2011级二诊理数

更新时间:2024-04-16 00:35:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

数学练习

第Ⅰ卷 (选择题 共60分)

一.选择题:本小题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.计算

1?i的值是 i3A.?1?i B.1?i

C.1?i D.?1?i

12.已知集合A?{x|()x?1},B?{x|x2?x?2?0},则A?B?

2 A.{x|?1?x?1} B.{x|1?x?2} C.{x|0?x?1}

D.{x|0?x?2}

3.样本中共有5个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本的方差为

A.2

B.

6 5C.2 D.6 54.若tan??3,tan??

A.-3

4,则tan(???)等于 31B.?

3C.3

D.

1 35.下列命题中,正确的是

n2?2nA. lim?1

n? ?n?1?3x?1(x?0)B. 若f(x)??,则limf(x)?2

x? 0?2(x?0)?x?1(x?0)C. 若f(x)??2在x?0处连续,则a?2

x?a(x?0)??2x?3 , x?1f(x)?2 D. 若f(x)??,则limx? 1 ?2 , x?1?6.对于函数f(x)?sin(2x?)?1,下列命题中正确的是

6

A. 函数f(x)的图象可以由y?sin2x?1的图象向左平移B. 函数f(x)图象的一条对称轴方程是x?C. 函数f(x)图象的一个对称中心是(?D. 函数f(x)在(???个单位长度得到 6?3

7?,?1) 12??,)上是增函数 447.已知函数f(x)?cosxsinx(x?R),给出下列四个命题:

①若f(x1)??f(x2),则x1??x2; ②f(x)的最小正周期是2?;

1

③f(x)在区间[?⑤当x???

??3? ④f(x)的图象关于直线x?对称; ,]上是增函数;

444?33??,??.其中正确的命题为

4??4

????时,

f(x)的值域为,??63?B.③④⑤

( ) A.①②④

C.②③ D.③④

8.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为

A. 324

B. 360

C. 328

D. 648

9.已知等比数列{am}中,各项都是正数,且a1,

a?a1a3,2a2成等差数列,则910?

a7?a82

D.3?22 D. 5

A.1?2

A. 3

B. 1?2 B. 2

C. 3?22

C. 4

??????????????????????????10.已知△ABC,若点M满足MA?MB?MC?0,且存在m使得AB?AC?mAM成立,则m=

11.定义在R上的偶函数f(x)满足f(2?x)?f(x),且在[-3,-2]上是减函数,?,?是

钝角三角形的两个锐角,则下列不等式关系中正确的是 (A)f(sin?)?f(cos?) (B)f(cos?)?f(cos?) (C)f(cos?)?f(cos?)

( D)f(sin?)?f(cos?)

12.已知f(x)是定义在(0??上的可导函数,对任意x?(0,??)都有f(x)?0,且,)x?(x)ln,则f(?)与f(e)ln?的大小关系是 f(x)?fxA.f(?)?f(e)ln?

B.f(?)?f(e)ln? C.f(?)?f(e)ln? D.不能确定

数 学( 理工农医类)

(非选择题 共90分)

注意事项: 1.用钢笔或圆珠笔直接答在试题卷中.2.答题前将密封线内的项目填写清楚. 二、填空题:本大题共4小题,每小题4分,共16分,把正确答案填在题中横线上.

113. 二项式(x2?)6的展开式中,常数项为 . 得分 评卷人 x第Ⅱ卷

14.公差不为零的等差数列{an}的前n项和为Sn,若a4是a3与a7的等比

中项, a1??3,则S10等于 .

15.知函数f(x)是R 上的偶函数,且在(0,+?)上有f?(x)> 0,若f(-1)= 0,那

么关于x的不等式x f(x)< 0 的解集是____________. 16.已知y?f(x)(x?D)同时满足下列两个条件:(1)函数f(x)在D内单调递增或单调递

减;(2)如果存在区间[a,b]?D,使函数f(x)在区间[a,b]上的值域为[a,b],那么称y?f(x)(x?D)为闭函数.给出下列命题:

1① 函数f(x)?2x(x?R)不是闭函数; ② 函数f(x)?x?(x?(0,??))是闭函数;

x3③ 闭函数y??x符合条件(2)的区间为[?1,1];

1④ 若y?k?x(k?0)是闭函数,则实数k的取值范围是(?,0).

4

2

其中是真命题的有 (请将正确答案的序号填在题中横线上).

三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.

?17.(本小题满分12分)在△ABC中,角A、B、C的对边分别为a、b、c,C?,b?5,△ABC

3的面积为103. (Ⅰ)求a、c的值;(Ⅱ)求sin(A?)的值.

