基于PLC的交通信号灯本科毕业论文

更新时间:2024-05-27 22:34:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

黑龙江工程学院本科生毕业设计

第1章 绪 论

1.1 引言

可编程控制器(programmable controller)属于微型计算机的一种,并且最早为工业控制应用而设计制造。由于其在最初功能上只可实现定时、计数以及逻辑控制等功能,故也被称为可编程逻辑控制器(Programmable Logic Controller),简称PLC。它具有可靠性高,功能完善,抗干扰性好、结构简单、编程方便、体积小、重量轻等优点,是一种专门用于工业环境及过程控制的数字运算操作的电子系统并且主要用来代替继电器实现逻辑控制。PLC以微处理器为基础,综合了计算机技术、自动控制技术、网络技术和通讯技术发展而来的一种新型工业控制自动化装置。随着现代技术的发展,该装置在功能及构造上己经远远超过了早期的PLC。

交通问题是现代社会发展的一个重要表现,同时也是社会发展的重要依托。交通运输是城市功能活动的命脉,它直接影响社会经济与生活的各个方面。在世界范围内,随着人口密度高速增长,城市化的脚步不断加快,交通问题日渐严重。龙其在国际性大都市,拥挤的交通己经造成了巨大的能源损失和环境污染,同时也给人们的生活带来了巨大的困扰。在我国,这个情况尤为突出。

本课题通过深入地研究PLC的硬件结构与工作方式,成功地将PLC与十字路口交通信号灯联系起来,初步解决了交通拥堵问题。系统地设计了基于PLC的十字路口交通信号灯控制系统,对包括具体信号灯配置、硬件与软件的设计在内的控制环节进行了深刻研究,并且探索了手持式无线遥控装置对于信号灯的控制。

1.2 课题的背景

随着社会的发展和进步以及人民生活水平的提高,上路的车辆越来越多,但相应的公路设施却没有相应的改善。这就导致了城市交通拥堵问题突出,而且拥堵的地方多是十字路口等车辆汇集处。在世界各大城市,交通堵塞尤为严重,尽管人们发明了红绿灯,修建了立交桥,但是交通堵塞问题始终没有解决,使之成为世界性的难题。但城市中的交通堵塞状况严重与否还是或多或少地反映出所在城市的经济发达程度和所处的发展阶段。大多数人选择汽车的初始动机主要是为了出行快捷和节省时间,然

1

黑龙江工程学院本科生毕业设计

而由于交通堵塞所造成的出勤的低效率,往往使得人们的愿望与实际结果产生较大的差异。

目前国内城市人口密集区,机动车和非机动车数量讯速增长,严重匮乏且陈旧的道路交通设施、布局不尽合理的城市路网已经不堪重负,这些都导致了城区交通拥堵频繁、交通秩序混乱等问题。特别是早晚行车流量高峰期,道路人流、车流量基本处于饱和或超饱和状态,车辆行驶缓慢,加上小商贩占道摆摊设点、车辆随意停乱放,使得蚕食、侵占道路现象比较突出,而“行车难、停车难”已越来越成为中心城区内的一种常态,是城市交通管理的难点和热点。随着城镇人口不断增长,机动车、非机动车拥有量还会逐年递增,城市安全设施建设的滞后性凸显,交通违法事故、治安事件时有发生,城市安全防控已成为了整个社会所关注的焦点。从相关部门的事后查处的结果来看,造成这些现象其中的一个重要原因就是机动车驾驶员在交警视线外违法行驶的情况非常普遍,交通参与者的交通安全意识普遍偏低。随意违法的问题也在很大程度上反映了我区交通秩序管理缺乏科技手段给予支撑的问题,这些都成为我区道路交通事故处在多发态势的主要原因。

面对日益严重的交通拥堵问题,想要仅仅依靠行政措施是远远不够的。解决交通问题还应该利用科技力量对城市交通进行有效的管理,如何对异常的交通拥堵等交通事件进行有效的监督管理,是城市实现智能交通时需要考虑的重点之一。利用交通灯对车流进行管理,无疑是最为便捷且最为行之有效的方法。眼下一个极为迫切的问题就是如何优化目前的交通信号灯系统。

1.3课题研究的目的意义

交通运输是城市功能活动的命脉,它直接影响社会经济与生活的各个方面。在世界范围内,随着人口密度高速增长,城市化的脚步不断加快,交通问题日渐严重。龙其在国际性大都市,拥挤的交通己经造成了巨大的能源损失和环境污染,同时也给人们的生活带来了巨大的困扰。在我国,这个情况尤为突出。

这就说明了交通路口的车辆指挥工作是极为重要的一环,而疏导交通的主要工具.交通信号灯的性能就更为重要。以往的交通灯大都采用继电器或单片机来实现,虽然简单可控成本低,但同时也存在着功能少,可靠性较差,维护量很大等缺点。

