2013年中考数学试题汇编之压轴题【汇总】 2

更新时间:2023-05-20 18:22:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

中考数学试题汇编之压轴

(2009年山东省济宁市)26. (12分)

在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线

y x上时停止旋转,旋转过程中,AB边交直线y x于点M,BC边交x轴于点N

(如图).

(1)求边OA在旋转过程中所扫过的面积;

(2)旋转过程中,当MN和AC平行时,求正方形 OABC旋转的度数;

(3)设 MBN的周长为p,在旋转正方形OABC 的过程中,p值是否有变化?请证明你的结论.

x

(第26题)

中考数学试题汇编之压轴

26.(1)解:∵A点第一次落在直线y x上时停止旋转,

∴OA旋转了45.

45 22

∴OA在旋转过程中所扫过的面积为 .……………4分

3602

(2)解:∵MN∥AC,

∴ BMN BAC 45 , BNM BCA 45 . ∴ BMN BNM.∴BM BN. 又∵BA BC,∴AM CN.

又∵OA OC, OAM OCN,∴ OAM OCN. ∴ AOM CON.∴ AOM

1

(90 45 . 2

∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为

45 .……………………………………………8分

(3)答:p值无变化.

证明:延长BA交y轴于E点,则 AOE 45 AOM,

CON 900 450 AOM 450 AOM,

∴ AOE CON.

又∵OA OC, OAE

180 90 90 ∴ OAE OCN. ∴OE ON,AE CN.

又∵ MOE MON 45,OM OM,

∴ OME OMN.∴MN ME AM AE.

∴MN AM CN,

(第26题)

x

∴p MN BN BM AM CN BN BM AB BC 4. ∴在旋转正方形OABC的过程中,p值无变化. ……………12分

中考数学试题汇编之压轴

(2009年北京)25.如图,在平面直角坐标系xOy中, ABC三个机战的坐标分别为

A 6,0 ,B

6,0 ,C0,,延长AC到点D,使CD=

BC的延长线于点E. (1)求D点的坐标;

1

AC,过点D作DE∥AB交2

(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y kx b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;

(3)设G为y轴上一点,点P从直线y kx b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明)

中考数学试题汇编之压轴

中考数学试题汇编之压轴

(2009年重庆市)26.已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E. (1)求过点E、D、C的抛物线的解析式;

(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为

6

,那么5

EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;

(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

x

26题图

中考数学试题汇编之压轴

26.解:(1)由已知,得C(3,0),D(2,2),

ADE 90° CDB BCD,

1

AE AD tan ADE 2 tan BCD 2 1.

2

···················································································································· (1分) ,. · E(01)

设过点E、D、C的抛物线的解析式为y ax bx c(a 0). 将点E的坐标代入,得c 1.

将c 1和点D、C的坐标分别代入,得

2

4a 2b 1 2,

············································································································ (2分)

9a 3b 1 0.

5

a 6

解这个方程组,得

b 13 6

故抛物线的解析式为y

5213

······························································· (3分) x x 1. ·

66

(2)EF 2GO成立. ································································································ (4分)

6

点M在该抛物线上,且它的横坐标为,

5

12

······························································································ (5分) 点M的纵坐标为. ·5

设DM的解析式为y kx b1(k 0), 将点D、M的坐标分别代入,得

x

1 2k b1 2,

k ,

2 612 解得

k b1 . 5 b1 3. 5

1

··············································································· (6分) DM的解析式为y x 3.

2

·································································································· (7分) 3),EF 2. · F(0,

过点D作DK⊥OC于点K,

则DA DK.

ADK FDG 90°, FDA GDK.

又 FAD GKD 90°, △DAF≌△DKG. KG AF 1.

中考数学试题汇编之压轴

··················································································································· (8分) GO 1. ·

EF 2GO.

(3) 点P在AB上,G(1,0),C(3,0),则设P(1,2).

PG2 (t 1)2 22,PC2 (3 t)2 22,GC 2.

①若PG PC,则(t 1) 2 (3 t) 2, 解得t 2. P(2,2),此时点Q与点P重合.

··················································································································· (9分) 2). · Q(2,

②若PG GC,则(t 1) 2 2, 解得 t 1, P(1,2),此时GP⊥x轴.

2

2

2

2

2

2

GP与该抛物线在第一象限内的交点Q的横坐标为1,

7 点Q的纵坐标为.

3

7

··············································································································· (10分) Q 1 . ·

3

③若PC GC,则(3 t) 2 2,

解得t 3, P(3,2),此时PC GC 2,△PCG是等腰直角三角形. 过点Q作QH⊥x轴于点H, 则QH GH,设QH h,

2

2

2

Q(h 1,h).

513

(h 1)2 (h 1) 1 h.

66

7

解得h1 ,h2 2(舍去).

5

127 Q . ··············································· (12分)

55

综上所述,存在三个满足条件的点Q,

x

即Q(2,2)或Q 1 或Q

7

3 127

55

本文来源:https://www.bwwdw.com/article/qj44.html

Top