RTP_RFC3984_H264_over_RTP_CN

更新时间:2023-04-26 13:00:02 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

博汇科技【内部公开】

H.264视频的RTP荷载格式

Status of This Memo

This document specifies an Internet standards track protocol for the

Internet community, and requests discussion and suggestions for

improvements. Please refer to the current edition of the "Internet

Official Protocol Standards" (STD 1) for the standardization state

and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This memo describes an RTP Payload format for the ITU-T

Recommendation H.264 video codec and the technically identical

ISO/IEC International Standard 14496-10 video codec. The RTP payload

format allows for packetization of one or more Network Abstraction

Layer Units (NALUs), produced by an H.264 video encoder, in each RTP

payload. The payload format has wide applicability, as it supports

applications from simple low bit-rate conversational usage, to

Internet video streaming with interleaved transmission, to high bit-

rate video-on-demand.

目录

1. 介绍 (3)

1.1. H.264 Codec (3)

1.2. 参数集概念 (4)

1.3. 网络抽象层单元类型 (5)

2. 约定 (6)

3. 范围 (6)

4. 定义和缩写 (6)

4.1. 定义 (6)

5. RTP 荷载格式 (8)

5.1. RTP 头的使用 (8)

5.2. RTP荷载格式的公共使用 (11)

5.3. NAL单言字节的用法 (12)

5.4. 打包方式 (14)

5.5. 解码顺序号(DON) (15)

博汇科技【内部公开】

5.6. 单个NAL单元包 (18)

5.7. 复合包 (18)

5.8. 分片单元(FUs) (27)

6. 分包规则 (31)

6.1. 公共分包规则 (31)

6.2. 单个NAL单元方式 (32)

6.3. 非交错方式 (32)

6.4. 交错方式 (33)

7. 打包过程(信息) (33)

7.1. 单NAL单元和非交错方式 (33)

7.2. 交错方式 (34)

7.3. 附加的打包原则 (36)

8. 荷载格式参数 (37)

8.1. MIME 注册 (37)

8.2. SDP 参数 (52)

8.3. 例子 (58)

8.4. 参数集考虑 (60)

9. 安全考虑 (62)

10. 拥塞控制 (63)

11. IANA考虑 (64)

12. 信息化附录: 应用例子 (65)

12.1. 根据ITU-T H.241 附录A的视频电话 (65)

12.2. 没有分片数据分区,没有NAL单元聚合的视频电话 (65)

12.3. 使用NAL单元聚合交错打包的视频电话 (66)

12.4. 使用数据分区的视频电话 (66)

12.5. 使用FU和向前纠错的视频电话和流 (67)

12.6. 低位率流 (69)

12.7. 视频流中健壮的包调度 (70)

13. 信息化附录:解码顺序号的原理 (71)

13.1. 介绍 (71)

13.2. 多图像片断交错的例子 (71)

13.3. 健壮包调度的例子 (73)

13.4. 冗余编码片断健壮传输调度的例子 (77)

13.5. 其它设计可能的提醒 (77)

14. 致谢 (78)

15. 参考 (78)

15.1. 标准化参考 (78)

15.2. 参考性的参考 (79)

作者地址 (81)

完全版权声明 (83)

1. 介绍

1.1. H.264 Codec

博汇科技【内部公开】

本文指定一个RTP荷载规范用于ITU-T H.264 视频编码标准(ISO/IEC 14496 Part 10 [2])(两个都称为高级视频编码A VC). H.264建议在2005年5月被ITU-T采纳, 草案规范对于公共回顾可用[8]. 本文H.264 缩写用于codec和标准,但是本文等价于采纳ISO/IEC相似的编码标准.

H.264 视频codec又非常广泛的应用覆盖所有格式的数字压缩视频格式,从低带宽的Internet流应用到HDTV广播和数字影院应用。和当前的技术状态比较, 整个H.264的性能被报告节省50%的位率。例如,数字卫星TV质量被报告在1.5 Mbit/s,就可以实现,而当前的MPEG 2的操作点在大约3.5 Mbit/s [9].

该codec规范自己概念上区分[1]视频编码层(VCL)和网络抽象层(NAL). VCL包含Codec 的信令处理功能;以及如转换,量化,运动补偿预测机制;以及循环过滤器。他遵从今天大多数视频codec的一般概念,基于宏快的编码器,使用基于运动补偿的图像间预测和残余信号的转换编码。VCL编码器输出片断: 一个位串包含整数数目宏快的宏块数据,以及片断头信息(包含片断内第一个宏快的空间地址, 初始量化参数以及相似信息). 片断内的宏快按照扫描顺序安排,除非指定一个不同的宏块分配,通过使用被称为灵活宏块顺序语法Flexible Macroblock Ordering syntax.图像内的预测只用于一个片断内部。更多信息在[9]提供.