目前我国的交通信号灯主要靠单片机甚至是更初级的控制方式。该控制方式虽然简单易行,但由于单片机工作稳定性差、易受外界干扰、可实现功能少且联网性差,己越来越不能适应现代化都市对于交通控制的需求。而国内外到目前为止尚无完善的

2

黑龙江工程学院本科生毕业设计

解决方案,这就为PLC的研发应用提供了广阔的空间。PLC控制的信号灯的出现使得该问题迎刃而解。

和单片机控制的十字路口信号灯相比,用PLC进行控制主要是考虑PLC具有很强的环境适应性,同时其内部定时器资源非常丰富,可对交通灯进行精确控制。PLC是以微处理器为基础,综合了计算机技术、自动控制技术、网络技术和通讯技术发展而来的一种新型工业控制自动化装置。可靠性高,功能完善,抗干扰性好、具有结构简单、编程方便、体积小、重量轻等优点,是一种专门用于工业环境及过程控制的数字运算操作的电子系统。

PLC对交通信号灯的控制,主要是考虑其具有对使用环境适应性强的特性,同时其内部定时器资源丰富,可实现精确控制,且具有通讯联网功能,可以将相关路口统一调度管理。并且由于PLC内部均配有实时时钟,因此通过PLC控制可对交通灯实施全天候无人化管理。另外因为PLC具有通信联网功能,所以可以将同一条道路上的交通灯组成局域网进行的统一调度管理,这样就可以缩短车辆等候时间,进而实现科学化管理。该课题的提出和研究有利于填补国内外PLC应用领域的空白和不足,充分发挥PLC在现代工业控制中的优越性。

也正是因为如此,如何充分地利用PLC系统的控制优势,使其适应现在的交通状况,成为竞相研究的课题。

1.4 国内外现状及未来发展趋势

1.4.1 国外发展现状

在交通信号灯的控制方面,国外尤其是欧美等发达国家,PLC控制的交通信号灯在大中城市甚至是小城填也早己数见不鲜。在日常出行中,高质量的交通信号无疑也对车的智能控制和减少交通拥堵上起到了至关重要的作用。而且由于PLC具有高可靠性和超长寿命的优点,平时并不需要人工维护,这在人力资源奇缺的西方发达国家来说,是节约劳动力的最好方式。

目前,世界上大约有200家PLC生产厂商,400多品种的PLC产品,按地域来说可分成美国、欧洲、和日本等三个流派产品,各流派PLC产品也都各具自己的特色。如日本主要发展中小型PLC,其小型PLC设计先进,结构紧凑,价格便宜,在世界市场上占用重要地位,以PLC为基础的红绿灯在各大城市并不少见,各个PLC生产公司也因此大获其利。就这一角度来说,以PLC控制的信号灯将极具竞争力。

3

黑龙江工程学院本科生毕业设计

PLC的初期由于其价格高于继电器控制装置,使得其在应用方面受到了限制。但近十多年以来,PLC的应用面却越来越广。究其原因,主要是一方面由于微处理器芯片有关的元件价格大为下降,这使得PLC的成本迅速下降;另一方面PLC的功能大大增强,也能够解决复杂的计算以及通信问题。PLC的应用范围通常可分成5种类型,它们分别是:顺序控制、运动控制、过程控制、数据处理和通信网络。

在工业自动化领域中,国外的PLC己经成为大多数自动化系统的设备基础,由于综合了计算机和自动化技术,PLC的发展更是日新月异,现在己经很大程度地超过了其刚刚出现时的技术水平。 1.4.2 国内发展现状

虽然PLC在国外的研究己得到了长足的进步,但我国工业企业的自动化程度还普遍较低,不仅PLC产品应用范围有限,生产PLC的厂家也是凤毛麟角,如机械行业80%以上的设备仍然采用传统的继电器和接触器进行控制。PLC在我国的应用潜力远远没有得到充分发挥,PLC产品还有着很大的应用空间。虽然 我国大中型企业普遍采用了先进的自动化系统对生产过程进行控制,但绝大部分的小型企业还尚未应用自动化系统和产品对生产过程进行控制。对于交通灯这种技术要求不太高的控制,与PLC有关的研究更是无人问津。

近几年来,随着上路的车辆越来越多,与此同时城市交通拥堵问题日益突出,城市交通问题己成为了关乎人民正常生活与否的重要一环。合理的交通控制方法能有效的缓解交通拥挤、减少尾气排放及能源消耗、缩短出行延时,改善我国独有的交通问题,所以对交通信号控制方法的研究具有重大意义。

当前我国的十字路口信号灯还主要靠单片机控制,该控制方式虽然简单易行,但由于单片机工作稳定性差、易受外界干扰、可实现功能少且联网性差,己越来越不适应现代化都市对于交通的需求。本文要研究的由PLC控制十字路口交通信号灯正是为了解决上述问题运应而生。PLC凭借其高精度、高可靠性及长寿命为其在交通信号灯的控制上提供了巨大的发展空间。

