基于PLC物料传送分拣控制系统设计 - 图文

更新时间:2024-05-27 23:28:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第 I页 共Ⅲ页

摘 要

自动分拣控制系统在社会很多行业中得到广泛应用, 自动分拣系统能实现大规模无人自动化控制,大大提高企事业单位在此环节上的工作效率。

本文主要论述PLC在自动分拣控制上的应用,以可编程控制器(PLC)为核心,结合气动装置、传感技术、位置控制等技术,设计低成本、高效率的自动分拣控制系统。该系统具有自动化程度高、运行稳定、精度高、易控制的特点,可根据不同需求,稍加修改本系统即可实现要求。

关键词:自动分拣;可编程控制器;高效;传感器

第 II页 共Ⅲ页

Abstract

Automatic control system in the most widely used in industry, the automatic sorting system can realize large-scale unmanned automatic control, greatly improve the enterprises in this aspect of the work efficiency.

This paper mainly discusses the PLC in automatic sorting control applications, to the programmable controller ( PLC ) as the core, combined with the pneumatic device, sensor technology, control technology, design of low cost, high efficiency automatic sorting system. The system has a high degree of automation, stable operation, high precision, easy to control, according to different needs, minor modifications to the system can reach the requirements. Key words: Automatic sorting; programmable controller; high efficiency; sensor

第 III页 共Ⅲ页

目 录

引言........................................................... 1 1 概述 ........................................................ 3

1.1 自动分拣系统的意义及特点 .......................................... 3 1.2 研究的目的及意义 .................................................. 5

2 分拣系统中硬件设计 .......................................... 6

2.1 整体外观 .......................................................... 6 2.2 PLC简介及选择 ..................................................... 8 2.3 传感器简介及选择 ................................................. 15 2.4 驱动部分的分析与选择 ............................................. 19 2.5 执行机构的选择 ................................................... 21 2.6 其他元器件及其选择 ............................................... 22

3 分拣系统中的软件设计 ....................................... 23

3.1 建立实际模型 ..................................................... 23 3.2 I/O分配及PLC接线 ................................................ 23 3.3 分拣系统的控制要求 ............................... 错误!未定义书签。 3.4 程序设计及编辑 ................................... 错误!未定义书签。 3.5 流程图 ........................................... 错误!未定义书签。

4 控制系统的调试 ............................. 错误!未定义书签。

4.1 硬件部分的调试 ................................... 错误!未定义书签。 4.2 软件部分的调试 ................................... 错误!未定义书签。 4.3 整体调试 ......................................... 错误!未定义书签。 4.4 调试结果 ......................................... 错误!未定义书签。

5 结论 ....................................... 错误!未定义书签。 谢辞.......................................... 错误!未定义书签。 参考文献 ...................................................... 35 附录.......................................................... 35

第1页 共38页

引言

自动分拣是指货物进入分拣系统到指定的分配位置为止,都是按照人们的指令靠自动装置来完成的。这种装置是由接受分拣指示信息的控制装置、计算机网络、搬运装置、分支装置(负责把到达分拣位置的货物按运到别处的装置)、缓冲站(在分拣位置临时存放货物的装置)等构成。除了使用终端的键盘、鼠标或者其它方式向控制装置输入分拣指示信息的作业外,由于全部采用自动控制作业,因此它的分拣能力、分拣数量同人为分拣相比都比较大,效率也得到了进一步突破。

自动分拣系统的规模和能力已有很大的发展,目前大型分拣系统大多能分拣几十到几百个种类的物品,分拣能力达到每小时万件以上。国外分拣系统规模都很大,主要包括进给台、信号盘、分拣机、分拣信息识别系统、设备控制系统和计算机管理系统等几大部分,还要配备外围的各种运输和装卸机械,组成一个庞大而复杂的系统。自动分拣大部分与自动化立体仓库连接起来,配合自动引导车(AGV)、托链小车等其它复杂的系统,分拣系统在总体布置上,可以说千变万化。

从分拣技术水平上说,欧美各国发展最早,技术比较成熟,目前处于世界领先地位。美国和欧洲在60年代开始使用,日本则在第二次世界大战后才引进分拣机,但近二十年来由于其本国经济发展需要发展迅速,后来者居上,从1970--1985年共有338台自动分拣机投入运行,其中58.32%用于储运业,17.15%用于销售业。到1987年就已经拥有自动分拣机1000台,号称是世界上拥有分拣机最多的国家。

我国自动分拣技术起步较晚,目前已能与国际先进水平保持同步,但是缺少技术创新能力,使自动分拣技术的物流系数也减少,大部分小型超市配送中心仍然靠人工分分拣。在二十世纪80年代,我国最初是一些邮局采用小型的半自动翻盘分拣机,用于邮包分拣。1990年为迎接第十一届亚运会,从荷兰引进了一套有3个入口,60个出口的自动分拣系统,成立了北京食品配送中心,每小时可以配送3000件货物,使我国的分拣技术有了一个飞跃。而如今分拣技术已经用于我国的各行各业,使这环节的效率得到了很大的提高。

自动分拣机最先在邮政部门开始应用,大量的信件和邮包要在极端的时间内正确分拣,非凭借高度自动化的分拣措施不可。此后,运输企业、配送中心、通讯出版部门、烟草部门、出版行业、食品化工、造纸业、化工业、机械制造以及各类工业企业亦相继应用。

近二十年来,特别是物流行业,随着经济和生产的发展,商品趋势趋于\短小轻薄\,流通趋于小批量多品种和准时制(JUST-IN-TIME,简称JIT)。分拣作业已成为一项重要的工作环节,分拣系统的应用已经日趋普遍。我国目前多数配送中心和物流企业都是人工分拣。显然,随着分拣量的增加、分送点的增多、配货响应时间的缩短和服务质量的提高,单凭人工分拣将无法满足大规模配送的要求,所以这一环节亟待提高。而国外一

第2页 共38页

些配送中心多采用分拣系统进行分拣,充分发挥了分拣技术分拣速度快、分拣点多、差错率极低、效率高和基本上全自动操作的优势。日本一位物流专家认为,在用户需求表现为多种小批量的时代,物流技术的三大措施是自动分拣机、自动化仓库和无人自动引导车。自动分拣机是其中最接近与成熟的产品,这可以认为是国家对于自动分拣在物流技术中的地位和现状的一个较好的概括。自动分拣系统成为当代物流技术发展的三大标志之一。

第3页 共38页

1 概述

1.1自动分拣系统的意义及特点

自动分拣系统(Automatic sorting system)是先进配送中心所必需的设施条件之一。具有很高的分拣效率,通常每小时可分拣商品6000-12000箱;可以说,自动分拣机是提高物流配送效率的一项关健因素。它是二次大战后在美国、日本的物流中心中广泛采用的一种自动分拣系统,该系统目前已经成为发达国家大中型物流中心不可缺少的一部分。 1.1.1 主要特点

(1) 能连续、大批量地分拣货物 由于采用大生产中使用的流水线自动作业方式,自动分拣系统不受气候、时间、人的体力等的限制,可以连续运行,同时由于自动分拣系统单位时间分拣件数多,因此自动分拣系统的分拣能力是人工分拣系统可以连续运行100个小时以上,每小时可分拣7000件包装商品,如用人工则每小时只能分拣150件左右,同时分拣人员也不能在这种劳动强度下连续工作8小时。

(2) 分拣误差率极低 自动分拣系统的分拣误差率大小主要取决于所输入分拣信息的准确性大小,这又取决于分拣信息的输入机制,如果采用人工键盘或语音识别方式输入,则误差率在3%以上,如采用条形码扫描输入,除非条形码的印刷本身有差错,否则不会出错。因此,目前自动分拣系统主要采用条形码技术来识别货物。

(3) 分拣作业基本实现无人化 国外建立自动分拣系统的目的之一就是为了减少人员的使用,减轻工员的劳动强度,提高人员的使用效率,因此自动分拣系统能最大限度地减少人员的使用,基本做到无人化。分拣作业本身并不需要使用人员,人员的使用仅局限于以下工作:

① 送货车辆抵达自动分拣线的进货端时,由人工接货。 ②由人工控制分拣系统的运行。

③分拣线末端由人工将分拣出来的货物进行集载、装车。 ④自动分拣系统的经营、管理与维护。

如美国一公司配送中心面积为10万平方米左右,每天可分拣近40万件商品,仅使用400名左右员工,这其中部分人员都在从事上述①、②、③、④项工作,自动分拣线作到了无人化作业。 1.1.2 系统的组成

自动分拣系统一般由控制装置、分类装置、输送装置及分拣道口组成。 控制装置的作用是识别、接收和处理分拣信号,根据分拣信号的要求指示分类装置、按商品品种、按商品送达地点或按货主的类别对商品进行自动分类。这些分拣需