(NAL)编码器封装VCL编码器输出的片断到网络抽象层单元(NAL units),它适合于通过包网路传输或用于面向包的多路复用环境。H.264的附录B定义封装过程传输这样的NAL 单元通过面向字节流的网络。本文档范围, 附录B 不相关的。

NAL使用NAL单元. 一个NAL单元由一字节的头和荷载字节串组成。头指示NAL单元的类型, 是否有位错误或语法冲突在NAL单元荷载中,以及对于解码过程该NAL单元相对重要性的信息。本RTP荷载规范被设计成不了解NAL单元荷载的位串。

H.264的一个主要特性是传输时间,解码时间,图像以及片断采样演示时间完全的解耦合。H.264中指定的解码过程是不知道时间的, 并且H.264语法没有运送如跳过帧数目(在早期视频压缩标准,时间参考格式中是普遍的)信息.同时,有的NAL单元影响许多图像,因此固有的是无时间性的。因为这样的原因,处理RTP时戳要求对于采样或演示时间没有定义或者在传输时间不知道的NAL单元进行一些特殊的考虑。

1.2. 参数集概念

H.264一个非常基本的设计概念是产生自包含包, 使得如RFC2429的头重复或MPEG-4的头扩展编码(HEC)[11]机制变得不必要。这是通过从媒体流解耦合不止一个片断的相对信息来实现的。高层meta信息应该可靠/异步的发送,事先不和包含片断包的RTP包流发送。(对于没有通过带外传输信道发送本信息的应用,通过带内发送本信息也提供了手段)。高层参数的组合被称为参数集。H.264规范包括两类参数集:顺序参数集和图像参数集。一个活动顺序参数集在一个编码视频序列中保持不变,一个活动图像参数集在一个编码图像里保持不变。顺序和图像参数集结构包含如图像大小,采用的可选的编码模式,宏块到片断组映射等信息。

博汇科技【内部公开】为了改变图像参数(如图像大小)而不用同步传送参数集修改给片断包流,编码器和解码器可以维护不止一个顺序和图像参数集的列表。每个片断头包含一个码字指示使用的顺序和图像参数集。

本机制允许从包流中解耦合参数集的传输,通过外部手段传输他们(即,作为能力交换的副作用),或通过一个(可靠或不可靠)控制协议他们从没有被传送但是被应用设计规范修复甚至是可能的。

1.3. 网络抽象层单元类型

可以在[12], [13],[14]中找到关于NAL设计的学习信息.

所有NAL单元有一个单个NAL单元类型字节,他也作为本RTP荷载格式的荷载头.后面立即跟随NAL单元的荷载。

NAL单元类型字节的语法语义在[1]中指定,但是NAL单元类型的基本属性总结如下。NAL单元类型字节格式如下:

+---------------+

|0|1|2|3|4|5|6|7|

+-+-+-+-+-+-+-+-+

|F|NRI| Type |

+---------------+

NAL单元类型字节部件的语义在H.264规范中制定, 简要描述如下.

F: 1 bit

forbidden_zero_bit. H.264规范声明设置为1指示语法违例。

NRI: 2 bits

nal_ref_idc. 00值指示NAL单元的不用于帧间图像预测的重构参考图像。这样的NAL单元可以被丢弃而不用冒参考图像完整性的风险。大于0的值指示NAL单元的解码要求维护参考图像的完整性。

Type: 5 bits

nal_unit_type. 本部件指定NAL单元荷载类型定义在[1]的表7-1中和本文后面。为了参考所有当前定义的NAL单元类型和他们的语义,参考[1]的7.4.1.

本文引入新的NAL单元类型,在5.2演示. 定义在本文的NAL单元类型在[1]中标记为未指定。但是,本规范扩展了F和NRI的语义,象5.3描述的那样.

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

博汇科技【内部公开】"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [3].

This specification uses the notion of setting and clearing a bit when

bit fields are handled. Setting a bit is the same as assigning that

bit the value of 1 (On). Clearing a bit is the same as assigning

that bit the value of 0 (Off).

3. Scope

This payload specification can only be used to carry the "naked"

H.264 NAL unit stream over RTP, and not the bitstream format

discussed in Annex B of H.264. Likely, the first applications of

this specification will be in the conversational multimedia field,

video telephony or video conferencing, but the payload format also

covers other applications, such as Internet streaming and TV over IP.

4. 定义和缩写

4.1. 定义

本文档使用[1]中的定义. 为了方便以下定义在[1]中的词语总结出来:

access unit: 一组NAL单元总包括一个主要的编码图像。除了主要的编码图像,一个access unit也可以包含一个或多个冗余编码图像或其他的不包括片断或编码图像片断分区数据的NAL单元。access unit的解码总是导致一个解码的图像。

coded video sequence: A sequence of access units that consists, in

decoding order, of an instantaneous decoding refresh (IDR) access

unit followed by zero or more non-IDR access units including all

subsequent access units up to but not including any subsequent IDR

access unit.

IDR access unit: An access unit in which the primary coded picture

is an IDR picture.