我国在“十五”规划中就已明确提出了“用信息化带动工业化”的发展计划,大量传统产业的自动化改造将为PLC控制。我国的工业发展及自动化应用水平与工业发达国家相比有几十年的滞后,按目前的经济形势分析,我国将迎来一个PLC市场高速增长的时期。

1.4.3 未来发展趋势

4

黑龙江工程学院本科生毕业设计

和单片机控制的十字路口信号灯相比,用PLC进行控制主要是考虑PLC具有很强的环境适应性,同时其内部定时器资源非常丰富,可对交通灯进行精确控制。由于PLC内部均配有实时时钟,因此通过PLC控制可对交通灯实施全天候无人化管理。另外因为PLC具有通信联网功能,所以可以将同一条道路上的交通灯组成局域网进行的统一调度管理,这样就可以缩短车辆等候时间,进而实现科学化管理。正是由于PLC较之单片机及其它控制的种种优点,以PLC取代城市现有的交通灯控制方法是势在必行的。

城市的交通系统是一种时刻变化且非线性的系统。以往的交通控制方面的研究多倾向于实际操作的考虑而非基于理论控制的方法。近年来,随着众多研究控制理论的学者教授的参与,城市交通的自动控制领域方面的研究出现了新的思路和方法,人工智能是新的研究方法之一。

人工智能是将PLC控制与智能化计算机结合,利用模糊控制与神经网络控制的技术进行十字路口交通信号灯控制能够取得比定时控制更为有效的结果。这是今后的交通信号灯的主要研究方向。将模糊控制和神经网络控制两者结合起来用于十字路口交通信号灯的控制将很有可能成为今后交通信号灯控制研究的重点,所以对其进行一次系统全面的研究是十分必要的。

1.5 课题研究的主要内容

本设计主要研究了基于PLC的十字路口交通信号灯控制。十字路口信号灯系统的具体构成元素包括:东、西、南、北方向装有主干道直行“红绿黄”灯和左转“红绿黄”灯,人行道红、绿灯和四个数码管倒计时显示装置以及手持式无线控制器。

1.信号灯的设计

PLC系统的信号灯的设计主要是各个方向的红、黄、绿灯信号。对于南北方向上某一行车方向的信号灯输出,本设计共设置了三组信号灯,其中两组车信号灯,分为直行红、黄、绿灯和左转红、黄、绿灯,另外一组是人行道上的红、绿灯。南北向和东西向灯均以120s为一个循环周期,以南北向红黄绿灯来说

(1)直行红黄绿灯,该组信号灯的3个灯以绿灯(35s) 黄灯(5s) 红灯(80s)依次循环。

(2)左转红黄绿灯,该组信号灯的3个灯以红灯(35s) 绿灯(15s) 黄灯(5s) 红灯(60s)依次循环。

5

黑龙江工程学院本科生毕业设计

(3)人行道红绿灯,各自以红灯(35s) 绿灯(85s)依次循环,并且与直行方向与左转方向绿灯状态相反。

东西方向信号灯与南北向配置相同,但亮、灭状态相反。 2.倒计时数码显示的设计

由于系统对于信号灯倒计时的显示并无特殊要求,故本设计采用了七段数码管。数码管共分为四组,分别是南北向和东西向,其中南北东西向各有两组。电源采用直流24V。

本设计中四个方向数码管共设置了四组,南北方向和东西方向各两组,每一方向的两组数码管显示均相同。对于某一组数码管,又分为了个位数字显示和十位显示。每组数码管分别用来显示直行、左转灯当中的绿、黄灯倒计时时间以及处于绿、黄灯间隔中的红灯的倒计时时间。

3.手动无线强通的设计

对于手动无线强通的设计,本文主要是通过AT89SC052单片机来实现的。本设计在南北方向和东西方向车道上各配置了一个点动按键式红外遥控器,通过单片机的发射发出红外信号并通过接收端接收后译码,并将信号送至PLC输入端,从而起到开关的作用。

对于无急车时,按照正常循环时序控制。当有急车来时,打开急车强通开关,不管原先信号状态如何,一律强制让急车来车方向的绿灯亮,直到急车通过为止。当断开强通开关时,PLC即复位,以正常时序时进行控制。急车强通控制只能响应一条路上来的控制信号,基两条交叉路均有信号到来,则先响应先来的一方,再响应另外一方。

遥控接收器是根据接收到的不同频率的红外光信号,由CPU转化为相应的控制方法进而对控制电路实施控制。无线遥控系统就其组成来说,主要分为发射电路、接收电路及外围控制电路等部分。最后通过接收电路的输出端与PLC输入端相连以完成控制功能。该设计的特点是对于紧急通过的车辆,可以进行人性化管理,确保该车顺利通过,最大限度地利用PLC的现代控制优势,充分发挥信号灯应有的作用。本设计的研究技术路线如图1.1所示:

6

黑龙江工程学院本科生毕业设计

研究了解信号灯的工作原理和动作规律 查阅相关资料并选择适合本课题的技术 实现PLC控制系统设计的基本要求并设计出PLC的控制程序 依照自己的设计做出总体布局设计 完成PLC控制系统设计流程图绘制 编写毕业论文 确定PLC的技术路线 图1.1 设计技术路线

7

黑龙江工程学院本科生毕业设计

第2章 控制系统总体方案与技术要求

2.1 系统的基本要求

2.1.1 信号灯的基本构成

十字路口交通的具体的交通灯分布如图2.1所示,在十字路口的东、西、南、北方向装有主干道直行“红绿黄”灯和左转“红绿黄”灯,人行道红、绿灯和四个计数器以及手持式无线控制器。

图2.1 交通灯分布

8

黑龙江工程学院本科生毕业设计

1. 南北主干道

南北主干道的交通灯有6个,分别是左转红灯、左转绿灯、左转黄灯、直行红灯、直行绿灯和直行黄灯。

2. 东西主干道

东西主干道的交通灯也是6个,分别是左转红灯、左转绿灯、左转黄灯、直行红灯、直行绿灯和直行黄灯。

3. 人行道

南北向人行道和东西向人行道各2个,分别是红灯和绿灯。 4. 计时器

分为南北向和东西向计时器,分别显示南北和东西方向的倒计时时间。 5. 无线控制器

可以实现人工对某一方向信号灯的强通控制。 2.1.2 基本控制要求

交通信号灯控制系统的要求是能够实现“正常循环运行”和“无线手动强通控制”两种控制方式。

1. 正常循环运行

交通信号灯的正常循环运行逻辑流程图如图2.1所示,具体控制要求如下: (1)按下启动按钮后,交通信号灯系统开始工作。先亮南北方向绿灯和东西方向的红灯,再亮东西方向绿灯和南北方向红灯,然后再亮南北方向绿灯和东西方向的红灯,如此一直循环运行。

(2)南北向主干道直行绿灯先亮35s,再亮直行黄灯5s,然后是直行红灯亮80s;同时南北向左转红灯先亮40s,其次左转绿灯亮15s,然后是左转黄灯亮5s。

(3)东西主干道直行红灯先亮60s,其次是直行绿灯亮35s,最后是直行黄灯亮5s;同时东西向左转红灯亮100s,其次是左转绿灯亮15s,最后是左转黄灯亮5s后转至左转红灯,依次循环。

(4)南北向和东西向人行道均设有红灯、黄灯、绿灯。人行道上的红、黄、绿灯与同方向主干道上的直行红、黄、绿灯运行方式相同。

9

黑龙江工程学院本科生毕业设计

开始 南北直行绿灯亮35S 南北左转红灯亮40s 东西直行红灯亮60s 东西左转红灯亮100s 南北直行黄灯亮5s 南北左转绿灯亮15s 东西直行绿灯亮35s 南北左转黄东西左转绿灯亮15s 东西直行黄灯亮5s 南北左转红灯亮60s 东西直行红灯亮20s 东西左转黄灯亮5s 南北直行红灯亮80s 灯亮5s

图2.2 交通灯正常循环运行流程图

2. 无线手动强通控制

无线手动强通控制是为了适应警车、救护车等急车所设计的,它可以实现对某一方向灯的开关控制,其逻辑流程图如图2.3所示。具体控制要求如下:

(1)强通控制受无线遥控开关控制。无急车时,按照正常循环时序控制。当有急车来时,打开急车强通开关,不管原先信号状态如何,一律强制让急车来车方向的绿灯亮,直到急车通过为止。当断开强通开关时,PLC即复位,以正常时序时进行控制。

(2)急车强通控制只能响应一条路上来的控制信号,基两条交叉路均有信号到来,则先响应先来的一方,再响应另外一方。

(3)当无线强通停止按钮按下后,该信号将原先的强通电路关闭,同时PLC复位,各个通路以初始状态为起始点开始循环运行,进入原先的运行状态之中,道路恢复通车。由于该过程对时间的要求并无限制,所以该系统同时还可以作为交通故障及道路施工时关闭交通来用。

10

黑龙江工程学院本科生毕业设计

对于人行道信号灯,本设计能过采用直行及左转红、黄、绿灯的常开及常闭开关直接控制其红灯和绿灯的通路,也大大简化了系统,符合设计的可靠性和经济性等要求。

图3.6 南北方向程序梯形图(a)

续图(b)

21

黑龙江工程学院本科生毕业设计

(b)

续图(c)

22

黑龙江工程学院本科生毕业设计

(c)