第4页 共38页

求可以通过不同方式,如可通过条形码扫描、色码扫描、键盘输入、重量检测、语音识别、高度检测及形状识别等方式,输入到分拣控制系统中去,根据对这些分拣信号判断,来决定某一种商品该进入哪一个分拣道口。

分类装置的作用是根据控制装置发出的分拣指示,当具有相同分拣信号的商品经过该装置时,该装置动作,使改变在输送装置上的运行方向进入其它输送机或进入分拣道口。分类装置的种类很多,一般有推出式、浮出式、倾斜式和分支式几种,不同的装置对分拣货物的包装材料、包装重量、包装物底面的平滑程度等有不完全相同的要求。

输送装置的主要组成部分是传送带或输送机,其主要作用是使待分拣商品贯通过控制装置、分类装置,并输送装置的两侧,一般要连接若干分拣道口,使分好类的商品滑下主输送机(或主传送带)以便进行后续作业。

分拣道口是已分拣商品脱离主输送机(或主传送带)进入集货区域的通道,一般由钢带、皮带、滚筒等组成滑道,使商品从主输送装置滑向集货站台,在那里由工作人员将该道口的所有商品集中后或是入库储存,或是组配装车并进行配送作业。

以上四部分装置通过计算机网络联结在一起,配合人工控制及相应的人工处理环节构成一个完整的自动分拣系统。

二次大战以后,自动分拣系统逐渐开始在西方发达国家投入使用,成为发达国家先进和物流中心,配送中心或流通中心所必需的设施条件之一,但因其要求使用者必须具备一定的技术经济条件,因此,在发达国家,物流中心、配送中心或流通中心不用自动分拣系统的情况也很普遍。在引进和建设自动分拣系统时一定要考虑以下条件: 1.1.3 一次性投资巨大

自动分拣系统本身需要建设短则40~50米,长则150~200米的机械传输线,还有配套的机电一体化控制系统、计算机网络及通信系统等,这一系统不仅占地面积大,动辄2万平方米以上,而且一般自动分拣系统都建在自动主体仓库中,这样就要建3~4层楼高的立体仓库,库内需要配备各种自动化的搬运设施,这丝毫不亚于建立一个现代化工厂所需要的硬件投资。这种巨额的先期投入要花10~20年才能收回,如果没有可靠的货源作保证,则有可能系统大都由大型生产企业或大型专业物流公司投资,小企业无力进行此项投资。

1.1.4 对商品外包装要求高

自动分拣机只适于分拣底部平坦且具有刚性的包装规则的商品。袋装商品、包装底部柔软且凹凸不平、包装容易变形、易破损、超长、超薄、超重、超高、不能倾覆的商品不能使用普通的自动分拣机进行分拣,因此为了使大部分商品都能用机械进行自动分拣,可以采取二条措施:一是推行标准化包装,使大部分商品的包装符合国家标准;二是根

第5页 共38页

据所分拣的大部分商品的统一的包装特性定制特定的分拣机。但要让所有商品的供应商都执行国家的包装标准是很困难的,定制特写的分拣机又会使硬件成本上升,并且越是特别的其通用性就越差。因此公司要根据经营商品的包装情况来确定是否建或建什么样的自动分拣系统。 1.2 研究的目的及意义

在本文中,以货物材料的分拣系统为例,详细的分析了在基于PLC控制的自动分拣系统的设计,文中介绍了分拣系统中信号的采集分析中传感器的一些基本知识,并通过要求与比较,确定了硬件系统中的一些元器件的选择与确定了PLC的选型。

在介绍了一些PLC的基本知识后,对本课题进行硬件与软件设计,设计出主电路与控制回路,并建立了实际的模型,在软件设计中,确定了I/O分配,并按照控制要求设计出了PLC梯形图。

进行整体调试。在硬件部分,调试其各部分安装的位置及角度,使其材料物块的运行与传感器安装的角度适合。将硬件各部分的动作幅度进行调试之后,进行了软硬件综合调试,实现材料分拣系统中上料、传送与分拣的全过程。

第6页 共38页

2 分拣系统中硬件设计

2.1 整体外观

如图2-1所示为PLC物料自动分拣系统的整体硬件图。

图2-1自动分拣系统硬件图

2.1.1 系统概述

本物料分拣装置主要由PLC 控制模块、变频器、机械手、位置检测与控制、物料输送及分拣、气动系统等模块组成。通过传感器信号采集,PLC 编程,对电磁阀、直流电机、交流电机等进行复杂的开关量控制、位置控制及时序逻辑控制,实现物料提升、故障报警、气动机械手搬运、皮带机输送、物料分拣等功能。 2.1.2 系统组成

(1)该装置由型材实训台、物料提升机构、气动机械手、物料输送及分拣机构、PLC 模块、变频器模块、按钮模块、电源模块、各种传感器、物料、I/O 接口板和气管等组成。

(2)电源模块由三相电源总开关(带漏电和短路保护)、熔断器、单相电源输出、三相电源输出、电源插座、开关电源(提供DC24V)等组成。

(3)按钮模块由急停按钮、转换开关、复位按钮、自锁按钮、指示灯等组成。 (4)变频器模块由欧姆龙3G3JV-AB004 变频器及接线柱组成。

(5)PLC 模块由三菱主机为FX1N-32MR-001 内置开关量I/O构成,机箱内装有24V/5A 的开关电源为系统提供直流电源。

(6)物料提升机构由单出杆气缸、电磁阀、磁性开关、警示灯、直流减速电机、机械结构件等组成。

(7)气动机械手机构由单出杆气缸、双出杆气缸、旋转气缸、气爪、磁性开关、缓冲阀、电磁阀、机械结构件等组成。

(8)物料输送及分拣机构由三相交流电机、皮带、单出杆气缸、磁性开关(磁电

第7页 共38页

传感器)、电磁阀、电涡流式电感传感器、电容式传感器、漫反射型光电传感器、机械结构件等组成[5]。 2.1.3 送料机构

如图2-2所示为送料机构硬件图。其中包括放料转盘:转盘中共放两种物料,一种金属物料、一种非金属物料。驱动电机:电机采用24V 直流减速电机,转速10r/min,转矩30kg/cm;用于驱动放料转盘旋转;物料滑槽:放料转盘旋转,物料互相推挤趋向入料口,物料则从入料口顺着滑槽落到提升台上;提升台:将物料和滑槽有效分离,并确保每次只提升一个物料;物料检测传感器:物料检测为光电漫反射型传感器,主要为PLC 提供一个输入信号,如果有物料在提升台上,就会驱动提升气缸提升物料;如果运行中,光电传感器没有检测到物料并保持4 秒钟,则让系统停机然后报警;磁性传感器:用于提升台气缸的位置检测。检测气缸伸出和缩回是否到位,为此在前点和后点上各一个,当检测到气缸准确到位后将给PLC 发出一个信号。磁性传感器接线时注意。蓝色接GND,棕色经过负载接PLC 输入端;提升气缸:提升气缸使用的是单向电控气阀。当电控气阀得电,物料提升台上升,当电控气阀断电,则物料提升台下降。

图2-2 送料机构图

2.1.4 机械手搬运机构

如图2-3所示为机械手搬运机构的硬件图。整个搬运机构能完成四个自由度动作,手臂伸缩、手臂旋转、手爪上下、手爪紧松。手爪提升气缸:提升气缸采用双向电控气阀控制,气缸伸出或缩回可任意定位;磁性传感器:检测手爪提升气缸处于伸出或缩回位置;手爪:抓取物料由单向电控气阀控制,当单向电控气阀得电,手爪夹紧磁性传感器有信号输出,指示灯亮,单控气阀断电,手爪松开;旋转气缸:机械手臂的正反转,由双向电控气阀控制;接近传感器:机械手臂正转和反转到位后,接近传感器信号输出;双杆气缸:机械手臂伸出、缩回,由双向电控气阀控制。气缸上有装有两个磁性传感器,检测气缸伸出或缩回位置;调速阀:调节旋转气缸的转动速度和力度,同时也可调节提升气缸的伸缩速度和力度;缓冲器:旋转气缸高速正转和反转到位时,起缓冲速作用[6]。

第8页 共38页

图2-3机械手搬运机构图

2.1.5 物料传送和分拣机构

如图2-4所示为物料传送和分拣机构的硬件图。其中包括落料光电传感器:检测是否有物料到传送带上,并给PLC 一个输入信号;落料口:物料落料位置定位;金属料槽:放置金属物料;塑料料槽:放置非金属物料;电涡流式电感传感器:检测金属材料,检测距离为2~5mm;电容式传感器:用于检测非金属材料,检测距离为3~8mm;三相低速电动机:驱动传送带转动,由变频器控制;推料气缸:将物料推入料槽,由单向电控气阀控制[7]。