IDR picture: A coded picture containing only slices with I or SI

slice types that causes a "reset" in the decoding process. After

the decoding of an IDR picture, all following coded pictures in

decoding order can be decoded without inter prediction from any

picture decoded prior to the IDR picture.

primary coded picture: The coded representation of a picture to be

used by the decoding process for a bitstream conforming to H.264.

博汇科技【内部公开】The primary coded picture contains all macroblocks of the picture.

redundant coded picture: A coded representation of a picture or a

part of a picture. The content of a redundant coded picture shall

not be used by the decoding process for a bitstream conforming to

H.264. The content of a redundant coded picture may be used by

the decoding process for a bitstream that contains errors or

losses.

VCL NAL unit: A collective term used to refer to coded slice and

coded data partition NAL units.

In addition, the following definitions apply:

decoding order number (DON): A field in the payload structure, or

a derived variable indicating NAL unit decoding order. Values of

DON are in the range of 0 to 65535, inclusive. After reaching the

maximum value, the value of DON wraps around to 0.

NAL unit decoding order: A NAL unit order that conforms to the

constraints on NAL unit order given in section 7.4.1.2 in [1].

transmission order: The order of packets in ascending RTP sequence

number order (in modulo arithmetic). Within an aggregation

packet, the NAL unit transmission order is the same as the order

of appearance of NAL units in the packet.

media aware network element (MANE): A network element, such as a

middlebox or application layer gateway that is capable of parsing

certain aspects of the RTP payload headers or the RTP payload and

reacting to the contents.

Informative note: The concept of a MANE goes beyond normal

routers or gateways in that a MANE has to be aware of the

signaling (e.g., to learn about the payload type mappings of

the media streams), and in that it has to be trusted when

working with SRTP. The advantage of using MANEs is that they

allow packets to be dropped according to the needs of the media

coding. For example, if a MANE has to drop packets due to

congestion on a certain link, it can identify those packets

whose dropping has the smallest negative impact on the user

experience and remove them in order to remove the congestion

and/or keep the delay low.

博汇科技【内部公开】缩写

DON: 解码顺序号

DONB: 解码顺序基

DOND: 解码顺序号差

FEC: 向前纠错

FU: 分片单元

IDR: 瞬间解码刷新

IEC: 国际电子委员会

ISO: 国际标准化组织

ITU-T: 国际电联-通信标准部门

MANE: 美提感知网络元素

MTAP: 多时刻聚合包

MTAP16: 16位时戳位移的MTAP

MTAP24: 24位时戳位移的MTAP

NAL: 网络抽象层

NALU: NAL单元

SEI: 补充增强信息

STAP: 单时刻聚合包

STAP-A: STAP类型A

STAP-B: STAP类型B

TS: 时戳

VCL: 视频编码层

5. RTP 荷载格式

5.1. RTP头的使用

RTP 头的格式在RFC 3550 [4]中指定为了方便在图1又显示出来。本载荷格式使用头中域的方式和该规范一致。

当一个NAL 单元封装在每个RTP包中, 推荐的RTP荷载格式在5.6节指定。对于聚合包/分片包的RTP荷载(以及一些rtp头域的设置)在5.7和5.8节指定。

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|V=2|P|X| CC |M| PT | sequence number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| timestamp |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| synchronization source (SSRC) identifier |

+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

博汇科技【内部公开】| contributing source (CSRC) identifiers |

| .... |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

图1. RTP 头。

根据RTP荷载格式设置的RTP头信息按如下设置:

Marker bit (M): 1 bit

对于RTP时戳指示的访问单元的最后一个包本位进行设置,符合视频格式M位的常规使用,以允许有效缓冲处理布局。对于聚合包(STAP,MTAP),RTP头中的M位必须设置成最后一个NAL单元如果被传送在单个RTP包中时M位对应的值。解码器可以使用本位作为早期最后一个包的指示,但是不可以依赖本属性。

注:运送多个NAL单元的聚合包只有一个M位相关联。因此,如果一个网关重新打包一个聚合包为几个包,它可能不会可靠设置这些包的M位。

Payload type (PT): 7 bits

本新的包格式的荷载类型的值超过本文档的范围,在此不指明。荷载类型的赋值或者通过profile或者通过动态方式。

Sequence number (SN): 16 bits

根据RFC 3550设置使用. 对于单个NALU与非交错打包方式, 序号用于对定NALU解码顺序。

Timestamp: 32 bits

RTP时戳设置为内容的采样时戳。必须使用90 kHz 时钟频率。

如果NAL单元没有他自己的时间属性(即,parameter set and SEI NAL units),RTP时戳设置成访问单元主编码图像的RTP时戳,根据[1]的7.4.1.2节。

MTAPs时戳的设置在5.7.2定义.

