Determination of optimal shapes for the stampings of arbitrary shapes

更新时间:2023-06-02 09:12:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

JournalofMaterialsProcessingTechnology121(2002)116±122

Determinationofoptimalshapesforthestampingsofarbitraryshapes

HyunboShim

DepartmentofMechanicalEngineering,YeungnamUniversity,214-1Daedong,Gyongsan712749,SouthKorea

Received29February2000;receivedinrevisedform15November2001;accepted15November2001

Abstract

Thesensitivitymethodhasbeenusedinthisstudyinorderto®ndinitialblankshapeswhichwillresultinthedesiredshapesafterdeformation.Byassumingthe®nalshapetobethedrawncupwithuniformtrimmingwidthatthe¯ange,thecorrespondinginitialblankwhichgivesthe®nalshapeafterdeformationhasbeenfound.Withtheaidofawell-knowndynamicexplicitanalysiscodePam-Stamp1,shapesensitivityhasbeenobtained.Toobtaintheshapesensitivitynumerically,acoupleofdeformationprocesseshavetobeanalyzedateachdesignstage.Drawingoftrapezoidalcup,oilpan,andAUDIfrontdoorpanel,thebenchmarktestproblemofNumisheet'99havebeenchosenastheexample.Ateverycasetheoptimalblankshapehasbeenobtainedafteronlyafewstepsofmodi®cationwithoutanyassumeddeformationpath.Withthepredictedoptimalblank,bothcomputersimulationandexperimentareperformed.Excellentagreementsareobtainedbetweensimulationandexperimentineverycase.Throughthepresentinvestigation,thesensitivitymethodisfoundtobeveryeffectiveinthedesignofarbitraryshapeddrawingprocesses.#2002ElsevierScienceB.V.Allrightsreserved.

Keywords:Optimalblankdesign;Sensitivityanalysis;Arbitraryshapedcup

1.Introduction

Traditionallytheoptimalblankisreferredtoaninitialblankshapetoproduceanetshape.Inthestrictsenseoftheword,thenetshapemeansthatthetrimmingprocessiseliminatedcompletelyinformingprocess.Howeverformingwithouttrimmingisverydif®cultandriskyalthoughnotimpossiblesinceevensmallvariationofprocessparameterscanresultindefects.Assumingthattheoptimalblankisreferredtoaninitialblankshapetoproduceadesiredshapewhichincludestrimmingallowance,theprocessdesignofdeepdrawingbecomeseasytohandle.

Ingeneral,sheetmetalformingprocessesinthemodernindustriesdealwithcomplicatedshapesandtheformingprocessconsistsofseveralsuccessiveoperationsuntilthe®nalshapeisformed.Becauseofthecomplexity,3DCADsystemisanecessarytoolinthesheetmetalproductdesign.Withthe3DCADdataoftheproduct,diesurfacetoproducetheproductcanbemachinedbytheCAMandthedeforma-tionprocesscanbeanalyzedbyaCAEtechnique.

Optimalblankhasmanyevidentadvantages.Theoptimalblanknotonlyimprovesformabilityandproductqualitybutalsoreducesmaterialcost,numberoftrialsinthetry-outstageandtheconsequentproductdevelopmenttime.How-ever,itisnoteasyto®ndtheoptimalblankbecauseofthecomplexityofdeformationbehavior,especiallyintheactualstampingdiesdescribedwith3DCADsystem.

Sincetheoptimalblankdesignisanattractivesubjecttothesheetmetalengineersandtheultimategoalofprocessdesign,severalmethodshavebeendevisedandlotsofdifferentapproachesarecurrentlyused.Amongthemeth-ods,slipline®eldmethod[1±5],geometricmappingmethod[6,7],trial-and-errormethodbasedonFEmethod[8±10],inversemethod[11±13],idealforming[14],backwardtra-cing[15],volumeaddition/subtractionmethod[16],analogymethod[17,18],constrainedoptimizationmethod[19],anddeformationpathiterationmethod[20]areworthwhile.Recently,asensitivitymethod[21]hasbeenproposedbytheauthorsandsuccessfullyappliedtothedrawingofsquarecup,clovercupandL-shapedcup.

Inthisstudy,asystematicmethodbasedonthesensitivitymethodhasbeenappliedto®ndoptimalblankfordeepdrawingofarbitraryshapecupsdescribedbya3DCADsystem.Themethodhasbeenvalidatedbycarryingoutexperimentwiththeoptimalshapepredictedwithsensitivitymethod.