图2-4 物料传送和分拣机构图

2.2 PLC简介及选择 2.2.1 PLC的发展历史

在可编程序控制器问世之前,继电器接触器控制在工业控制领域中占有主导地位。但随着工业的发展,继电器接触器控制已不能满足人们的要求。

为了解决这一问题,早在1968年,美国最大的汽车制造商通用汽车公司(GM公司),为了适应汽车型号不断翻新,以求在激烈竞争的汽车工业中占有优势,就提出要用一种

第9页 共38页

新型的控制装置取代继电器接触器控制装置,并且对未来的新型控制装置做出了具体设想。要把计算机的完备功能以及灵活性、通用性好等优点和继电器接触器控制的简单易懂、操作方便、价格便宜等优点溶入于新的控制装置中,且要求新的控制装置编程简单,使得不熟悉计算机的人员也能很快掌握它的使用技术。 美国数字设备公司(DEC)根据GM公司招标的技术要求,于1969年研制出世界上第一台可编程序控制器,并在GM公司汽车自动装配线上试用,获得成功。其后,日本、德国等相继引入这项新技术,可编程序控制器由此而迅速发展起来。

在20世纪70年代初期、中期,可编程序控制器虽然引入了计算机的优点,但实际上只称为PLC(Programmable Logical Controller)。随着微处理器技术的发展,20世纪70年代末至80年代初,可编程序控制器的处理速度大大提高,增加了许多特殊功能,使得可编程序控制器不仅可以进行逻辑控制,而且可以对模拟量进行控制。因此,美国电器制造协会(NEMA)将可编程序控制器命名为PC(Programmable Controller),但人们习惯上将之仍称为PLC,以便与个人计算机PC(Personal Computer)相区别。 80年代以来,随着大规模和超大规模集成电路技术韵迅猛发展,以16位和32位微处理器为核心的可编程序控制器得到迅速发展。这时的PLC具有了高速计数、中断技术、PID调节和数据通信等功能,从而使PLC的应用范围和应用领域不断扩大。

目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业。 2.2.2 PLC的定义和特点

PLC的发展初期,不同的开发制造商对PLC有不同的定义。为使这一新型的工业控制装置的生产和发展规范化,国际电工委员会(IEC)于1985年1月制定了PLC的标准,并给它作了如下定义:

可编程序控制器是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作命令,并通过数字式、模拟式的输入和输出,控制各种类型的机械或生产过程。可编程序控制器及其有关的外部设备,都应按易于与工业控制系统联成一个整体,易于扩充其功能的原则而设计。

它的一些性能与继电器相比具有以下特点: (1)可靠性高

可靠性包括产品的有效性和可维修性。可编程控制器的可靠性高,表现在下列几个方面: ①可编程控制器不需要大量的活动部件和电子元件,接线大大减少,与此同时,系统的维修简单,维修时间缩短,因此可靠性得到提高。

②可编程控制器采用一系列可靠性设计方法进行设计,例如冗余设计,掉电保护,故障诊断,报警和运行信息显示和信息保护及恢复等。

第10页 共38页

③可编程控制器有较强的易操作性,它具有编程简单,操作方便,编程的出错率大大降低,而为工业恶劣操作环境设计的硬件使可靠性大大提高。

④可编程控制器的硬件设计方面,采用了一系列提高可靠性的措施。例如,采用可靠性高的工业级元件,采用先进的电子加工工艺(SMT)制造,对干扰采用屏蔽、隔离和滤波等;存储器内容的保护,采用看门狗和自诊断措施,便于维修的设计等。 (2)操作性高

①操作方便:对PLC的操作包括程序的输入和程序更改操作,大多数PLC采用编程器进行程序输入和更改操作。现在的PLC的编程器大部分可以用电脑直接进行,更改程序也可根据所需地址编号、继电器编号或接点号等直接进行搜索或按顺序寻找,然后可以在线或离线更改。

②编程方面:PLC有多种程序设计语言可以使用,梯形图与电气原理图相似;编程语句是功能的缩写,便于记忆;功能图表语言以过程流程进展为主线,十分适合设计人员与工艺专业人员设计思想的沟通。功能模块图和结构化文本语言,功能清晰,易于理解等优点。

③维修方便:PLC所具有的自诊断功能对维修人员的技术要求较低,当系统发生故障时,通过硬件和软件的自诊断,维修人员可以根据有关故障代码的显示和故障信号灯的提示等信息,或通过编程器和HMI屏幕的设定,直接找到故障所在的部位,为迅速排除故障和修复节省了时间,提高了效率。 (3)灵活性好

①编程的灵活性:PLC采用的标准编程语言有梯形图、指令表、功能图表、功能模块图和结构化文本编程语言等。使用者只要掌握其中一种编程语言就可进行编程,编程方法的多样性使编程方便。

②扩展的灵活性:PLC的扩展灵活性是它的一个重要特点。它可以根据应用的规模不断扩展,即进行容量的扩展、功能的扩展、应用和控制范围的扩展。它不仅可以通过增加输入输出模块增加点数,通过扩展单元扩大容量和功能,也可以通过多台PLC的通信来扩大容量和功能。

③操作的灵活性:操作的灵活性指设计工作量、编程工作量、和安装施工的工作量的减少。操作变得十分方便和灵活,监视和控制变得很容易。在继电器顺序控制系统中所需的一些操作得到简化,不同生产过程可采用相同的控制台和控制屏等。 (4)可实现机电一体化

为了使工业生产的过程控制更平稳,更可靠,向优质、高产、低耗要效益,对过程控制设备和装置提出了机电一体化,即仪表、电子、计算机综合的要求,而PLC正是这一要求的产物,它是专门为工业过程而设计的控制设备,具有体积小、功能强,抗干扰性好等优点,它将机械与电气部件有机地结合在一个设备内,把仪表、电子和计算机的功能

第11页 共38页

综合集成在一起,因此,它已经成为当今数控技术、工业机器人、离散制造和过程流程等领域的主要控制设备,成为工业自动化三大支柱(PLC,机器人,CAD/CAM)之一。 可编程控制器现在已经成为了一个不可代替的控制系统,它们可以与其它系统通讯,提供产品报表,生产调度,诊断自身和设备的故障,这些技术上的改进,让PLC成为今天的各行各业的高质量和产量的重要的贡献者。 2.2.3 PLC基本结构和工作原理 (1)基本结构

目前,可编程序控制器的产品很多,不同厂家生产的PLC以及同一厂家生产的不同型号的PLC,其结构各不相同,但就其基本组成和基本工作原理而言,是大致相同的。它们都是以微处理器为核心的结构,其功能的实现不仅基于硬件的作用,更要靠软件的支持。实际上可编程序控制器就是一种新型的工业控制计算机。PLC硬件系统的基本框架,如图2-5所示

图2-5 PLC硬件系统结构框图

① 中央处理器(CPU)

中央处理器是可编程控制器的核心,它在系统程序的控制下,完成逻辑运算、数学运算、协调系统内部各部分的工作任务等。 ② 存储器

存储器是可编程控制器存放系统程序、用户程序以及运算数据的单元。可编程序控制器配有两种存储器,即系统存储器(EPROM)和用户存储器(RAM)。 ③ 输入输出接口

输入输出接口是可编程控制器和工业控制现场各类信号连接的部分。 输入口用来接收生产过程的各种参数,输出口用来送出可编程控制器的运算后得出的控制信息,并

第12页 共38页

通过机外的执行机构完成工业现场的各类控制。按照信号的种类归类有直流信号输入、输出,交流信号的输入、输出;按照信号的输人、输出形式分有数字量输入、输出,开关量输入、输出,模拟量输入、输出。

下面通过开关量输入、输出模块来说明I/O模块与CPU的连接方式。

1)开关量输入模块

开关量输人设备是各种开关、按钮、传感器等,其信号可能是交流电压(110 V或 220 V),直流电压(12~24 V)等。因此,输入模块要能将生产现场的信号转换成CPU能接收的TTL标准电平的数字量信号。对于开关量中交流输入模块的工作原理,只是在输人端先通过整流将交流输入信号变成直流信号,其他与开关量直流输入模块工作原理相同。 2)开关量输出模块

输出模块的作用是将CPU执行用户程序所输出的TTL电平的控制信号转化为生产现场所需的,能驱动特定设备的信号,以驱动执行机构的动作。

通常开关量输出模块有三种形式,即继电器输出、晶体管输出和双向晶闸管输出。继电器输出可接直流或交流负载,晶体管输出属直流输出,只能接直流负载。当开关量输出的频率低于1000 Hz,一般选用继电器输出模块。当开关量输出的频率大于1 000 Hz,一般选用晶体管输出。而双向晶闸管输出属交流输出。对于继电器输出型,CPU输出时接通或断开继电器的线圈,继电器的触点闭合或断开,通过继电器触点控制外电路的通断。对于晶体管输出型,则是通过光电耦合使开关晶体管截止或饱和导通以控制外部电路。对于晶闸管输出型,采用的是光触发型双向晶闸管。 ④ 电源