接收者应该忽略包含在访问单元(只有一个显示时戳)的任何图像时间SEI消息,相反,接收者应该使用RTP时戳同步显示过程。

RTP发送者你不应该传送图像时间SEI消息对于不支持被显示成多个场的图像。

如果一个访问单元有多于一个显示时戳在图像时间SEI消息中, SEI消息中的信息应该被对待成相对于RTP时戳的,最早事件发生在RTP时戳给定的时间, 后续事件发生的时间由SEI消息中图像时间值差给定。假设tSEI1, tSEI2, ...,tSEIn 为SEI消息中运送的显示时间戳, 其中tSEI1 是所有这样时间戳的最早值。tmadjst()是一个函数,他调整SEI消息时间到90-kHz时间.TS是RTP时戳.则,和tSEI1关联的显示时间是TS. 和tSEIx[x=[2..n]]关联事件的显示时间为

博汇科技【内部公开】TS + tmadjst (tSEIx - tSEI1).

注释: 在一个3:2折叠的操作中需要显示编码的帧作为场, 在其中组成编码帧的电影内容使用隔行扫描显示。图像定时SEI消息使得运送相同编码图像的多个时戳,因此3:2折叠过程正确控制。图像定时SEI消息机制是必须的,因为在RTP时戳中只可以运送个时戳。

注释:因为H.264允许解码顺序可以和显示顺序不同, RTP时戳的值针对于RTP序号可以不是单调非减的。而且RTCP报告中的抖动区间值可以不是网络性能问题的指示, as the calculation rules for interarrival jitter (section 6.4.1 of RFC 3550) assume that the RTP timestamp of a packet is directly proportional to its transmission time.

5.2. RTP 荷载格式的公共结构

荷载格式定义三个不同的基本荷载结构。一个接收者可以识别荷载结构通过RTP荷载的第一个字节, 他也共享为RTP荷载头,某些情况下,作为荷载的第一个字节。本字节总是结构化为NAL单元头. NAL单元类型指示目前使用那个结构. 可能的结构如下:

单个NAL单元包: 荷载中只包含一个NAL单元。NAL头类型域等于原始NAL单元类型,即在范围1到23之间. 5.6指定

聚合包: 本类型用于聚合多个NAL单元到单个RTP荷载中。本包有四种版本,单时间聚合包类型A (STAP-A), 单时间聚合包类型B (STAP-B), 多时间聚合包类型(MTAP)16位位移(MTAP16), 多时间聚合包类型(MTAP)24位位移(MTAP24)。赋予STAP-A, STAP-B, MTAP16, MTAP24的NAL单元类型号分别是24, 25, 26, 27。见5.7.

分片单元: 用于分片单个NAL单元到多个RTP包。现存两个版本FU-A,FU-B,用NAL 单元类型28,29标识。见5.8.

Table 1. 单元类型以及荷载结构总结

Type Packet Type name Section

---------------------------------------------------------

0 undefined -

1-23 NAL unit Single NAL unit packet per H.264 5.6

24 STAP-A Single-time aggregation packet 5.7.1

25 STAP-B Single-time aggregation packet 5.7.1

26 MTAP16 Multi-time aggregation packet 5.7.2

27 MTAP24 Multi-time aggregation packet 5.7.2

28 FU-A Fragmentation unit 5.8

29 FU-B Fragmentation unit 5.8

30-31 undefined -

注释: 本规范没有限制封装在单个NAL单元包和分片单元的大小。封装在聚合包中

博汇科技【内部公开】的NAL单元大小为65535字节。

5.3. NAL单元字节使用

NAL单元字节的结构语义在1.3节介绍。为了方便,NAL单元类型字节的格式在下面列出:

+---------------+

|0|1|2|3|4|5|6|7|

+-+-+-+-+-+-+-+-+

|F|NRI| Type |

+---------------+

本部分根据本规范指定F和NRI的语义。

F: 1 bit

forbidden_zero_bit. A value of 0 indicates that the NAL unit type

octet and payload should not contain bit errors or other syntax

violations. A value of 1 indicates that the NAL unit type octet

and payload may contain bit errors or other syntax violations.

MANEs SHOULD set the F bit to indicate detected bit errors in the

NAL unit. The H.264 specification requires that the F bit is

equal to 0. When the F bit is set, the decoder is advised that

bit errors or any other syntax violations may be present in the

payload or in the NAL unit type octet. The simplest decoder

reaction to a NAL unit in which the F bit is equal to 1 is to

discard such a NAL unit and to conceal the lost data in the

discarded NAL unit.

NRI: 2 bits

nal_ref_idc. 0值和非零值的语义与H.264规范保持一致。换句话,00值指示NAL单元的内容不用于重建影响图像的帧间图像预测。这样的NAL单元可以被丢弃而不用冒影响图像完整性的风险。大于00的值指示NAL单元的解码要求维护引用图像的完整性。

除了上面指定的外, 根据本RTP荷载规范, 大于00的NRI值指示相对传输优先级, 象编码器决定的一样。MANE可以使用本信息保护更重要的NAL单元。最高的传输优先级是11, 依次是10, 01;00 最低。

注释: 任何非零的NRI在H.264 解码器的处理是相同的。因此,接收者在传送NAL 单元给解码器时不必操作NRI的值。

H.264编码器必须根据H.264规范设置NRI值(subclause 7.4.1)当nal_unit_type 范围的是1到12. 特别是, H.264规范要求对于nal_unit_type为6,9,10,11,12的NAL单元的NRI

博汇科技【内部公开】的值应该为0。

对于nal_unit_type等于7,8 (指示顺序参数集或图像参数集)的NAL单元,H.264编码器应该设置NRI为11 (二进制格式)对于nal_unit_type等于5的主编码图像的编码片NAL单元(指示编码片属于一个IDR图像), H.264编码器应设置NRI为11。

对于映射其他的nal_unit_types到NRI值,以下的例子可以使用并且在某些环境有效[13].其它的映射也可以,依赖于应用以及使用的H.264/A VC Annex A profile.