2.东西方向

东西方向的梯形图构成与南北方向相同,但启动次序不同,本文不加以详细论述。具体梯形图程序如图3.7所示:

图3.7 南北方向程序梯形图(a)

续图(b)

23

黑龙江工程学院本科生毕业设计

(b)

24

黑龙江工程学院本科生毕业设计

3.1.4 信号灯的PLC外部连线图

信号灯的PLC外部连线较为简便,信号灯输出一端直接接PLC的输出端,另一端在并上一个24V的直流电源后接入PLC的接地端COM1。连线图如图3.8所示:

图3.8 信号灯的PLC外部连线图

3.2 倒计时数码管的设计

25

黑龙江工程学院本科生毕业设计

在实际的交通控制中,仅有信号灯是远远不够的,还需要系统将各个时序阶段的具体运行时间显示出来。本节将就如何实现数码显示及数码管的外部接线作详细介绍。 3.2.1程序梯形图

本设计中四个方向数码管共设置了四组,南北方向和东西方向各两组,每一方向的两组数码管显示均相同。对于某一组数码管,又分为了个位数字显示和十位显示,对于该组数码管,又分别显示直行、左转时两个灯切换之间的时间。

该段程序的设计,主要是通过D0-D4数据寄存器来实现。开始时,南北直行绿、南北直行黄、南北直行红、东西直行绿、东西直行黄、东西直行红分别在其电路接通时发送给显示电路一个脉冲信号,同时中间继电器M8013每隔1s发送一个脉冲信号。当显示电路收到信号后首先将D0清零, 并且每秒加1,然后用要显示的数依次减去D0中的数字并发送到寄存器D1;将D1中的数字分别取个位和十位发送到寄存器D2和D4,最后用SEGD命令将D2和D4中的数字显示到数码管上。

1.南北方向

该方向程序的梯形图设计如图3.9所示:

图3.9 南北方向程序梯形图(a)

续图(b)

26

黑龙江工程学院本科生毕业设计

(b)

27

黑龙江工程学院本科生毕业设计

2.东西方向

该方向程序的梯形图设计如图3.10所示:

图3.10 东西方向程序梯形图(a)

续图(b)

28

黑龙江工程学院本科生毕业设计

(b) 3.2.2 数码管的PLC外部连线图

对于数码管的连线,南北向、东西向的两组数码管的各接头依次接在PLC输出端的Y020-Y056口上,另一端再并上一个24V的直流电源后接入PLC的接地端COM1,连线图如图3.11所示:

29

黑龙江工程学院本科生毕业设计

FX2N-128MT-001

图3.11 数码管的PLC外部连线

30

黑龙江工程学院本科生毕业设计

3.3 本章小结

本章在就上一章课题提出以及信号灯控制的具体要求后对系统进行了具体、全面地研究。本章研究了信号灯的具体配置、时序要求、端口分配、梯形图程序的设计以及PLC外部连线;对于数码管显示,主要研究了数码管的显示原理、控制程序和外部连线等问题,己完成了交通信号灯控制系统设计的大部分。对于系统的仿真,本设计选用三菱公司的GX.Developer程序开发工具进行仿真模拟,具体程序见附录4。

31

黑龙江工程学院本科生毕业设计

第4章 信号灯无线遥控系统的设计

4.1 信号灯无线遥控系统的原理

随着电子技术的不断发展及人们生活的便捷性的要求不断提高,遥控技术也应运而生,并在近几年得到了长足的进步。目前市场上出现了越来越多的红外线遥控家电设备及工控设备。这些都在逐渐地改变着人们的生活方式。红外线遥控是目前为止使用最广泛的一种通信和遥控手段。红外线遥控装置由于其具有体积小、功耗低、功能强以及成本低等特点,从而广泛地应用在了彩电、摄相机、空调甚至于手机上。在工业控制中,在高压、有毒气体、高辐射以及粉尘等恶劣条件下,采用红外线遥控不仅安全可靠还要能够有效地隔离电气干扰。

无线遥控方式可分为无线电波式、声控式、超声波式和红外线式等等。由于无线电式遥控方式很容易对其它电视机和无线电通讯设备造成干扰,而且,系统本身的抗干扰性能也很差,误动作多,所以未能大量地使用。超声波式频带较窄,且易受噪声干扰,系统抗干扰能力差以及声控式识别正确率比较低,制造难度大而也未能大量采用。红外遥控方式是以红外线作为载体来传送控制信息,信号易获得。同时随着电子技术的发展,以及单片机的出现,催生了数字编码方式的红外遥控系统的快速发展。另外,红外遥控还兼具很多的优点,例如红外线发射装置采用红外发光二极管,遥控发射器小型化且价格低廉;采用数字信号编码和二次调制方式,不仅能够实现多路信息的连续控制,增加遥控功能,很大程度上提高信号传输的抗干扰性,减少了很误动作,而且功率消耗低;而且,红外线不会向室外泄露,不会产生信号干扰;传输效率高、反应速度快、工作稳定可靠等。所以现在很多无线遥控方式都是采用的红外遥控方式。

