2018年山东省枣庄市中考数学试卷及答案

更新时间:2023-03-08 04:42:53 阅读量: 初中教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2018年山东省枣庄市中考数学试卷及答案

一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分 1.(3分)

的倒数是( )

D.

A.﹣2 B.﹣ C.2

2.(3分)下列计算,正确的是( ) A.a5+a5=a10

B.a3÷a﹣1=a2 C.a?2a2=2a4

D.(﹣a2)3=﹣a6

3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )

A.20° B.30° C.45° D.50°

4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是( )

A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0

5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是( )

A.﹣5 B. C. D.7

6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若

第1页(共27页)

拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )

A.3a+2b B.3a+4b C.6a+2b D.6a+4b

7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( ) A.(﹣3,﹣2)

B.(2,2) C.(﹣2,2) D.(2,﹣2)

8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )

A. B.2 C.2 D.8

9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( )

A.b2<4ac B.ac>0

C.2a﹣b=0 D.a﹣b+c=0

10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是( )

第2页(共27页)

A.2个 B.3个 C.4个 D.5个

11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是( )

A. B. C. D.

12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )

A. B. C. D.

二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分

13.(4分)若二元一次方程组

的解为

,则a﹣b= .

14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】

15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,

第3页(共27页)

b,c,则该三角形的面积为S=边长分别为1,2,

,则△ABC的面积为 .

.现已知△ABC的三

16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°

得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为 .

17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是 .

18.(4分)将从1开始的连续自然数按以下规律排列: 第1行 第2行 第3行 第4行 1 3 7 2 8 4 6 9 5 10 11 12 13 14 15 16 第5行 25 24 23 22 21 20 19 18 17 …

第4页(共27页)

则2018在第 行.

三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤 19.(8分)计算:|

﹣2|+sin60°﹣

﹣(﹣1)2+2﹣2

20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上. (1)在图1中,画出一个与△ABC成中心对称的格点三角形;

(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形; (3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角

形.

21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12. (1)求一次函数与反比例函数的解析式;

(2)记两函数图象的另一个交点为E,求△CDE的面积; (3)直接写出不等式kx+b≤的解集.

22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):

第5页(共27页)

步数 0≤x<4000 4000≤x<8000 8000≤x<12000 12000≤x<16000 16000≤x<20000 20000≤x<24000 频数 8 15 12 c 3 d 频率 a 0.3 b 0.2 0.06 0.04 请根据以上信息,解答下列问题:

(1)写出a,b,c,d的值并补全频数分布直方图;

(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?

(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.

23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D. (1)求线段AD的长度;

(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.

第6页(共27页)

24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG. (1)求证:四边形EFDG是菱形;

(2)探究线段EG、GF、AF之间的数量关系,并说明理由; (3)若AG=6,EG=2

,求BE的长.

25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC. (1)请直接写出二次函数y=ax2+x+c的表达式; (2)判断△ABC的形状,并说明理由;

(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;

(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.

第7页(共27页)

2018年山东省枣庄市中考数学试卷

一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分 1.(3分)

的倒数是( )

D.

A.﹣2 B.﹣ C.2 【解答】解:故选:A.

的倒数是﹣2.

2.(3分)下列计算,正确的是( ) A.a5+a5=a10

B.a3÷a﹣1=a2 C.a?2a2=2a4

D.(﹣a2)3=﹣a6

【解答】解:a5+a5=2a5,A错误; a3÷a1=a3

﹣(﹣1)

=a4,B错误;

a?2a2=2a3,C错误; (﹣a2)3=﹣a6,D正确, 故选:D.

3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )

A.20° B.30° C.45° D.50° 【解答】解:∵直线m∥n, ∴∠2=∠ABC+∠1=30°+20°=50°,

第8页(共27页)

故选:D.

4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是( )

A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0

【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1; A、|a|>|b|,故选项正确;

B、a、c异号,则|ac|=﹣ac,故选项错误; C、b<d,故选项正确;

D、d>c>1,则a+d>0,故选项正确. 故选:B.

5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是( )

A.﹣5 B. C. D.7

【解答】解:将(﹣2,0)、(0,1)代入,得:

解得:∴y=x+1,

将点A(3,m)代入,得:+1=m, 即m=, 故选:C.

第9页(共27页)

6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )

A.3a+2b B.3a+4b C.6a+2b D.6a+4b 【解答】解:依题意有 3a﹣2b+2b×2 =3a﹣2b+4b =3a+2b.

故这块矩形较长的边长为3a+2b. 故选:A.

7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( ) A.(﹣3,﹣2)

B.(2,2) C.(﹣2,2) D.(2,﹣2)

【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),

则点B关于x轴的对称点B′的坐标是(2,2), 故选:B.

8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )

第10页(共27页)

A. B.2 C.2 D.8

【解答】解:作OH⊥CD于H,连结OC,如图, ∵OH⊥CD, ∴HC=HD, ∵AP=2,BP=6, ∴AB=8, ∴OA=4,

∴OP=OA﹣AP=2,

在Rt△OPH中,∵∠OPH=30°, ∴∠POH=60°, ∴OH=OP=1,

在Rt△OHC中,∵OC=4,OH=1, ∴CH=∴CD=2CH=2故选:C.

=.

9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( )

第11页(共27页)

A.b2<4ac B.ac>0

C.2a﹣b=0 D.a﹣b+c=0

【解答】解:∵抛物线与x轴有两个交点, ∴b2﹣4ac>0,即b2>4ac,所以A选项错误; ∵抛物线开口向上, ∴a>0,

∵抛物线与y轴的交点在x轴下方, ∴c<0,

∴ac<0,所以B选项错误;

∵二次函数图象的对称轴是直线x=1, ∴﹣

=1,∴2a+b=0,所以C选项错误;

∵抛物线过点A(3,0),二次函数图象的对称轴是x=1, ∴抛物线与x轴的另一个交点为(﹣1,0), ∴a﹣b+c=0,所以D选项正确; 故选:D.

10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是( )

A.2个 B.3个 C.4个 D.5个

【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3, 故选:B.

第12页(共27页)

本文来源:https://www.bwwdw.com/article/q86.html

Top