注释: 在某些profile中数据分区不可用,即, 在Main或Baseline profiles. 因此, nal单元类型2, 3,4 只出现在视频流符合数据分区被允许的profile情况下,不会出现在符合MAIN/Baseline profile的流中。

Table 2. 编码片和主编码参考图像数据分区的编码片的NRI值的例子

NAL Unit Type Content of NAL unit NRI (binary)

----------------------------------------------------------------

1 non-IDR coded slice 10

2 Coded slice data partition A 10

3 Coded slice data partition B 01

4 Coded slice data partition C 01

注释: 像以前提起的, 非参考图像NRI值是00.

H.264编码器应该设置冗余编码参考图像的编码片和编码片分区NAL单元的NRI值为01 (二进制格式).

对于NAL单元类型24~29的NRI的定义在本文5.7,5.8给出。

对于nal_unit_type范围在13到23的NAL单元的NRI值没有推荐的值,因为这些值保留给ITU-T,ISO/IEC. 对于nal_unit_type为0或30,31的NAL单元的NRI值也没有推荐的值,因为这些值的语义本文没有指定。

5.4. 打包方式

本文指定三种打包方式:

o 单NAL单元方式

o 非交错方式

o 交错方式

单NAL单元方式目标是常规的系统,该系统兼容ITU-T H.241 [15] (12.1). 非交错方式目标是常规系统,可以不符合ITU-T H.241建议.在非交错方式, NAL单元按照NAL单元解码顺序传送。交错模式目标是不要求非常低端到端延迟的系统。

博汇科技【内部公开】交错方式允许传送NAL单元不按照NAL单元解码顺序。

使用的打包方式可以通过OPTIONAL packetization-mode MIME参数的值指定或外部手段。使用的打包方式控制那个NAL单元类型在RTP荷载中允许。表3 总结对每个打包方式允许的NAL单元类型。有些NAL单元类型值(在表3中指示为没有定义)保留为将来扩展. 那些类型的NAL单元不应该被发送者发送,接受者必须忽略他们。例如:1-23, 相关的包类型"NAL unit",允许出现在"单NAL单元方式" 和"非交错方式", 不允许在"交错方式".

打包方式在第六节更详细解释。

表3. 每个打包方式允许的NAL单元类型总结(yes = 允许, no = 不允许, ig = 忽略)

Type Packet Single NAL Non-Interleaved Interleaved

Unit Mode Mode Mode -------------------------------------------------------------

0 undefined ig ig ig

1-23 NAL unit yes yes no

24 STAP-A no yes no

25 STAP-B no no yes

26 MTAP16 no no yes

27 MTAP24 no no yes

28 FU-A no yes yes

29 FU-B no no yes

30-31 undefined ig ig ig

5.5. 解码顺序号(DON)

在交错打包方式, NAL单元的传输顺序允许和NAL单元的解码顺序不同。解码顺序号(DON)是荷载结构中的一个域或一个获得变量指示NAL单元的解码顺序。不按解码顺序传输的例子和原理以及DON的使用见13节。

传输和解码顺序的耦合由OPTIONAL sprop-interleaving-depth MIME参数控制,见下。当OPTIONAL sprop-interleaving-depth MIME 参数的值等于0 (明确或缺省) 或者外部手段不允许传输NAL单元顺序不同于他们的解码顺序, NAL单元的传输顺序必须和他们的解码顺序一致。当OPTIONAL sprop-interleaving-depth MIME参数的值大于0或者传输NAL单元与解码序号不一致通过外部手段被允许时,

o 在MTAP16/MTAP24中的NAL单元顺序不要求是NAL单元的解码顺序

o 在两个连续包中的STAP-B, MTAP,FU解嵌套产生的NAL单元序号不要求是NAL单元解码序号。

用于单NAL单元包STAP-A和FU-A的RTP荷载结构不包含DON. STAP-B,FU-B结构包含DON, MTAP结构允许推导DON象5.7.2指定的一样.

博汇科技【内部公开】注释:档FU-A出现在交错方式,后边总跟一个FU-B, 他设置自己的DON.