可编程控制器的电源包括可编程控制器各工作单元供电的开关电源以及为掉电保护电路供电的后备电源,后者一般为电池。 ⑤ 外部设备

编程器是PLC的重要外部设备,利用编程器可将用户程序送人PLC的用户程序存储器,调试程序、监控程序的执行过程。编程器从结构上可分为以下三种类型。(1)简易编程器(2)图形编程器(3)通用计算机编程。 (2)工作原理

我们已经知道PLC是一种存储程序的控制器。用户根据某一对象的具体控制要求,编制好控制程序后,用编程器将程序键人到PLC的用户程序存储器中寄存。PLC的控制功能就是通过运行用户程序来实现的。

PLC运行程序的方式与微型计算机相比有较大的不同,微型计算机运行程序时,一旦执行到END指令,程序运行结束。而PLC从0000号存储地址所存放的第一条用户程序开始,在无中断或跳转的情况下,按存储地址号递增的方向顺序逐条执行用户程序,直到END指令结束。然后再从头开始执行,并周而复始地重复,直到停机或从运行(RUN)

第13页 共38页

切换到停止(STOP)状态。我们把PLC这种执行程序的方式称为扫描工作方式。每扫描完一次程序就构成一个扫描周期。另外,PLC对输入、输出信号的处理与微型计算机不同。微型计算机对输入、输出信号实时处理,而PLC对输入、输出信号是集中批处理。下面我们具体介绍PLC的扫描工作过程。

PLC扫描工作方式主要分三个阶段:输入采样、程序执行、输出刷新。 ① 输入采样

PLC在开始执行程序之前,首先扫描输入端子,按顺序将所有输入信号,读人到寄存输入状态的输入映像寄存器中,这个过程称为输入采样。PLC在运行程序时,所需的输入信号不是现时取输人端子上的信息,而是取输入映像寄存器中的信息。在本工作周期内这个采样结果的内容不会改变,只有到下一个扫描周期输入采样阶段才被刷新。 ② 程序执行

PLC完成了输入采样工作后,按顺序从0000号地址开始的程序进行逐条扫描执行,并分别从输人映像寄存器、输出映像寄存器以及辅助继电器中获得所需的数据进行运算处理。再将程序执行的结果写入寄存执行结果的输出映像寄存器中保存。但这个结果在全部程序未被执行完毕之前不会送到输出端子上。 ③ 输出刷新

在执行到END指令,即执行完了用户的所有程序后,PLC将输出映像寄存器中的内容送到输出锁存器中进行输出,驱动用户设备。PLC扫描过程示意图如下图2-6所示。

图2-6 PLC扫描过程示意图

PLC工作过程除了包括上述三个主要阶段外,还要完成内部处理、通信处理等工作,在内部处理阶段,PLC检查CPU模块内部的硬件是否正常,将监控定时器复位,以及完成一些别的内部工作。在通信服务阶段,PLC与其他的带微处理器的智能装置实现通信。

第14页 共38页

2.2.4 PLC的选择

目前,在我国PLC的分类还没有一个统一的标准。根据性能和应用范围可将其进行如下分类。

(1)按性能分类

根据PLC的I/O点数、用户程序存储器容量和控制功能的不同,可将其分为小型、中型和大型二类。

小型PLC又称低档PLC,它的I/O点数小于128点,用户程序存储器容量小于4K字,功能简单,以开关量控制为主,可实现条件控制、顺序控制、定时记数控制。适用于单机或小规模生产过程。中型PLC又称中档PLC,它的I/O点数在128~512点之间,用户程序存储器容量为4K~8K字,功能比较丰富、兼有开关量和模拟量的控制能力,具有浮点数运算、数制转换、中断控制、通信联网和PID调节等功能。适用于小型连续生产过程的复杂逻辑控制和闭环过程控制。

大型PLC又称高档PLC,它的I/O点数在512点以上,用户程序存储器容量达到8K字以上,控制功能完善,在中档机的基础上,扩大和增加了函数运算、数据库、监视、记录、打印及中断控制、智能控制、远程控制的功能。适用于大规模的过程控制、集散式控制系统和工厂自动化网络。

(2)按结构分类

根据PLC的构成形式,可将PLC分为整体式和机架式 (模块式)两大类。整体式PLC是将CPU、存储单元、输入输出模块和电源部件集中配置在一个机箱内。这种PLC输入输出点数少、体积小,价格低,便于装入设备内部。小型PLC通常采用这种结构。机架式PLC将各单元做成独立的模块,使用时将这些模块分别插入机架底板的插座上。可根据生产实际的控制要求建立模块,构成不同的控制系统。这种PLC输入输出点数多,配置灵活方便,易于扩展。大中型PLC通常采用这种结构。

(3)按应用范围分类

根据应用范围的不同,可将PLC分为通用型和专用型两类。通用型PLC作为标准工业控制装置可在各个领域使用,而专用型PLC是为了某类控制要求专门设计的PLC,如数控机床专用型、锅炉设备专用型、报警监视专用型等。由于应用的专一性,使其控制质量大大提高。 2.2.5 PLC种类及型号选择

PLC种类较多,主要有西门子、三菱、OMRON、FANAC、东芝等,但能配套生产,大、中、小、微型均有配套且目前用得最广泛的的主要是西门子、三菱、OMRON的PLC。根据系统中的控制要求PLC点数:实际输入点15点,实际输出点8点,综合对比三菱FX系列(包括FX0S、FX1S、FX0N、FX1N、FX2N等)、西门子系列、OMRON系列中I/O点数为32点各型号的PLC的价格、性能、实用场合等各方面,本系统可选择PLC型号为:

[9]

第15页 共38页

FX2N—32MR,合计总数32点—16点输入,DC24V,16点继电器输出;尺寸(mm):220×87×90,其性能、价格都优于其他PLC。

FX2N系列是FX系列PLC家族中最先进的系列,它能最大范围地包容了标准特点,程式执行更快,全面补充通讯功能,适合世界各国不同的电源以及满足单个需要的大量特殊功能模块,它可以为工厂自动化控制应用提供最大的灵活性和控制能力。FX2N系列是FX系列PLC家族中最先进的系列。由于FX2N系列具备如下特点:最大范围的包容了标准特点、程式执行更快、全面补充了通信功能、适合世界各国不同的电源以及满足单个需要的大量特殊功能模块,它可以为工厂自动化应用提供最大的灵活性和控制能力。

该型号PLC有16个输入节点,16个输出节点,能够满足系统要求并留有一定的余量。

2.3 传感器简介及选择 2.3.1 传感器简介

国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。

传感器是一个完整的测量装置(或系统),能把被测非电量转换为与之有确定关系的有用电量输出,以满足信息的传输处理、记录、显示和控制等要求。[3]

传感器一般由敏感元件、变换元件和其他辅助元件组成。但是随着传感器集成技术的发展,传感器的信号调理与转换电路也会安装在传感器的壳体内或者与敏感元件集成在同一芯片之上。因此,信号调理电路以及所需辅助电源都应作为传感器组成的一部分,如图2-7所示。

辅助电源被测量敏感元件非电量变换元件电参量信号调理与转换电路电量

图2-7 传感器的组成示意图

敏感元件——感受被测量,并输出与被测量成确定关系的其他量的元件,如膜片和波纹管,可以把被测压力变成位移量。若敏感元件能直接输出电量(如热电偶),就兼

第16页 共38页

为传感元件了。还有一些新型传感器,如压阻式和谐振式压力传感器、差动变压器式位移传感器等,其敏感元件和传感器就完全是融为一体的。

变换元件——又称传感元件,是传感器的重要组成元件。它可以直接感受被测量(一般为非电量)且输出与被测量成确定关系的电量,如热电偶和热敏电阻。传感元件也可以不直接感受被测量,而只感受与被测量成确定关系的其他非电量。例如,差动变压器式压力传感器,并不直接感受压力,而只是感受与被测压力成确定关系的衔铁位移量,然后输出电量。一般情况下使用的都是这种传感元件。

信号调理与转换电路——能把传感元件输出的电信号转换为便于显示、记录和控制的有用信号的电路。信号调理与转换电路根据传感元件类型的不同有很多种类,常用的电路有电桥、放大器、振动器和阻抗变换器等。

传感器根据使用要求的不同,可以做的很简单,也可以做的很复杂;可以使带反馈的闭环系统,也可以是不带反馈的开环系统。因此,传感器的组成将依不同的情况而有所差异[11]。 2.3.2 传感器的选择