红外遥控器由于其受遥控距离、角度等影响,使用效果不太好,若是采用调频或调幅发射接收编码,则可以大大提高遥控距离,并且没有角度的影响。红外遥控发射可以用在于室内红外遥控中,它不影响周边环境而且不干扰其它电器设备。但是由于它无法穿透墙壁,所以不同房间的家用电器可使用通用遥控器而不会产生相互干扰;很重要的是电路调试简单,只要按给定的电路连接无误,一般不需任何调试即可正常地投入工作;编解码容易,可进行多路遥控。现在红外遥控在家用电器、室内近距离遥

32

黑龙江工程学院本科生毕业设计

控中得到了极为广泛的应用。另外模块还可以用在其他红外遥控系统中,应用前景十分广阔。

4.1.1系统结构及原理

从光学的角度而言,红外线是频率低于红色光的不可见光,红外线的无线光谱的整个频率中只占有很小一个频率段,波长为0.75—100微秒之间。红外光就其性质而言很简单,与普通光线的频率特性并没有多大的区别,但是由于任何有热量的物体都会有能量产生,所以红外的利用非常广泛。当今红外技术的一个很重要的分支,便是红外通信技术的应用。该应用的发展非常广泛而迅速,尤其是红外通信应用于计算机设备中,近几年的发展已经表现出十分成熟的特点。而目前最常见的应用形式就是各种各样的遥控器。

单片机红外遥控器主要由单片机、红外遥控发射电路、红外遥控接收电路、状态指示电路、控制电路以及单片机的一些外围电路组成。此外还有电源电路及其它一些外部电路构成。

就其工作原理来说,当有键按下时,系统延时一段时间防止干扰,然后启动振荡器,键编码器取得键码后从ROM中取得相应的指令代码。遥控器一般采用电池供电,为了节省电量和提高抗干扰能力,指令代码都是经32~56kHz范围内的载波调制后输出到放大电路,驱动红外发射管可以发射出940nm的红外光。当发送结束时振荡器也随之关闭,系统处于低功耗休眠状态。

该红外遥控发射器的设计目的就是根据按键的不同,发射出不同的红外信号。本系统采用单片机制作,采用编程的方法,由于编程具有灵活性,故应用范围较广泛,并且操作码可以随意设定。

以下是遥控系统的几个主要组成部分: 4.1.2 系统的组成

无线遥控系统就其组成来说,主要分为发射电路、接收电路及外围控制电路等部分。最后通过接收电路的输出端与PLC输入端相连以完成控制功能。以下是几个主要的硬件组成部分:

1. 遥控器电源

对于遥控器电源,由于普通遥控器功率一般都在几到几十mw,所以仅用一块电压为5V的干电池即可实现对遥控器的供电。

2.红外线遥控发射器

红外遥控发射器由键盘矩阵、遥控专用集成电路、驱动电路和红外发光二极管几 个部分组成。

33

黑龙江工程学院本科生毕业设计

红外发射遥控电路原理框图4.1,红外线遥控发射器的信号是由一串由数字0和1的二进制代码组成的,不同的芯片对0和1的编码会有所不同,现有的红外遥控包括两种方式:脉冲位置调制(PPM)以及脉冲宽度调制(PWW)。这两种形式编码的代表分别是NEC和PHILIPS的RC.5。 +5V电源 行列式键盘 单 片 机 红外发射 电路 低功耗电路 图4.1 红外发射遥控电路原理框图

3.红外线遥控接收器

红外线遥控接收器是由放大器、限幅器、带通滤波器、解调器、积分器、比较器等组成的,比如采用较早的红外接收二极管加专用的红外处理电路的方法。在实际应用中,以上所有的电路都集成在一个电路中,也就是我们常说的一体化红外接收头。一体化红外接收头按载波频率的不同,型号也不一样。由于与CPU的接口的问题,大部分接收电路都是反码输出,只有三个引脚,分别是+5V电源、地、信号输出。

接收部分红外发射遥控电路的原理框图如图4.2所示,当红外线发射端发出的信号到达后,红外接收电路负责对信号进行采集并进行相应的译码,然后输入接收端的单片机中进行运算,最后由接收端单片机将采集的信号转化为相应的高、低电平输出至PLC的X002-X005输入端,并由PLC控制生成相应的信号灯控制信号以及数码管显示信号,实现控制信号的输入。