6

18.(本小题满分12分)在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖.

(Ⅰ)求摸球一次中奖的概率;

(Ⅱ)记连续3次摸球中奖的次数为?,求?的分布列及期望.

???19已知?ABC中的内角A,B,C的对边分别为a,b,c,定义向量m?2sinB,?3,

????????2Bn??cos2B,2cos?1?且m//n.

2??(Ⅰ)求函数f?x??sin2xcosB?cos2xsinB的单调递增区间; (Ⅱ)如果b?2,求?ABC的面积的最大值

20.(本小题满分12分)

已知f(x)?(x2?a)ex,其中无理数e=2.71828…. (Ⅰ) 若a?3,求函数f(x)的单调递减区间;

3(Ⅱ)已知x1、x2是f(x)的两个不同的极值点,且|x1?x2|?|x1x2|,若3f(a)?a3?a2?3a?b2恒成立,求实数b的取值范围.

3

得分 评卷人 21.已知数列?an?是等差数列,cn2??an?an?1?n?N?

2 (1)判断数列?cn?是否是等差数列,并说明理由;

(2)如果a1?a3???a25?130,a2?a4???a26?143?13kk为常数,试写出

数列?cn?的通项公式;

(3)在(2)的条件下,若数列?cn?得前n项和为Sn,问是否存在这样的实数k,使Sn当且仅当n?12时取得最大值。若存在,求出k的取值范围;若不存在,说明理

由。

??得分 评卷人 22.(本小题满分14分)已知在数列{an}中,a1?2,a2?4,曲线f(x)?an?1x3?3(an?1?3an)x?1(n?2)在点(2,f(2))处的切线方程平行于

直线y=0.

(Ⅰ)证明数列{an?1?an}是等比数列,并求数列{an}的通项公式;

(Ⅱ)当1?i?j?n(i,j,n均为正整数)时,求ai和aj的所有可能的乘积aiaj之和Tn; (Ⅲ)设函数g(x)?2x,M是数列{

13g(n)}前n项之和,求证:?M?. Tn24

4

数 学(理工农医类)参考答案及评分意见

评分说明:

1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比

照评分参考制订相应的评分细则.

2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视

影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数,选择题和填空题不给中间分.

一、选择题 题号 答案 1 B 2 D 3 A 4 D 5 B 6 C 7 D 8 C 9 C 10 A 11 D 12 B 二、填空题

13. 15 14. 60 15. 答案 (??,?1)?(0,1), 16. (3)(4)

三、解答题

17.解:(Ⅰ)∵C??3,b?5,

? S?ABC?absinC , 即 103?a?5sin,

3∴a?8, ················································································································ 2分 由余弦定理可得:c2?64?25?80cos1212??3?49,

∴c?7. ················································································································· 4分 (Ⅱ)由(Ⅰ)有cosA?49?25?641·································································· 6分 ?, ·

70743, ··········································· 8分 7∵A是三角形的内角,∴sinA?1?cos2A? ∴sin(A?)?sinAcos?cosAsin ····························································· 10分

666????43311??? 7272?13. ······················································································································ 12分 1422C5418.解:(Ⅰ)设摸球一次中奖的概率为p1,则p1=2=, ················································ 4分

C109 5

(Ⅱ)?的取值可以是0,1,2,3, ············································································· 5分

P(??0)=(1-p1)3=

125, ························································································· 6分 729300100=, ···································································· 7分 72924324080=, ··································································· 8分 7292432P(??1)=C13(1?p1)p1?P(??2)=C32(1?p1)p12?P(??3)=p13=

64, ····························································································· 9分 729所以?的分布列如下表

? P 0 1 2 3 125 729100 24380 24364 729 ································································································································ 10分 ············································································································ 11分 ????. ·

43??2B19解:19 答案 解:(Ⅰ)?m//n ?2sinB(2cos?1)??3cos2B

2?sin2B??3cos2B 即 tan2B??3

又?B为锐角 ?2B??0,??

44答:仅一次摸球中奖的概率为,连续3次摸球中奖的期望为. ················ 12分

93?2B?2?? ?B? 33?? f?x??sin2xcosB?cos2xsinB?sin?2x???? 3?2k???2?2x??3?2k?????2

∴函数的单调递增区间是?k???12,k??5??. 7分 12??a2?c2?b2得 (Ⅱ)?B?,b?2,由余弦定理cosB?32ac?a2?c2?ac?4?0

又?a?c?2ac 代入上式得:ac?4(当且仅当 a?c?2时等号成立.)