传感器是将被检测对象的各种物理变化量变为电信号的一种变换器。它主要被用于检测系统本身与作业对象、作业环境的状态,为有效地控制系统的动作提供信息。

根据本设计的要求需要对位置检测装置、金属传感器进行选用。位置检测装置检测气缸动作是否到位,金属传感器是为了完成对物料的识别。

(1)位置检测装置

在本设计中,当气缸执行动作时,应有相应的位置检测装置检测动作是否到位,常用的位置检测装置是行程开关。行程开关又称限位开关,是一种根据运动部件的行程位置而切换电路的电器,用于控制机械设备的行程及限位保护。在实际生产中,将行程开关安装在预先安排的位置,当装于生产机械运动部件上的模块撞击行程开关时,行程开关的触点动作,实现电路的切换。行程开关的品种规格很多,按其操作结构可分为直动、滚轮直动、杠杆单、双轮等。选用行程开关时,应根据不同使用场合,满足各方面的要求来进行选择。

本设计中采用直线接触式磁感应开关检测气缸回位动作是否到位,当运动到指定位置时,碰到行程开关,终结上一个动作,准备执行下一个动作。

(2)金属传感器

金属传感器按工作原理分大致可以分为以下三类:利用电磁感应高频振荡型,使用磁铁磁力型和利用电容变化电容型。接近传感器可以不与目标物实际接触情况下检测靠近传感器金属目标物。按检测方法分:所有金属型:相同检测距离内检测任何金属。有色金属型:主要检测铝一类有色金属。通用型:主要检测黑色金属(铁)。

非接触检测,避免了对传感器自身和目标物损坏。无触点输出,操作寿命长。有水

第17页 共38页

或油喷溅苛刻环境中也能稳定检测。反应速度快。小型感测头,安装灵活。

接近传感器原理:电容式接近传感器由高频振荡器和放大器等组成,由传感器检测面与外界构成一个电容器,参与振荡回路工作,起始处于振荡状态。当物体接近传感器检测面对,回路电容量发生变化,使高频振荡器振荡。振荡与停振这二种状态转换为电信号经放大器转化成二进制开关信号。高频振荡型接近传感器工作原理:电感式接近传感器由高频振荡、检波、放大、触发及输出电路等组成。振荡器传感器检测面产生一个交变电磁场,当金属物体接近传感器检测面时,金属中产生涡流吸收了振荡器能量,使振荡减弱停振。振荡器振荡及停振这二种状态,转换为电信号整形放大转换成二进制开关信号,经功率放大后输出。 通用型接近传感器工作原理:振幅变化程度随目标物金属种类不同而不同,检测距离也随目标物金属种类不同而不同。所有金属型传感器工作原理:所有金属型传感器基本上属于高频振荡型。和普通型一样,它也有一个振荡电路,电路中因感应电流目标物内流动引起能量损失影响到振荡频率。目标物接近传感器时,目标物金属种类如何,振荡频率都会提高。传感器检测到这个变化并输出检测信号。

有色金属型传感器工作原理:有色金属传感器基本上属于高频振荡型。它有一个振荡电路,电路中因感应电流目标物内流动引起能量损失影响到振荡频率变化。当铝或铜之类有色金属目标物接近传感器时,振荡频率增高;当铁一类黑色金属目标物接近传感器时,振荡频率降低。振荡频率高于参考频率,传感器输出信号[12]。

①电感传感器: 由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。电感式传感器的特点是:

1) 无活动触点、可靠度高、寿命长; 2) 分辨率高; 3) 灵敏度高;

4) 线性度高、重复性好;

5) 测量范围宽(测量范围大时分辨率低); 6) 无输入时有零位输出电压,引起测量误差; 7) 对激励电源的频率和幅值稳定性要求较高;

8) 不适用于高频动态测量。电感式传感器主要用于位移测量和可以转换成位移变化的机械量(如力、张力、压力、压差、加速度、振动、应变、流量、厚度、液位、比重、转矩等)的测量。

常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸力所造成的附加误差。

第18页 共38页

电感式接近开关属于有开关量输出的位置传感器,用来检测金属物体。它由LC高频振荡器和放大处理电路组成,利用金属物体在接近这个能产生电磁场的振荡感应头时,使物体内部产生涡流。这个涡流反作用于接近开关,使接近开关振荡能力衰减,内部电路的参数发生变化。由此,可识别出有无金属物体接近,进而控制开关的通或断。本系统用该器件来检测铁质材料。

②电容传感器:用电测法测量非电学量时,首先必须将被测的非电学量转换为电学量而后输入之。通常把非电学量变换成电学量的元件称为变换器;根据不同非电学量的特点设计成的有关转换装置称为传感器,而被测的力学量(如位移、力、速度等)转换成电容变化的传感器称为电容传感器。从能量转换的角度

而言,电容变换器为无源变换器,需要将所测的力学量转换成电压或电流后进行放大和处理。力学量中的线位移、角位移、间隔、距离、厚度、拉伸、压缩、膨胀、变形等无不与长度有着密切联系的量;这些量又都是通过长度或者长度比值进行测量的量,而其测量方法的相互关系也很密切。另外,在有些条件下,这些力学量变化相当缓慢,而且变化范围极小,如果要求测量极小距离或位移时要有较高的分辨率,其他传感器很难做到实现高分辨率要求,在精密测量中所普遍使用的差动变压器传感器的分辨率仅达到1~5 μm数量级;而有一种电容测微仪,他的分辨率为0.01 μm,比前者提高了两个数量级,最大量程为100±5 μm,因此他在精密小位移测量中受到青睐。

对于上述这些力学量,尤其是缓慢变化或微小量的测量,一般来说采用电容式传感器进行检测比较适宜,主要是这类传感器具有以下突出优点:

1)测量范围大其相对变化率可超过100%;

2)灵敏度高,如用比率变压器电桥测量,相对变化量可达10-7数量级;

3)动态响应快,因其可动质量小,固有频率高,高频特性既适宜动态测量,也可静态测量;

4)稳定性好由于电容器极板多为金属材料,极板间衬物多为无机材料,如空气、玻璃、陶瓷、石英等;因此可以在高温、低温强磁场、强辐射下长期工作,尤其是解决高温高压环境下的检测难题。

电容传感器也属于具有开关量输出的位置传感器,是一种接近式开关。它的测量头通常是构成电容器的一个极板,而另一个极板是待测物体的本身。当物体移向接近开关时,物体和接近开关的介电常数发生变化,使得和测量头相连的电路状态也随之发生变化。由此,便可控制开关的接通和关断。本装置中电容传感器是用于检测铝质材料[1]

(3)视觉传感器

系统视觉的作用就是最大程度模仿人的眼睛,能够对不同的物体进行识别,本系统采用材质传感器和颜色传感器,对物料进行分拣。

根据不同物料有不同的颜色,可以针对一种颜色的物料进行拣出。颜色传感器同样

第19页 共38页

也属于具有开关量输出的位置传感器。它是在Si等多数光电二极管之前,分别放置R(红)、G(绿)、B(蓝)三种颜色的彩色滤光器,以便处理各自的输出信号并识别彩色的方法。材料分拣系统采用它主要是用来识别红色与绿色的材料。

目前,用于颜色识别的传感器有两种基本类型:①色标传感器,它使用一个白炽灯光源或单色LED光源;②RGB(红绿蓝)颜色传感器,它检测物体的对三基色的反射比率,从而鉴别物体颜色。这类装置许多是温反射型、光束型、光纤型的,封装在各种金属和聚碳酸脂外壳中。典型的输出有:NPN和PNP、继电器和模拟输出。

为了便于PCL控制程序的编写,利于公司企业的经济效益,综合其各种情况,在本设计,选择RGB颜色传感器着为识别物料颜色的装置,继电器输出方式,便于PLC控制系统的简单化,控制系统更容易实现[4~5] 。

RGB 颜色传感器介绍:

TCS230是美国TAOS公司生产的一种可编程彩色光到频率的转换器。该传感器具有分辨率高、可编程的颜色选择与输出定标、单电源供电等特点;输出为数字量,可直接与微处理器连接。它把可配置的硅光电二极管与电流频率转换器集成在一个单一的CMOS电路上,同时在单一芯片上还集成了红绿蓝(RGB)三种滤光器,是业界第一个有数字兼容接口的RGB彩色传感器。TCS230的输出信号是数字量,可以驱动标准的TTL或CMOS逻辑输入,因此可直接与微处理器或其它逻辑电路相连接。由于输出的是数字量,并且能够实现每个彩色信道10位以上的转换精度,因而不再需要A/D转换电路,使电路变得更简单。TCS230采用8引脚的SOIC表面贴装式封装,在单一芯片上集成有64个光电二极管。这些二极管共分为四种类型。其中16个光电二极管带有红色滤波器,16个光电二极管带有绿色滤波器,16个光电二极管带有蓝色滤波器,其余16个不带有任何滤波器,可以透过全部的光信息。这些光电二极管在芯片内是交叉排列的,能够最大限度地减少入射光幅射的不均匀性,从而增加颜色识别的精确度;另一方面,相同颜色的16个光电二极管是并联连接的,均匀分布在二极管阵列中,可以消除颜色的位置误差。工作时,通过两个可编程的引脚来动态选择所需要的滤波器。该传感器的典型输出频率范围从2Hz~500kHz,用户还可以通过两个可编程引脚来选择100%、20%或2%的输出比例因子,或电源关断模式。输出比例因子使传感器的输出能够适应不同的测量范围,提高了它的适应能力。