注释: 一个传输器想封装单个NAL单元每个包并且传输包不按照他们的解码顺序,可以使用STAP-B包类型。

在单个NAL单元打包方式, NAL单元的传输顺序,由RTP顺序号确定, 必须和他们的NAL单元解码序号一致。在非交错打包方式中, 在单NAL单元包,STAP-A,FU-A中NAL单元的传输顺序必须和他们的NAL单元解码顺序一致.在一个STAP中的NAL单元必须按照他们的NAL单元解码顺序出现。因此,解码顺序首先由STAP隐含顺序提供, 第二通过RTP 序号提供(对于STAPs, FUs, 单个NAL unit包之间的)。

对于运送在STAP-B, MTAP以及FU-B开始的一些列分片单元中的NAL单元的DON值的信令在5.7.1, 5.7.2, 指定5.8。传输顺序中的NAL单元的第一个DON值可以设置成任何值,DON值的范围是0到65535。到达最大值后, DON的值回绕到0.

包含在STAP-B, MTAP,或FU-B开始的一系列分片单元中的两个NAL单元的解码顺序按照如下确定:

DON(i)是索引为i传输顺序的解码顺序号. 函数don_diff(m,n)定义如下:

If DON(m) == DON(n), don_diff(m,n) = 0

If (DON(m) < DON(n) and DON(n) - DON(m) < 32768),

don_diff(m,n) = DON(n) - DON(m)

If (DON(m) > DON(n) and DON(m) - DON(n) >= 32768),

don_diff(m,n) = 65536 - DON(m) + DON(n)

If (DON(m) < DON(n) and DON(n) - DON(m) >= 32768),

don_diff(m,n) = - (DON(m) + 65536 - DON(n))

If (DON(m) > DON(n) and DON(m) - DON(n) < 32768),

don_diff(m,n) = - (DON(m) - DON(n))

don_diff(m,n)正值指示具有传输顺序n的NAL单元解码顺序跟在具有传输顺序m的NAL 单元后面。don_diff(m,n)等于0指示NAL单元解码顺序号可以按照任何NAL单元优先。don_diff(m,n)的负值指示索引为n的NAL单元解码序号先于索引为m的NAL单元。

DON相关域的值(DON, DONB, and DOND; 5.7)必须使得上面指定的DON的值确定的解码器顺序号符合NAL单元解码序号。如果两个NAL解码单元顺序的NAL单元交换,新的顺序号不符合NAL单元解码顺序,NAL单元不可以有相同的DON值. 如果在一个NAL单元流中两个连续NAL单元的序号交换并且新的序号仍符合NAL单元解码顺序号,NAL解码单元可以有相同的DON值。例如:当使用的视频编码profile允许任意分片顺序, 一个编码图像的所有编码片的NAL单元可以有相同的DON值。因此,相同DON值的NAL单元可以按照任何顺序解码,有不同DON值的NAL单元应该按照上面指定的顺序传递给解码器。

博汇科技【内部公开】当两个连续的NAL单元解码顺序的NAL单元有不同的DON值, 第二个NAL单元的DON 应该是第一个NAL单元的DON值加1。

解包过程恢复NAL单元解码的例子在第7部分给出。

注: 接收者不应该预测两个解码顺序号连续的NAL的DON值的绝对差等于1,甚至在没有错误的传输过程。没有要求增加1,就像关联DON的值到NAL单元的时间一样, 不可能知道所有NAL单元是否分发给接收者。例如:一个网关可以不转发非引用的编码的NAL 片或SEI NAL 单元,当需要转发的网络带宽不足时。;另外的例子:现场广播被预先编码的内容不时的打断,如广告。预先编码的第一个内帧图像事先传送使得接收端准备可用。当传送第一个内帧时,发送者不能精确知道在解码顺序后的第一个内帧前,有多少NAL单元被编码。因此, 预编码片断的第一个内帧的DON值不得不估算,当他们传送时,因此DON中可能产生空隙。

5.6. 单个NAL单元包

定义在此的单个NAL单元包必须只包含一个类型定义在[1]中的NAL单元。这意味聚合包和分片单元不可以用在单个NAL单元包中。一个封装单个NAL单元包到RTP的NAL单元流的RTP序号必须符合NAL单元的解码顺序。单个NAL单元包的结构显示在图2。

注: NAL单元的第一字节和RTP荷载头第一个字节重合。

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|F|NRI| type | |

+-+-+-+-+-+-+-+-+ |

| |

| Bytes 2..n of a Single NAL unit |

| |

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :...OPTIONAL RTP padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2. 单个NAL单元包的RTP荷载格式。

5.7. 聚合包

聚合包是本荷载规范的NAL单元聚合安排。本计划的引入是反映两个主要目标网络差异巨大的MTU:有线IP网络(MTU 通常被以太网的MTU限制; 大约1500 字节), 基于无线通信系统的IP或非IP (ITU-T H.324/M)网络,它的优先传输最大单元是254或更少。为了阻止连个世界媒体的转换以及避免不必要的打包负担,引入聚合单元安排。

本规范定义了两类聚合包:

博汇科技【内部公开】

o 单时间聚合包(STAP): 聚合相同NALU时间的NAL单元。两类STAP被定义, 一类不包括DON (STAP-A)另一类包括DON (STAP-B).