22 6

S?ABC?13acsinB?ac?3(当且仅当 a?c?2时等号成立.) 24. ·································································································································· 12分

20.解:(Ⅰ)∵f(x)?(x2?3)ex,

∴f?(x)?(x2?2x?3)ex, ····················································································· 1分 当f?(x)?(x2?2x?3)ex?0时,x?(?3,1), ······················································ 2分 ∴f(x)的单调递减区间为(?3,1), ······································································ 3分 (Ⅱ)∵f?(x)?(x2?2x?a)ex,

∴设f?(x)?(x2?2x?a)ex?0即x2?2x?a?0, ·············································· 4分 ∵x1,x2是f(x)的两个不同的极值点, ∴x1,x2是方程x2?2x?a?0的两实根,

且x1?x2??2,x1x2??a, ····················································································· 5分 ∵|x1?x2|?|x1x2|,

∴?2?a?2, ········································································································ 6分 又??4?4a?0,

∴ ?1?a?2, ······································································································ 7分

33记g(a)?3f(a)?a3?a2?3a?3(a2?a)ea?a3?a2?3a, ··························· 8分

22∴g?(a)?3(a2?a?1)ea?3a2?3a?3, 令3(a2?a?1)ea?3a2?3a?3?0, ∴3(a2?a?1)ea?3a2?3a?3?0,

?1?5∴a?0,a?, ···························································································· 9分

2 · ································································································································································· a

g?(a)(?1,0) g?(a)?0递增(0,5?1)2(5?1,2)2g?(a)?0 递增 g?(a)?0 递减g(a) ∵g(0)?0,g(2)?6e2?8, ················································································· 10分 ∴g(a)有最大值为6e2?8, ··············································································· 11分 ∴b?6e2?8. ········································································································· 12分

21答案.解:(1)设{an}的公差为d,则

7

2222cn?1?cn?(an?1?an?2)?(an?an?1) 222?2an?(a?d)?(a?d) ?1n?1n?1??2d2

?数列{cn}是以?2d2为公差的等差数列…………4分

(2)?a1?a3???a25?130

a2?a4???a26?143?13k

?两式相减:13d?13?13k ?d?1?k…………6分

13(13?1)?13a1??2d?130

2?a3??2?12k…………8分

?an?a1?(n?1)d?(1?kn?(13k?3))

22?cn?an?an?1?(an?an?1)(an?an?1)

?26k2?32?6?(2n?1)(1?k2)

??2(1?k)2?n?25k?30k?5…………10分

(3)因为当且仅当n?12时Sn最大

?有c12?0,c13?0…………12分

22????24(1?k)?25k?30k?5?0?k?18k?19?0??2即? 22????36(1?k)?25k?30k?5?0?k?22k?21?0

?k?1或k??19???k??19或k?21…………15分 ?k?21或k?122解: (Ⅰ)∵f(x)?an?1x3?3(an?1?3an)x?1(n?2),

∴f?(x)?3an?1x2?3(an?1?3an), ········································································· 1分 ∵曲线f(x)?an?1x3?3(an?1?3an)x?1(n?2)在点(2,f(2))处的切线方程为y=0. ∴f?(2)?0,即2an?1?3an?an?1?0, ····························································· 2分 ∴an?1?an?2(an?an?1),

8

∵a1?2,a2?4,?an?an?1?0,

?an?1?an?2,

an?an?1∴数列{an?1?an}是以2为首项,2为公比的等比数列, ·································· 3分

an?(an?an?1)?(an?1?an?2)??(a2?a1)?a1 ?(2?22?…+2n?1)?2

2(1?2n?1)??2

1?2·········································································································· 4分 ?2n(n?2),

··························································· 5分 ?当n?1时,上式也成立,∴an?2n, ·

(Ⅱ)∵an?2n,

由ai和aj的所有可能乘积aiaj?2i?j(1?i?j?n)可构成下表:

21?1,21?2,21?3,…,21?(n?1),21?n, 22?2,22?3,…,22?(n?1),22?n, 23?3,…,23?(n?1),23?n,

……

2n?n,

构造如下n行n列的数表: 21?1,21?2,21?3,…,21?(n?1),21?n, 22?1,22?2,22?3,…,22?(n?1),22?n, 23?1,23?2,23?3,…,23?(n?1),23?n,

……

2n?1,2n?2,2n?3,…,2n?(n?1),2n?n,

设上表第一行的和为T4(1?2n),则T?············································· 7分 ?4(2n?1).