2.Theoreticalprinciples

Fig.1showsthemovementofanodeontheoutline.Thenodewillmovealonganonlinearpathduringdeformation.Consequently,the®nalmovingdirectionwillbedifferentfromtheinitialdirection.Asmallvariationofthe

initial

0924-0136/02/$±seefrontmatter#2002ElsevierScienceB.V.Allrightsreserved.PII:S0924-0136(01)01222-5

H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122117

Fig.1.Movement

ofanoutermostnode.

positionthenodedesiredoftheshapenodeafterresultsinadifferent®nalposition.Thattion.initialInonordertheoutlinetomakeisformingonthetargetisobtainedcontourmeansafterthatdeforma-everytheamountpositionofshapeofthethenodenodesshouldliebeonrepositionedthetargetcontour,basedtheonlocatedLetrepresenttheerror.

positionvectorofamaterialpointanddeformation.

representattheoutlinethepositionofaninitialvectorblankofthebeforematerialdeformationafter®nalanalyzedWiththeinitialblankde®nedbydeformationprocessisFig.bythePam-Stamp1.Fig.2describesdetailsofdeformedIf1todoesexplainnotthelieconceptonthetargetoferrorcontourcorrection.

,hencethepositionbeofshapethecannotresultinthedesiredshape,thewithmovedshapethetargetinordermaterialcontourtomakepointbeforedeformationshouldthedeformedcontourcoincide.changed.sensitivity,byconsideringTheshapethetwosensitivityshapeByofblanks,originalhasinitialintroducingtheconceptofbeenblank,i.e.canbeblankderivedandoffsetnumericallyblank.resultTheofoffsetFEanalysisblankshapewiththehasinitialbeenblankdeterminedde®nedfrombythe d(1)

wherethedrepresentstheunitoutlineamountvectorofinthepositionvectorofanodelocatedattheoffsetmovingblankbeforedeformation.isthemationofoffset.Withthedirectionoffsetblankatthede®ned®rststep.bydisthe,defor-materialprocesshasbeenanalyzedagaintoobtaindtheasThesensitivitypointpositionfortheafterdeformationdeformationateachforthenodeoffsetisde®nedblank.S

(2)

Ifdeformation,,thepositioncoincidesofnodewithatoutlineoftheblankafterTwhichliesonthetarget

Fig.(b)final2.Conceptstate.

ofsensitivityandcontourerrorcorrection:(a)initialstate;contour,ofthereisnoneedtomovetheinitialUnlessinitialblank.

correspondingnodepositionliesonshouldthetargetbemovedcontour,bythenthecorresponding i iÀ1 e(3)

wheredistanceeisthedirectionbetweenshapeSuperscripterrorofeachnode,de®nedastheTand(i)measuredmeansthealongnumberthe®nalofiterations.movinganalyzedAfterblankoutermostagainshapeuntilemodi®cation,reachesaspeci®eddeformationtoleranceprocessatisoptimalblanknode.designFig.3method.

shows¯owthechartofthepresenteveryshapeTheerrorisconvergencedependentonofthetheamountpresentofmethodoffsettodandgettheanoptimalcontourthesizeallowance,oftheblank.whichshouldbedeterminedaccordingto3.Examples

drawingsUsingthesensitivitymethod,optimalblanksforthedeeppanel,beentheofbenchmarkatrapezoidaltestcup,problemoilpan,ofandAUDIfrontdoortionWithfound.

Numisheet'99,havefrontandtheoptimaldoorexperimentpredictedpanelforming.wereoptimalblank,bothcomputersimula-Incarriedorderouttocarryexceptoutforexperiment,theAUDITheness.sheetblanksTablemetalare1showsusedpreparedtheiscold-rolledbyawirecuttingforeachcase.material

propertiessteelof0.76ofthemmblank.

thick-

118H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122

Fig.3.Optimalblankdesignprocedure.

3.1.Trapezoidalcupdeepdrawing

inDieshapeFig.geometryof4.thef130blankcircularfortrapezoidalcupdeepdrawingisshownto®ndblankoptimalhasbeenshapechosenforthisastheprocess.

initialFig.4.Diegeometryfortrapezoidalcupdeep

drawing.

TableMaterial1

propertyoftheblankYoung'sPoisson'smodulusE 2Â105RrationStress±strain-value

R MPas 0:3Coulomb'srelationoffriction

coefficientm 1 514:38

0:24 0punch:001 =sheete 0:2 MPa

;m 0:12 die=sheet

shapeThe¯ange.withtargetshapeafterdeformationisdeterminedastheerrorTheuniformoffsetdistrimmingtakenaswidth1.0mmof1.75mmattheblank,allowancepunchdeformationistakenas0.5mm.WithandthegiventhecontourinitialcedureFig.displacementprocesshasbeenanalyzeduntilthe5reaches20mmwithPam-Stamp1.targetbyshowscomparingtheevolutionthedeformedofoptimal¯angeblankcontourdesignandpro-analysis.shape.withFig.The5(a)deformedshowstheshape¯angeisobtainedfromthetheFEcupf130circularblank.The¯angecontourcontourofofdrawnthedrawncupandexhibitsstages,(c)showssomethedeviation¯angecontoursfromtargetof2ndcontour.andFig.5(b)sensitivityrespectively,tionmethod.Aswhichtheshapeisdeterminederrorbythe3rdpresentdesign0.5mmofblankateveryreachedoutermostwithinnode,thecontoureaftertheblankerror2ndshapeallowancemodi®ca-has

been

ofFig.design5.(Blankf130);shapes(b)2ndanddesign;deformed(c)3rdflangedesignatthe(optimaldesignblank).