2.4驱动部分的分析与选择

系统的驱动系统是驱动执行机构运动的传动装置,其驱动系统根据动力源的不同,分为液压、气压、电气、机械、气液联合和电液联合等多种方式。目前采用的主要有液压、气压、电气这三种驱动方式。

液压驱动,功率重量比大,可实现频繁平稳的变速和换向,容易实现过载保护,可自行润滑,使用寿命长。但也存在其油液容易泄露污染环境,需要配备油源,成本较高,

第20页 共38页

工作噪声较大。

电气驱动,控制精度高,驱动力较大,响应快,信号检测、传递、处理方便。但是由于这种驱动方式价格昂贵,限制了在一些场合的应用。因此,人们寻求其他一些经济适用的驱动方式。

气压驱动具有价格低廉、结构简单、功率体积比高、无污染及抗干扰性强、在工业机械手中应用较多。另一方面,气动技术作为“廉价的自动化技术”,由于其元器件性能的不断提高,生产成本的不断降低,被广泛应用于现代化工业生产领域。在现代化的成套设备与自动化生产线上,几乎都配有气动系统。气动机械手技术已经成为能够满足许多行业生产实践要求的一种重要使用工具。

如表2-9提供各种控制方式的比较

项目 系统结构 安装自由度 输出力 定位精度 动作速度 响应速度 清洁度 维护 价格 技术要求 控制自由度 危险性 气压传动 简单 大 稍大 一般 大 慢 清洁 简单 一般 较低 大 几乎无问题 液压传动 复杂 大 大 一般 稍大 快 可能有污染 比气动复杂 稍高 较高 大 注意着火 电气传动 复杂 中 小 很高 大 快 清洁 需要专门技术 高 最高 中 一般无问题 机械传送 较复杂 小 不太大 高 小 中 较清洁 简单 一般 较低 小 无特殊问题 表2-9各种控制方式的比较

通过以上三种驱动方式的比较选用气动驱动的方式,不仅能够满足了本设计的要

第21页 共38页

求,而且节约了成本[13]。

2.5执行机构的选择

在气压传动系统中,组成气动回路是为了驱动用于各种不同目的机械装置,其最重要的三个控制内容是:力的大小、运动的方向和运动的速度。与生产装置相连接的各种类型的气缸,靠压力控制阀、方向控制阀和流量控制阀分别实现对三个内容的控制,正是利用它们组成了各种气动控制回路。现今各控制系统中用于分拣物料的执行机构主要有以下几种:

(1)机械手夹持式

夹持式手部的结构与人手类似,是工业机械广泛应用的一种手部形式。它主要由手指、传动机构、驱动机构组成。其又可分为内撑式、外夹式和内外夹持式,区别在于夹持工件的部位不同,手爪动作方向相反。夹持式手部设计时应注意以下事项:①手指应有一定的开闭范围;②手指应具有适当的夹紧力;③要保证工件在手指内的定位精度;④结构紧凑,重量轻,效率高;⑤通用性和可换性。

(2)气吸式

气吸式手部又称为真空吸盘式手部,它是通过吸盘内产生真空或负压,利用压差而将工件吸附,是工业机械手常用的一种吸持工件的装置。它由吸盘、吸盘架及进排气系统组成,具有结构简单、质量轻、不易损伤工件、使用方便可靠等优点;但要求工件上与吸盘接触的部位光滑平整、清洁、被吸附工件材质致密,没有透气空隙。主要适应于板材、薄壁零件、陶瓷搪瓷制品、玻璃制品、纸张及塑料等表面光滑工件的抓取。

气吸式又可分为:负压吸盘:真空式、喷气式、自挤式空气吸盘;磁力吸盘:永磁吸盘、电磁吸盘。真空式吸附型它是利用真空泵抽出吸附头的空气而形成真空,故称真空式。喷气式吸附的工作原理是当压缩空气高速进入喷嘴时,由于管路的开始段截面积是逐渐收缩的,所以气流速度逐渐增大,在吸气口处形成负压。吸附头与吸气口连同,故形成真空,以吸住工件。自挤式空气吸盘是将软质吸盘按压在工件的表面,挤出吸盘内的空气、从而造成真空、吸住工件。磁吸式手是利用工件的导磁性,利用永久磁铁或电磁铁通电后产生的磁力来吸附材料工件。

(3)气缸式

气缸输出直线往复式气缸是气动执行元件之一。目前最常选用的是标准气缸,其结构和参数都已系列化、标准化、通用化。水平伸缩气缸选用单活塞杆双作用气缸。单活塞杆双作用气缸一般由缸筒、前后缸盖、活塞、活塞杆、密封件和紧固件等组成。其工作原理:对于前伸/回缩气缸,当左侧无杆腔进气,右侧有杆腔排气时活塞杆前伸,反之,活塞杆回缩;对于上升/下降气缸,当上侧无杆腔进气,下侧有杆腔排气时,活塞杆下降,反之活塞杆上升。

当气缸动作时动作限位开关断开,气缸快速弹出,此时先导式电磁阀复位,当气压

第22页 共38页

太大时而气缸没有复位时气缸复位限位开关感应动作从而关闭先导式电磁阀从而起到保护气缸的作用。气缸式的执行机构动作比较稳定,易于维修,控制过程简单,所以该材料分拣系统执行机构选择气缸推动式[14]。 2.6其他元器件及其选择

料槽是一个材料手动入库而自动出库的装置,底部有一个光电传感器。使用时可先人为地将材料放入料槽中,此时光电传感器检测到料块时系统开始运行。当系统运行时,启动传送带并由出料气缸将料库内底层材料推入传送带。传送带是由单向感应电机驱动的皮带式输送装置。

调压阀、空气滤器与气压指示仪表集中于一个模块上,它们接收来自气源的气压并传送到下面的5个气阀中。调节调压阀降压,使其输出压力与每台气动设备和装置所需要的压力一致,并保持该压力的稳定。空气过滤器作用是滤除压缩空气中的水分、油滴以及杂质微粒等危害,以达到系统要求的净化程度。油雾器是一种特殊的注油装置,它以压缩空气为动力,将润滑油喷成雾状并混合于压缩空气中,并随空气进入需要润滑的部件,达到润滑的目的,使压缩空气具有润滑气动元件的能力。

自动分选部分由传感器、先导式电磁换向阀、气缸及导料轨道组成。当传感器检测到相应料块时,对应的先导式电磁换向阀动作驱动气缸动作将其推人应去的滑道。例如:当电感传感器感应到铁块时,对应的气缸动作,将铁块推入对应的导料轨道。

导料轨道主要作用是当气缸推出材料时导出材料。单向感应电动机作为执行机构用于带动传输带输送物料前行。内置电源可以将220交流电转换成24伏的直流电供给各个传感器与气阀以及转接板上的各个指示灯,同时也为单向感应电动机提供稳定的220伏电压。

控制器采用三菱FX2N---32MR型PLC。它接受料槽光电传感器、各材料传感器、先导式电磁换向阀、感应电动机、气缸位置传感器的信号,根据要求分别控制输送带电机和各电磁阀动作。

第23页 共38页

3 分拣系统中的软件设计

3.1 建立实际模型

材料分拣机的PLC控制用于对相关材料的自动化分拣,其硬件结构框图如图3-1所示。

下料传感器可编程控制器PLC电机及下料气缸电感传感器气缸1电容传感器气缸2颜色传感器气缸3气缸压缩机接近开关气缸4

图3-1 系统的硬件结构框图

根据材料分拣系统的结构框图,可得出其结构示意图如图2-3所示。按下启动按钮后,电动机M运行,绿灯L2亮,传送带运转,表示可以进物料。材料经传感器对其进行识别,检测其分别为铁质、铝质、红色,其相对应的气缸进行动作,将材料推入滑槽内,若不是上述的几种材料,则最后剩余的气缸动作,将其推入滑槽内,以完成对其的分拣。

如图3-2所示

指示灯L1指示灯L2传感器气缸物料电机M铁质铝质红色其他传送带滑槽

图3-2 结构框图

3.2 I/O分配及PLC接线

根据材料分拣系统的工作过程由可知,系统的控制有输入信号15个,均为开关量。

第24页 共38页

输出信号有8个,其中一个控制电动机,两个控制指示灯,剩下的控制气阀,也都是开关量。

根据分拣系统的需要配置出I/O对应功能,列表如表3-3所示:

表3-3 分拣系统I/O口配置

三菱PLC(I/O) X00 X01 X02 X03 输 入 部 分 X04 X05 X06 X07 X10 X11 X12 X13 X14 X15 X17 Y00 Y01 输 出 部 分 Y02 Y03 Y04 Y05 Y06 Y07

分拣系统接口(I/O) SB1 SQ1 SQ2 SQ3 SQ4 SA SB SC SN SW1 SW2 SW3 SW4 SW5 SB2 YV1 YV2 YV3 YV4 YV5 M LD1 LD2 备注 启动按钮 上料物料接近开关 铁质物料接近开关 铝质物料接近开关 红色物料接近开关 电感传感器 电容传感器 颜色传感器 判断下料有无(光电传感器) 上料气缸回位限位开关 铁质物料气缸回位限位开关 铝质物料气缸回位限位开关 红色物料气缸回位限位开关 其他物料气缸回位限位开关 停止按钮 上料先导式电磁换向阀 铁质物料先导式电磁换向阀 铝质物料先导式电磁换向阀 红色物料先导式电磁换向阀 其他物料先导式电磁换向阀 传送带 红色指示灯 绿色指示灯 第25页 共38页

根据控制要求可得PLC系统的接线图如图3-4所示

SB1SQ1SQ2SQ3SQ4SASBSCSNSW1SW2SW3SW4SW5SB2YV1X00X01X02X03X04X05X06X07X10X11X12X13X14X15Y00Y01YV2PY02YV3Y03YV4LY04YV5Y05KMY06L1CY07L2COM1X17COMCOM2

图3-4 PLC系统外部接线图

3.3 分拣系统的控制要求

(1)接通电源,按下启动开关,系统进入启动状态,指示灯绿灯亮。

(2)系统启动后,下料传感器(光电传感装置)检测到料槽无材料或各气缸未复位时,传送带须继续运行一个行程10S后自动停机,指示灯红灯亮。

(3)系统启动后,下料传感器(光电传感装置)检测到料槽有材料,每隔2S出料气

第26页 共38页

缸动作一次,动作时间维持为1S,将待测材料推到传送带上,待测物体开始在传送带上运行,并对其进行计数。

(4)当电感传感器检测到铁质材料时,且其对应的接近开关感应到材料接近,铁出料气缸将待测物体推下,并对其进行计数。

(5)当电容检测传感器检测到材料为铝质时,且其对应的接近开关感应到材料接近,铝出料气缸动作将被检测到的材料推下,并对其进行计数。

(6)当颜色检测传感器检测到材料为红色时,且其对应的接近开关感应到材料接近,红色出料气缸动作将待测物体推下,并对其进行计数。

(7)剩余材料在传送带上继续传送,当最后滑槽对应的接近开关感应到材料接近,其出料气缸动作将被检测到的材料推下,并对其进行计数。 3.4 程序设计及编辑

三菱电机公司提供专用的编程软件。GX编程软件(GX开发器)可以用于生成涵盖所有三菱电机公司PLC设备的软件包,使用该软件可以为FX/A/QnA/Q系列PLC生成程序。GX使用Windows操作平台,用梯形图、指令表或者SFC进行编程,程序可以与原先包括基于DOS操作系统的程序在内的编程软件相兼容。

三菱SWOPC-FXGP/WIN-C编程软件如图3-5是应用于FX系列PLC的中文编程软件,可在Windows 9x或Windows 3.1及以上操作系统运行。材料分拣系统采用该软件

图3-5 SWOPC-FXGP/WIN-C 窗口

第27页 共38页

3.5 流程图 如图3-6所示

开始有无物料SN无自动循环周期开始Y5是否归位否周期是否接受否是传送带运行自动传送,每2S传送一个传送带停止运行气缸动作停止传送带停止运行气缸是否归位否是传送带运行 为金属,到位否为铝质,到位否为红色,到位否到位否是是是气缸YV2动作气缸YV3动作气缸YV4动作气缸YV5动作否气缸YV2复位气缸YV3复位是气缸YV4复位气缸YV5复位是是是

图3-6 系统流程图

第28页 共38页

根据分拣系统的要求设计出梯形图,梯形图的程序如下:

第29页 共38页

图3-7 分拣系统的梯形图的程序

当程序设计好之后必须下载到PLC中才可以运行系统,下载时使用的是三菱PLC专用的编程电缆SC—09。这根电缆的一端是接电脑的RS232串口,一端接在PLC的RS422通讯串口上。当电缆接好之后,打开软件,进入要下载的文件。先转换文件,然后选择菜单栏里的“PLC”选择“传送”-“写入”,便可以下载程序到PLC中[19]。

传送程序时,应注意以下问题:

(1) 计算机的RS-232端口及PLC之间必须用指定的缆线及转换器连接; (2) 执行完“读入”后,计算机中的程序将被丢失,原有的程序将被读入的程序所替代,PLC模式改变成被设定的模式;

(3) 在“写出”时,PLC应停止运行,程序必须在RAM或EE-PROM内存保护关断的情况下写出,然后进行校验。

第30页 共38页

4 控制系统的调试

4.1 硬件部分的调试

自动分拣装置由上料机构、机械手搬运机构、分拣机构三部分组成,上料机构主要是检测到的物料后,使推料气缸把物料推到指定位置和装置的运行指示,加入物料看光电开关是否检测到,检测到后推料气缸能否把加人的物料推到指定工位,如不能,原因很可能是安装位置不当造成的。装置中的气缸的动作速度都能通过该缸上的节流阀调节。机械手搬运机构主要气动系统和步进电机组成,机械手的定向是由电感式传感器检测机械手的基准位置,只有机械手定位无误后,才能准确的将物料抓取,步进电机驱动器的细分决定了电机的步距,步数由程序控制,所以驱动器的细分应与程序对应,否则会使与步进电机相连的机械手转动的角度不准。气动元件的位置反馈信号是否正常,气动元件的位置反馈信号是PLC的输入信号,再者气动元件工作需要一定的气压,气压不能达到要求,可能是漏气和气压发生器没有工作造成的。分拣机构主要对物料进行分拣入库,检测到物料为金属物料时,推料气缸能否快速准确的将物料推入指定料槽。由于三个部分为一个整体,正确合理的安装位置才能使得各机构可靠的运行。 4.1.1 气缸的调试

传感器对应的各个气缸在感应到材料后便开始动作,但由于气压的原因,材料不是被打飞,就是根本没有触到材料。首先将总气源的气压稳定在2.5Mp, 然后逐个调试气阀的进气开关,使气缸的气量保留在合适适中的位置。在软件与硬件都已经准备好之后,开始对系统进行调试。 4.1.2 电感、电容传感器的调试

在电容传感器下方的传送带上,放置塑料料块,调整传感器上两螺母,使传感器上下移动,恰好使传感器上端指示灯发光,该高度即为传感器对塑料材料的检出点。材料随传输带传送到传感器时,传感器并不能感应到材料,说明传感器与物体的距离不适合。通过多次调试找到了适合的位置,即传感器的底部与传送带的距离。传感器通过在通电状态下,将待分拣的物料块放置在传送带上,通过不停调节电位器并通过调节角度等将传感器调节至最佳状态。电感传感器与传送带最合适距离为28CM,电容传感器与传送带最佳距离为25CM。 4.1.3 光电传感器的调试

在光电传感器的下方,放置料块,调整传感器上两螺母,使传感器上下移动,恰好使传感器上端指示灯发光,该高度即为传感器对材料的检出点[21]。 4.2 软件部分的调试

将设计好的程序写入PLC后,首先逐条仔细检查,并改正写入时出现的错误。用户程序一般先在实验室模拟调试,实际的输入信号可以用钮子开关和按钮来模拟,各输出量的通/断状态用PLC上有关的发光二极管来显示,一般不用接PLC实际的负载(如

第31页 共38页

接触器、电磁阀等)。可以根据功能表图,在适当的时候用开关或按钮来模拟实际的反馈信号,如限位开关触点的接通和断开。对于顺序控制程序,调试程序的主要任务是检查程序的运行是否符合功能表图的规定,即在某一转换条件实现时,是否发生步的活动状态的正确变化,即该转换所有的前级步是否变为不活动步,所有的后续步是否变为活动步,以及各步被驱动的负载是否发生相应的变化。

在调试时应充分考虑各种可能的情况,对系统各种不同的工作方式、有选择序列的功能表图中的每一条支路、各种可能的进展路线,都应逐一检查,不能遗漏。发现问题后应及时修改梯形图和PLC中的程序,直到在各种可能的情况下输入量与输出量之间的关系完全符合要求。