34

黑龙江工程学院本科生毕业设计

+5V电源 红外接收 电路 状态指示 电路 单 片 机 控制电路

图4.2 红外接收遥控电路原理框图

4.1.3 系统的工作方式

本设计主要是以AT89C2051单片机作为核心,综合应用了单片机的中断系统、定时器、计数器等知识。在实际操作中,遥控操作的不同,遥控发射器通过对红外光发射频率的控制来区别不同的操作的。遥控接收器则是通过对红外光接收频率的识别,判断出控制操作,进而来完成整个红外遥控的接收过程。

本设计中,在与PLC的通信当中,通过数字接收端的信号来驱动PLC的数字开关量,从而达到东西南北向强通开关的启动及停止作用。

本系统根据按红外发射频率的不同,来识别不同的按键。操作键设定为2个,K0和K1,分别接至单片机的P1.0至P1.1口。对应的红外发射频率分别为300Hz、600 H。发射时间确定为一个定值,由定时器1来定时,时间为100ms。当100ms时间到了以后,定时器1发生中断,停止计时,红外光也即时停止发射。 由定时/计数器来控制发射频率,T0作为定时器,当T0的定时时间到了以后,中断程序使P3.4断口的电平反转一次,然后T0重新设置为与工作定时值与前相同,等时间到中断程序使P3.4端口再翻转一次,如此往复,红外信号就可以按照一定的时间间隔发射出去。 该方法可以通过设定T0的定时时间来控制红外信号的发射频率。遥控器平时处于闲置状态,当有键按下时,由外部中断1产生中断,使CPU回到工作状态,待执行完操作后才又回到低功耗状态。 35

黑龙江工程学院本科生毕业设计

4.1.4 器件选则

由于发射电路及接收电路的技术要求较低,控制方式简单。综合各方面因素,本设计采用了以AT89C2051型号单片机作为遥控器的发射接收核心部件。

AT89C2051是一个低电压,高性能的CMOS 8位单片机。片内含有2KB可反复擦写的只读存储器(EPROM)以及128B的随机存取存储器(RAM),单片机器件采用ATMEL的高密度、非易失性存储技术生产,兼容标准MCS.51指令系统,片内置通用8位中央处理器和Flash存储器,功能强大。

AT89C2051有20个双向输入/输出(I/O)端口,其中P1是完整的8位双向I/O口,2个16位可编程定时/计数器,两个外中断,两个全双向串行通信口,和一个模拟比较放大器。

此外,AT89C2051的时钟频率可为零,这就具备了可用软件设置的睡眠省电功能,因而极大地减少了系统功耗。系统的唤醒方式有RAM、定时/计数器、串行口和以及内外部中断口,系统唤醒后即可再次进入工作状态。省电模式中,片内RAM将被冻结,时钟停止震荡,所有功能停止工作,直至系统被硬件系统复位单片机方可继续工作。

4.2 发射系统的设计

4.2.1 按键系统

本文采用独立式按键结构,该按键结构是指直接用I/O线构成的单个按键电路,每个独立式按键都独立地占有一根I/O口线,从而每根I/O口线上的按键的工作状态都不会影响其他I/O口线的工作状态。这种结构具有结构简单,易于实现的特点,但I/O口线浪费较大。而本设计之所以采用了独立式按键结构,是基于系统的按键的数目少(仅有启动和停止按钮),以及系统对于按键并无特殊要求,PLC输入端只需得到南北向和东西向2组遥控器的共4个输入信号即可工作。这种工作方式除了有结构简单易实现的特点外,还有受外界干扰小的优点。

独立式按键配置灵活,软件结构简单,上拉电阻保证了按键断开时,I/O口线可以保证有确定的高电平,其电路原理图如4.3所示,其中S0为强通启动按钮,S1为强通停止按钮。当有急车通过时,按下S0,该方向的直行绿灯亮,同时另一方向及该方向左转方向全部显示为红灯亮;当急车通过之后,通过按下S1按钮使电路复位并以正常循环方式工作,实现无线手动强通控制的要求。

36

黑龙江工程学院本科生毕业设计

图4.3 独立式按键结构

键盘扫描程序指的是单片机通过运行扫描程序,判断键盘是否有键按下。如果有键按下,则先判断出是哪一个键。扫描的方法是判断P1口各位的电平,在确定了按下的某一个键后,即执行相应的红外发射程序。在无按键按下时,各位均为高电平,在某一个按键按下以后,该位即变为低电平。

通常,按键所用的开关为机械弹性开关,该开关利用了机械触点的合及断两个状态。但由于机械触点的弹性作用以及触点本身带有杂质灰尘等,在一个按键开关在闭和时电信号并不会马上稳定接通,在断开时也不会马上断开,而是在闭合和断开的瞬间均伴随着一连串的抖动。通常这种抖动时间的长短由按键的机械特性决定,一般为5—10ms。按键电路的消抖措施通常有硬件和软件两种方式,硬件消除键盘抖动措施主要就是指外加双稳态电路或者滤波电路的方法。软件方法是通过编写某些延时程序使得单片机可以收到有效信号。本电路采用的是软件消抖的方法,就是调用一个延时子程序,延时时间设定为6ms,延时子程序如下:

DL1: MOV R4,#0CH

DL2: MOV R5,#0FFH DL3: DJNZ R5,DL3 DJNZ R4,DL2 RET

延时时间的计算是根据执行指令所需时间的总和确定的。0CH、0FFH分别为十进制数的12和255,因此这个程序所耗用的时间为

1+(255*2+2+1)*12+1+2=6160 个机器周期

37

黑龙江工程学院本科生毕业设计

由于晶振采用的是12MHz,所以1机器周期=1us,执行程序的总时间为6.16ms,与6ms存在0.16ms的误差,但该误差并不影响程序的执行。 4.2.2 时钟电路

一般情况下,单片机时钟输入均采用外部时钟方式,外接一个震荡电路,而本系统采用外部时钟方式,晶振采用12MHz,其电路如图4.4所示:

AT89C2051

图4.4 AT89C2051时钟电路

4.2.3 发射电路

根据红外发射管本身的物理特性得知,若要发射所需的红外信号,就必须要有载波信号与即将发射的信号相“与”,然后将 “与”之后的信号送至发射管,才能进行红外信号的发射传送。一般的,在频率为38KHz的载波信号下,发射管的性能最好,发射距离最远,所以在硬件设计上,本设计也采用了38KHz的晶振产生载波信号,与发射信号进行逻辑“与”运算后,通过三极管送至红外发光二极管上。

本设计采用这种发射方式,是基于设计的简便易行的特点。并且元件都是通用化和模块化,可以大大地减轻工作量,同时可以很大程度上节约资金,达到集实用性、经济性和简便性为一身的设计要求。

具体发射电路如图4.4所示,红外发送电路由4001MOS或非门38KHz振荡器、单片机发送控制电路以及红外发送管驱动输出电路组成。当单片机P3.4口输出为“0”时,发射管不发光;当单片机P3.4的输出口变为“1”时,红外发送管才可以发出38KHz调制红外线。该发射过程主要是通过单片机和发射系统实现的。当有输入端(独立按键)信号到来时,单片机控制生成调制信号发送到发射部分并发送至信号接收电路。

38

黑龙江工程学院本科生毕业设计

AT89C2051

图4.4 红外发射电路

4.3 接收系统的设计

遥控接收器是根据接收到的不同频率的红外光信号,由CPU转化为相应的控制方法进而对控制电路实施控制。当接收电路接收到第一个红外线脉冲时,中断INT1被触发,同时启动定时器1和计数器0。定时器1作为计数时间控制器,计数器0作为在规定记数时间内所记得的红外脉冲数之用。接收信号端接至P3.3和P3.4口,这两个引脚为复用引脚,P3.3引脚可以复用为外部中断1的请求输入端;P3.4引脚可以复用为计数器0的计数脉冲输入端。

当收到第一个红外脉冲时,INT1被触发,T0和T1开始工作,当收到一个红外脉冲时,计数器0记数值就加一。当定时器定时时间到之后,产生中断,保存计数器0的计数值。由于定时时间为50ms,故各种不同状态对应的红外脉冲数大约为15、30个,然后将这些记数值与上述各值比较后确定脉冲形式。由于存在误差,计数器0的记数值不可能严格和该值相等,但这不影响系统的正常运行。将结果与误差值相加减,得到两个数值,再判断哪一个值在这一范围之内,即可断定遥控发射器发射出的红外

39

黑龙江工程学院本科生毕业设计

信号的发射频率。取该值就可以断定出遥控操作,然后再由接收遥控器CPU将其转化为控制操作,从而对外电路实施控制功能。

P3.2口的开关SW为控制方式选择开关,当开关闭合,即P3.2=0时,单片机输出为上锁控制方式,在此状态下遥控器不能够对控制电路实施控制功能;但当开关断开,即P3.2=1时,就可变为单路控制方式,在此状态下遥控器就可以对外电路实施控制。

如图4.5,红外接收电路采用的是集成电路RPM6938,RPM6938共有三个引脚:一个接电源一个接地,另外一个接信号端,它集光电转换、放大和解调于一身。RPM6938平时输出为“1”,当系统收到38KHz调制红外线时,RPM6938输出变为“0”。信号脚接到P3.3和P3.4脚上,当RPM6938收到第一个红外脉冲时,就可以触发INT1产生中断,使单片机退出低功耗状态,进入正常工作状态,同时使记数器0和定时器1开始工作。

AT89C2051

图4.5 红外接收电路

4.4 本章小结

本章主要对信号灯急通开关的无线遥控进行设计。通过分析输入与输出信号的具体发送形式,选定AT89C2051单片机作为遥控信号的发射接收电路核心,且以独立式

40

本文来源:https://www.bwwdw.com/article/qo77.html

Top