o 多时间聚合包(MTAP): 聚合具有差异NALU时间的NAL单元. 两个MTAP被定义, 差别在NAL单元时戳位移长度不同。

词语NALU-时间被定义成如果NAL单元被传输他自己的RTP包中时RTP的时戳。

运送在一个聚合包中的每个NAL单元封装在一个聚合单元中。参见下面四个不同聚合单元和他们的特性。

聚合包的RTP荷载格式的结构见图3。

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|F|NRI| type | |

+-+-+-+-+-+-+-+-+ |

| |

| one or more aggregation units |

| |

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :...OPTIONAL RTP padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

图3. 聚合包的RTP荷载格式。

MTAPs,STAPs公用以下打包规则:RTP时戳必须设置为被聚合NAL单元中最早NALU 时间。NAL单元类型的类型域必须被设置成适当的值,像表4描述的一样.如果聚合NAL单元的F位是0,F位必须清除,否则,则必须被设置。NRI的值必须是运送在聚合包中NAL 单元的最大值。

表4. STAPs和MTAPs的类型域

Type Packet 时戳位移域长度(位)DON相关的域(DON, DONB, DOND)是否存在

--------------------------------------------------------

24 STAP-A 0 no

25 STAP-B 0 yes

26 MTAP16 16 yes

27 MTAP24 24 yes

RTP头的marker位设置为聚合包中最后NAL单元如果单独封装在RTP传输中对应

博汇科技【内部公开】Marker位的值。

聚合包的荷载由一个或多个聚合单元组成。见5.7.1,5.7.2四个不同类型的聚合单元。一个包聚合包可以运送必要多的聚合单元; 但是, 聚合包中整个数据显然必须适合于一个IP 包,并且大小应该选择使得结果的IP包比MTU小。一个聚合包不可以包含5.8中指定的分片单元。聚合包不可以嵌套;即,一个聚合包包含另一个聚合包。

5.7.1. 单时间聚合包

单时刻聚合包(STAP)应该用于当聚合在一起的NAL单元共享相同的NALU时刻。STAP-A荷载不包括DON,至少包含一个单时刻聚合单元见图4. STAP-B荷载包含一个16位的无符号解码顺序号(DON) (网络字节序)紧跟至少一个单时刻聚合单元。见图5.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

: | +-+-+-+-+-+-+-+-+ |

| |

| single-time aggregation units |

| |

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

图4. STAP-A荷载格式

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

: decoding order number (DON) | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

| |

| single-time aggregation units |

| |

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

图5. STAP-B 荷载格式

DON域指定STAP-B传输顺序中第一个NAL单元的DON值. 对每个后续出现在STAP-B 中的NAL单元,它的DON值等于(STAP-B中前一个NAL的DON值+1)%65535, %是取模运算。

博汇科技【内部公开】

单时刻聚合单元有一个16位无符号大小信息(网络字节序),他指示后续NAL单元的大小(以字节为单位)(不包括这两个字节,但包括NAL单元类型字节),后面紧跟NAL单元本身, 包括它的NAL单元类型字节. 单时刻聚合单元在RTP荷载中是字节对齐的,单可以不是32位字边界对齐。图6 表示单时刻聚合单元的结构。

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

: NAL unit size | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

| |

| NAL unit |

| |

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

图6. 单时刻聚合单元的结构

图7表示一个例子--一个RTP包包含一个STAP-A. STAP包含两个单时刻聚合单元, 在图中用1,2标记。

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| RTP Header |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|STAP-A NAL HDR | NALU 1 Size | NALU 1 HDR |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| NALU 1 Data |

: :

+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | NALU 2 Size | NALU 2 HDR |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| NALU 2 Data |

: :

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :...OPTIONAL RTP padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

图7. RTP包包含一个STAP-A. STAP包含两个单时刻聚合单元

博汇科技【内部公开】图8 表示一个RTP包包含一个STAP-B. STAP包含两个单时刻聚合单元, 用1,2标记。

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| RTP Header |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|STAP-B NAL HDR | DON | NALU 1 Size |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| NALU 1 Size | NALU 1 HDR | NALU 1 Data |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

: :

+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | NALU 2 Size | NALU 2 HDR |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| NALU 2 Data |

: :

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :...OPTIONAL RTP padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

图8. 一个RTP包包含一个STAP-B. STAP包含两个单时刻聚合单元例子

5.7.2. 多时刻聚合包(MTAPs)

多时刻聚合包的NAL单元荷载有16位的无符号解码顺序号基址(DONB) (网络字节序)以及一个或多个多时刻聚合单元,如图9表示。DONB 必须包含MTAP中NAL单元的第一个NAL的DON的值。