如果程序中某些定时器或计数器的设定值过大,为了缩短调试时间,可以在调试时将它们减小,模拟调试结束后再写入它们的实际设定值。

在设计和模拟调试程序的同时,可以设计、制作控制台或控制柜,PLC之外的其他硬件的安装、接线工作也可以同时进行[20]。 4.3 整体调试

联机调试是将通过模拟调试的程序进一步进行在线统调。联机调试过程应循序渐进,从PLC只连接输入设备、再连接输出设备、再接上实际负载等逐步进行调试。如不符合要求,则对硬件和程序作调整。通常只需修改部份程序即可。

系统调试应首先按控制要求将电源、外部电路与输入输出端子连接好,然后装载程序于PLC中,运行PLC进行调试。将PLC与现场设备连接。在正式调试前全面检查整个PLC控制系统,包括电源、接地线、设备连接线、I/O连线等。在保证整个硬件连接正确无误的情况下即可送电[22]。

把PLC控制单元的工作方式设置为“RUN”开始运行。反复调试消除可能出现的各种问题。在调试过程中也可以根据实际需求对硬件作适当修改以配合软件的调试。应保持足够长的运行时间使问题充分暴露并加以纠正。调试中多数是控制程序问题。一般分以下几步进行:

(1)对每一个现场信号和控制量做单独测试; (2)检查硬件/修改程序;

(3)对现场信号和控制量做综合测试; (4)带设备调试; (5)调试结束。 4.3.1 调试过程

(1)先将PLC程序写入PLC中,只连接启动与停止开关。

(2)按下启动按钮,然后用万能表测模拟量I/O点之间的电压,看是否按照规定的结果运行。如果运行正确,则证明PLC部分调试成功。

第32页 共38页

(3)连接PLC的输出点与变频器的输入点,并且调试好变频器的参数设置,然后把变频器的输出与电机连接号。

(4)最后打开启动按钮,电机正常运行。 4.4 调试结果

在推料气缸调试的过程中,出现有一个推料气缸伸出后不能及时缩回去,观察后发现是气缸后去调节气压的旋钮太紧,将旋钮拧松点气缸不缩回现象即消失,恢复正常工作状态。

在机械手左右摆动的过程中发现限位不紧缺出现拿料位置的偏差,通过调节机械手左右旋转处的限位点的位置从而达到准确的定位,使之避免出现由于取料位置的误差而对整体系统造成的影响

在程序的模拟调试中出现程序有几处小错误,发现后对程序进行修改并完成整体程序。

联机调试中偶尔出现机械手夹料不紧的现象,通过调节进气阀从而得以改善并能很好的完成任务。

最后通过联机调试中状况的出现与解决完善了整个物料分拣系统。

第33页 共38页

5 结论

综全文所述,本文对PLC的工作原理、适用领域做出了详细的介绍,根据材料分拣的实际需求采用PLC设计出了材料分拣系统。

设计材料分拣系统之前,阅读了大量的资料和文献,不但了解了自动分拣系统发展的历史,发展现状,应用背景。还学习了气动技术、传感器技术、位置控制技术的基本知识。

实际的设计工作中,出现了不少难题:气源于气阀的气压不能实现精确调制,传感器的容易受到外界因素的干扰,上位机与下位机通信不稳定等问题。通过多次试验与实践以上问题基本上得到了解决,如何进一步提高控制性能,可对该系统进行一些改进。

进一步提高气源气压的稳定性,这样可以提高气阀的工作性能,为材料正常进入、弹出传送带打下基础。在硬件上进一步改进挡板、出料轨道、传送带、进料仓,这对系统的实用与可靠性的提高有重大意义。采用步进电机以实现传送带速度的可控制性、实现系统的分拣效率的质的提高。进一步提高传感器的性能,找出一系列可靠的参数,实现系统的稳定。进一步分析研究各种分拣系统地优劣,提出材料分拣系统的综合性能。

本文的设计是对材料的材质进行的简单设计,可以在其基础上对分拣物品的种类与分拣的性能进行拓展及完善,可使其适用于实际生活中的各行各业,是分拣线实现无人化作业,大大提高该环节的生产效率。

第34页 共38页

谢 辞

三年的大学,匆匆而过,毕业设计是我们三年所学的一个体现,经历长时间的努力,此次毕业设计即将结束。在设计的过程中,慢慢的学习,逐渐的巩固大学所学的知识,期间有艰苦,有辛酸,也有欣喜,有快乐。

本论文是在指导老师秦展田的悉心指导和精心培养下完成的。老师严谨的治学态度、缜密的思维方式、踏实的工作作风和对事业的执着,以及对我的谆谆教诲都给我留下了深刻的印象,并使我终身受益。谨此对秦老师表达衷心的感谢和崇高的敬意。 最后,祝所有关心、帮助和支持我的人们身体健康、工作顺利!

第35页 共38页

参考文献

[1] 宋伯生.PLC编程理论算法及技巧.机械工业出版社,2005 [2] 宋伯生.PLC编程实用指南.机械工业出版社,2006

[3] 王兆义.小型可编程控制器实用技术(第2版).机械工业出版社,2007 [4] 冯垛生.变频器的应用与维修.华南理工大学出版社,2001

[5] 机电一体化技术手册编委会.机电一体化技术手册.机械工业出版社,1994 [6] 刘昌棋. 物流配送中心设计[M]. 北京:机械工业出版社,2002

[7] 王兆义,杨新志. 小型可编程控制器实用技术(第2版)[M]. 北京:机械工业出版社,2006.10 [8] 张宝芬等.自动检测技术及仪表控制系统.化学工业出版社,2000 [9] 李建兴.可编程序控制其应用技术[M].北京:机械工业出版社.2005. [10] 董林福等.气动元件与系统识图.化学工业出版社,2009

[11] 张万忠,周渊深. 可编程控制器应用技术[M]. 北京:化学工业出版社,2001.4 [12] 范金玲. 基于PLC的气动机械手控制系统设计. 液压与气动,7期,2010:65, [13] 邓星钟.机电传动控制(第4版).华中科技大学出版社,2007

[14] 陈奎生. 液压与气压传动[M]. 武汉:武汉理工大学出版社,2001:47-106.

[15] 宋建武,赵冬梅. 液压与气动元件操作训练[M]. 北京:化学工业出版社,2007:249-261. [16] 鄂大辛. 液压传动与气压传动[M]. 北京:北京理工大学出版社,2007:276-294.

[17] 周美兰,周封,王岳宇,PLC电气控制与组态设计[M]. 北京:科学技术出版社,2003:126-128 [18] 吴作明. 工控组态软件与PLC应用技术[M]. 北京:北京航空航天大学出版社,2007.1 [19] 周美兰,周封,王岳宇.PLC电气控制与组态设计(第二版)[M]. 北京:科学出版社,2009.3 [20] Ohaman, Martin, Johansson, Stefan, Arzen, Karl-Erik. Implementation aspects of the PLC standard

IEC 1131-3 [J], Control Engineering Practice, 2007,6(8):547-555.

第36页 共38页

附 录

图5-1和图5-2为程序指令表

图5-1

第37页 共38页

图5-2

如表5-2给出系统中主要的元器件清单:

表5-2 主要元器件清单 序号 1 名称 PLC 型号 FX2N-32MR 数量 1 备注 16输入,16输出, 继电器输出形式 品牌或 公司 三菱

第38页 共38页

2 静音空气压缩机 气阀 FB-0.048/7 1 噪音低、性能稳定、工作安全可靠,功率0.55KW 先导式电磁换向阀, 交流:韩国SANWO 3 SVK0120 5 110v,220v(50hz) 直流:韩国SANWO 24V 产品与气阀的型号相配套,推动物料进行分拣 额定电压:DC24V AC110V额定电流:DC:5~40mA AC: 5~20mA 气缸回位限位开关 静电容量式接近开关 判断物料是否到位 判断有无物料 额定电压:DC:6~36V 额定电流:300mA 静电容量型近接开关 额定电压:DC12~24V(DC10~30V) 额定电压:DC:12~24V额定电流:400mA 感应电动机减速电机性能4 气缸 SCDJB10-45S 5 韩国SANWO 5 磁感应开关 D-C73 5 易电国际集团 易电国际集团 欧姆龙 百斯特 6 7 7 接近开关 光电开关 电感式接传感器 电容式传感器 颜色传感器 CAT2-12GM E3R-5DE4 BLJ18A4-8-Z/B1Z 5 1 1 8 E2K-X81ME1 1 欧姆龙 9 TCS230 1 欧姆龙 LINIX 久电子器械厂 DADONG 青岛锐诚10 电动机 YN60-6 1 参数 功率:6W 电压:110V 温岭市永频率:50HZ 电流:0.20A 额定转速:1440r/min 输入电压:AC220伏 11 内置电源 MD35-34 1 ±15% 输出电压:DC24伏 11 滑槽 4 铝合金 德仓储物流设备有限公司 12

传送带 1

本文来源:https://www.bwwdw.com/article/qa77.html

Top