDB. 二、填空题
1、2x1?x4; 2、 0 ; 3、1;4、三、计算题
?5、 0. 2;
?21、.
82、4.
3、?1?e?1 . 4、(1)
1351?23?;(2)ln;(3)2ln;(4) 1?cos1.
2223121?(e?1); (3) (e2?1). 5、(1)2?2?; (2)42
6、1.
3?ln2. 218、a??.
2128?9、.
77、
π210、.
2
26
正在阅读:
华南理工大学成人高等教育03-08
电磁兼容整改分析06-07
传播学考研资料-大众社会理论04-17
JAVA实验7-9+答案01-10
基于C51单片机的烟雾报警器设计1211-19
2016年秋季版七年级道德与法治上册第一单元走进中学第三节拥有好心情教学设计湘教版10-11
2014年版SCI收录期刊影响因子情况汇总20140904-26
高层建筑沉降观测施工方案08-18
对司法行政机关警务督察的思考04-22
- 2012诗歌鉴赏讲座 师大附中张海波
- 2012-2013学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一)
- 市政基础设施工程竣工验收资料
- 小方坯连铸机专用超越离合器(引锭杆存放用)
- 荀子的学术性质之我见
- 氩弧焊管轧纹生产线操作说明
- 小学科学六年级上册教案
- (商务)英语专业大全
- 外汇储备的快速增长对我国经济发展的影响
- 幼儿园中班优秀语言教案《小猴的出租车》
- 第七章 仪表与显示系统
- 身份证号码前6位行政区划与籍贯对应表
- 单位(子单位)工程验收通知书
- 浅谈地铁工程施工的项目成本管理
- 沉积学知识点整理
- 前期物业管理中物业服务企业的法律地位
- 2014微量养分营养试卷
- 地质专业校内实习报告范文(通用版)
- 内部审计视角下我国高校教育经费支出绩效审计研究
- 高次插值龙格现象并作图数值分析实验1
- 华南理工大学
- 高等教育
- 成人
- 南京大学成人高等教育招生专业主要课程介绍
- 中国传媒大学成人高等教育
- 上海高等教育自学考试-上海交通大学-成人高等教育
- 表1扬州大学测试中心
- 东北大学2017年成人高等教育招生简章
- 南方医科大学成人教育本科生毕业论文设计撰写规范
- 五邑大学成人高等学历教育2016年招生简章
- 南京邮电大学教学科研仪器设备管理办法
- 2011年度自治区科学技术奖励名单
- 软件学院本科毕业论文设计
- 成都东软学院小学期《电子商务网站前端设计》项目教学大纲
- 大学专科毕业生自我评价(精选多篇)
- 2018年华南农业大学珠江学院专插本招生简章
- 吉林大学本科生课程考核管理办法
- 大学入学考试中心
- 西南交通大学考试管理实施细则
- 中国医科大学成人教育学院学生考试试题答案
- 东北林业大学成人高等教育毕业设计论文规范要求试行
- 我国中小企业发展的现状、问题及对策电大大学本科毕业论文
- 2017年四川大学本科国际及港澳台