1?2∴2Tn?T(1?2?22???2n?1)?(22?24?26??22n), ········································· 9分

4(1?4n)4n?4(2?1)(2?1)??(2?1)(2n?2?2),

1?43nn4·························································································· 10分 Tn?(2n?1)(2n?1?1),·

34(Ⅲ)由题意g(x)?2x,?g(n)?2n又Tn?(2n?1)(2n?1?1),

3g(n)3?2n311??(n?n?1), ·∴··············································· 11分 nn?1Tn4(2?1)(2?1)42?12?1 9

2222n∴M?????

T1T2Tn311111111?((?2)?(2?3)?(3?4)?(n?n?1)) 42?12?12?12?12?12?12?12?131······································································································ 12分 ?(1?n?1). ·

42?1∵2n?1?1?3 , ∴即

1313······················································································ 13分 ?(1?n?1)?,·

242?1413·········································································································· 14分 ?M?. ·

24113.∵(a?0?1?2?3)?1,∴a??1,故S2?[(?1?1)2?(0?1)552?(11?)22(2?1)?(3?1)?]22?.

10

45tan??tan?3?3?1, 4.tan(???)??1?tan?tan?1?3?45333?8.首先应考虑“0”是特殊元素,

当0排在末位时,有A9?9?8?72(个),

当0不排在末位时,有A4?A8?A8?4?8?8?256(个),

于是由分类计数原理,得符合题意的偶数共有72?256?328(个).故选B.

1112

?????2????10.由题目条件可知,M为△ABC的重心,连接AM并延长交BC于D,则AM?AD①,因

3??????????????????????????为AD为中线则AB?AC?2AD?mAM,即2AD?mAM②,联立①②可得m=3,.

12.要比较f(?)与f(e)ln?的大小,只须比较

ln(e)ln?与的大小 f(e)f(?)1f(x)?ln(x)?f?(x)ln(x)f(x)?f?(x)?lnxxx(x?0),? F?(x)???0, ?构造函数F(x)?f(x)f2(x)xf2(x)?F(x)在(0,??)上是增函数,即F(?)?F(e),即

22ln?ln(e),即f(?)?f(e)?ln? ?f(?)f(e)14.a4?a3a7得(a1?3d)?(a1?2d)(a1?6d)得2a1?3d?0,则d?2,所以

S10?10a?190d?60,. 216.已知函数f(x),定义:若对给定的实数a(a?0)函数f(x?a)与f?1(x?a)互为反函数,则

称f(x)满足“a和性质”;若函数y?f(ax)与y?f?1(ax)互为反函数,则称f(x)满足“a积性质”.给出下列命题:

① 函数f(x)?1?x满足“1和性质”; ② 函数f(x)?1不满足“2积性质”; x③ 函数f(x)?kx?b(k?0)满足“1和性质”的充要条件是k?1; ④不可能存在实数m使函数f(x)?x?m既满足“a和性质”又满足“a积性质”; mx?1其中是真命题的有 ①④ (请将正确答案的序号填在题中横线上)

解:据题可知f(x?1)?1?(x?1)??x,其反函数是f数f?1?1(x)??x,由f(x)?1?x知其反函

(x)?1?x,故f?1(x?1)?1?(1?x)??x,?f(x?1)与f?1(x?1)互为反函数,

所以①正确; 由f(x)?1知其反函数为fx?1(x)?111,而f(2x)?,其反函数为,?f?1(2x)?x2x2x11

y?11,故f(x)?满足“2积性质”,②不正确

x2x?1设函数f(x)?kx?b(k?0)满足“1和性质”,则f由f(x?1)?k(x?1)?b得其反函数为y(x)?x?bx?1?b, ,?f?1(x?1)?kk?x?b?1,由“1和性质”定义知必有 kx?1?bx?b??1,即x?1?b?x?b?k,?k??1,③不正确 kkx?mx?a?mx?m?1若函数f(x)?满足“a和性质”,则f(x)? ,?f?1(x?a)?mx?1mx?1mx?ma?1x?a?m(1?ma)x?a?m由f(x?a)?知其反函数为y?,

mx?ma?1mx?1x?a?m(1?ma)x?m?a2,化简得mx?(1?ma)x?m?a?0,上式不可能??mx?ma?1mx?1恒成立,所以不存在m的值使f(x)?同理若f(x)?由

x?m满足“a和性质”. mx?1?1x?m满足“a积性质”,则fmx?1(ax)?ax?m,

max?1ax?mx?m得其反函数为y?

max?1max?aax?mx?m22,化简得ma(a?m)x?(1?a)x?m(1?a)?0,上式成立的充要??max?1max?af(ax)?条件是m?0,a??1,但此时f(x)?x?m不满足“a和性质”.所以④正确 mx?1

12

本文来源:https://www.bwwdw.com/article/ql4p.html

Top