注释:NAL解码顺序中的第一个NAL单元不必要是封装在MTAP中的第一个NAL单元。

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

: decoding order number base | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

| |

| multi-time aggregation units |

| |

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

博汇科技【内部公开】图9. MTAP的NAL单元荷载格式

本规范定义两个不同多时刻聚合单元。两个都有16位的无符号大小信息用于后续NAL 单元(网络字节序),一个8位无符号解码序号差值(DOND), 和n位(网络字节序) 时戳位移(TS 位移)用于本NAL单元,n可以是16/24. 不同MTAP类型的选择是应用相关的(MTAP16/MTAP24): 时戳位移越大, MTAP的灵活性越大, 但是负担也越大。

MTAP16/MTAP24多时刻聚合单元的结构分别在图10 ,11表示。一个包中的聚合单元的开始/结束不要求位于32位的边界。跟随NAL单元的DON 等于(DONB + DOND) % 65536, %代表取摸操作. 本文没有指定MTAP内的NAL单元如何排序,但大多数情况,应该使用NAL单元解码顺序。

时戳位移域必须设置成等于以下公式的值:如果NALU-time大于等于包的RTP时戳,则时戳位移等于(NALU-time - 包的RTP时戳).

如果NALU-time小于包的RTP时戳,则时戳位移等于NALU-time + (2^32 - 包的RTP时戳).

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

: NAL unit size | DOND | TS offset |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| TS offset | |

+-+-+-+-+-+-+-+-+ NAL unit |

| |

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

图10. MTAP16多时刻聚合单元

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

: NALU unit size | DOND | TS offset |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| TS offset | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

| NAL unit |

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

图11. MTAP24多时刻聚合单元

博汇科技【内部公开】

一个MTAP中的最早的聚合单元时戳位移必须为0。因此, MTAP的RTP时戳和最早NALU-time相同.

注释: 最早多时刻聚合单元是MTAP中所有聚合单元的扩展RTP时戳中的最小者,如果聚合单元封装在单个NAL单元包中。扩展时戳是有多于32位的时戳,有能力计算时戳域的饶回,因此时戳如果绕回能够确定时戳的最小值。这样的“最早“聚合单元可以不是封装在MTAP中的第一个聚合单元,最早NAL单元不必和NAL解码顺序的第一个NAL单元相同。

图12 表示一个例子,一个RTP包包含一个多时刻MTAP16类型的聚合包,包括两个多时刻聚合单元,分别用1,2标记。

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| RTP Header |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|MTAP16 NAL HDR | decoding order number base | NALU 1 Size |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| NALU 1 Size | NALU 1 DOND | NALU 1 TS offset |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| NALU 1 HDR | NALU 1 DATA |

+-+-+-+-+-+-+-+-+ +

: :

+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | NALU 2 SIZE | NALU 2 DOND |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| NALU 2 TS offset | NALU 2 HDR | NALU 2 DATA |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

: :

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :...OPTIONAL RTP padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

图12. 一个RTP包包含一个多时刻MTAP16类型的聚合包,包括两个多时刻聚合单元

图13 表示一个例子,一个RTP包包含一个多时刻MTAP24类型的聚合包,包括两个多时刻聚合单元,分别用1,2标记。

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

博汇科技【内部公开】| RTP Header |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|MTAP24 NAL HDR | decoding order number base | NALU 1 Size |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| NALU 1 Size | NALU 1 DOND | NALU 1 TS offs |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|NALU 1 TS offs | NALU 1 HDR | NALU 1 DATA |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

: :

+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | NALU 2 SIZE | NALU 2 DOND |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| NALU 2 TS offset | NALU 2 HDR |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| NALU 2 DATA |

: :

| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| :...OPTIONAL RTP padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

图13. RTP包包含一个多时刻MTAP24类型的聚合包,包括两个多时刻聚合单元

5.8. 分片单元(FUs)

本荷载类型允许分片一个NAL单元到几个RTP包中。在应用层这样做比依赖于底层(IP)的分片有以下好处:

o 荷载格式有能力传输NAL单元大于64K字节的单元通过IPv4网络,或许存在预编码的视频,特别在高清格式(每个图像的分片数目有限制,导致每个图像的NAL单元数目的限制, 从而导致大的NAL单元).

o 分派机制允许分片单个图像并且采用一般向前的纠错像12.5描述的那样.

分片只定义于单个NAL单元不用于任何聚合包。NAL单元的一个分片由整数个连续NAL单元字节组成. 每个NAL单元字节必须正好是该NAL单元一个分片的一部分。相同NAL单元的分片必须使用递增的RTP序号连续顺序发送(第一和最后分片之间没有其他的RTP包)。相似, NAL单元必须按照RTP顺序号的顺序装配。

当一个NAL单元被分片运送在分片单元(FUs)中时,被引用为分片NAL单元。STAPs,MTAP不可以被分片。FUs不可以嵌套。即, 一个FU 不可以包含另一个FU.

运送FU的RTP时戳被设置成分片NAL单元的NALU时刻.

图14 表示FU-A的RTP荷载格式。FU-A由1字节的分片单元指示,1字节的分片单元

本文来源:https://www.bwwdw.com/article/qn8q.html

Top