stages:(a)initial

H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122119

Fig.flange6.contour;Experimental(b)beforeresultsdrawing;forthe(c)optimalafter

drawing.

blank(trapezoidalcup):(a)determinedcupastheoptimalblankofthecuttingWithdrawingbeenmethod,thedeterminedatthepunchdisplacementpresentof20mm.

trapezoidalthetrapezoidaloptimalcupblank,drawingpreparedexperimentbyawireblankFig.carriedhas6showsout.

theexperimentalresultsfortheoptimal¯angeatthepunchdepthof20mm.Fig.6(a)showsthe¯angecontourscontourcontourspecimenalmostbeforeexactly.afterwithdeformationthecomparisonandafterFig.drawing6(b)andcoincidesoftargetshape.Theexperiment,(c)showswiththetherespectively.photostargetof3.2.Oilpandeepdrawing

oilInplicatedpanorderformingtotesthastheperformanceofthesensitivitymethod,formingshape.Thebeenmainchosencharacteristicsastheexampleofofcom-depthisthattheprocesscontainsrapidchangetheofdrawingoilpanprogressiveandhencegeometrycontactrisingbetweenwallwrinklepunchandisaptblank,tooccureffectdueoftoatThetargettransition.

theshapehascontourthe¯ange.errorallowanceTheoffsetuniformisdtakenistakentrimmingwidthof1.75mmas0.5asmm.1.0mmwhiletheFig.7.Diegeometryforoilpandeepdrawing.

Fig.Theprocedure7.dieFig.geometry8showstheforoilevolutionpandeepofdrawingisshownintheFEcupanalysis.targetshape.bycomparingthedeformedoptimal¯angeblankcontourdesignandFig.The8(a)deformedshowstheshape¯angeiscontourobtainedfromthedrawnwithf130circularblank.The¯angecontourofadrawnoftheFig.design8(b)cupandexhibits(c)showssomedeviationfromthetargetcontour.presentstages,respectively,the¯angewhichcontoursisdeterminedof2ndandby3rdmodi®cationsensitivityallowanceofblankmethod.reachedAstheshapeerroreafter2ndtheshapeof0.5mmateveryoutermostwithinthenode,contourtheblankerrorpresenthasoilbeenpandrawing.

determinedastheoptimalblankofthecuttingWithcarriedmethod,thedeterminedtheoiloptimalpandrawingblank,experimentpreparedbyhasabeenwireblank.Fig.9out.

showstheexperimentalresultswiththeoptimalcomparisonFig.9(a)afteroftargetshowsshape.the¯angecontourtogetherwiththethepantargetdeformationnearly,thoughThenotdeformedexactly,¯angecoincidescontourwithtobedrawingshape.verypromising.iscollected,HoweverFig.theifthe9(b)experimentdeformationbehaviorofoiland(c)showscanbetheconsideredphotos

of

120H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122

Fig.(a)initial8.Blankdesignshapes(f130);and(b)deformed2nddesign;flange(c)at3rdthedesigndesign(optimal

stages(oilblank).

pan):specimenexperiment,beforerespectively.

deformationandafterdrawingusedinthe3.3.AUDIfrontdoorpaneldrawing

panelAsthethesurfacewhere®naldatatheexample,dieisimportedsurfacetheisdrawingofanAUDIfrontdoortopreparedthePam-StampbyaCAD1systemandformatshownhavebeenanalyzed.DiegeometryforthisinprocessanIGESisthecedurecommitteeinFig.10.ofStartingNumisheet'99,fromtheoptimalblankshapepreparedbylyzedblanktoisthecarriedout.Deformationprocessblankhasdesignbeenpro-ana-shapeiswidtherrorapproximatelyfullstrokeofallowanceare900thistakenmm,diesetup.Sincethelengthofasboth5mmtheandoffsetdandtherespectively.

whichdeterminetargetshapeissetthebytrimming20mm,theFig.deformedchange11(a)±(c)oftheshows¯angethecontoursevolutionofofundeformeddesignstageswithcontourinitialstagedesignexhibitsshapestage.someandtargetAsdeviationshape.theshapefromTheshape,errortargetdeformed¯angeeatthecontour3rddesignintheeveryreachedoptimaloutermostwithinblankofnode,thethepresenttheshapeblankerrorallowanceof5mmatfrontshapedoorhaspanelbeendrawing.

chosenastheFig.contour;9.Experimental(b)beforedrawing;results(c)forafter

theoptimaldrawing.

blank(oilpan):(a)flangeFig.10.DiegeometryforAUDIfrontdoorpaneldrawing.

frontFig.12(a)and(b)showsthedeformedshapeblank,panelwiththegiveninitialblankshapeandtheofoptimalAUDImethodThroughrespectively.

theinvestigationtheinthedesignofoptimalofdeep

blankdrawing.

designisfoundproposedtobeverysystematiceffective

H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122121

Fig.11.Evolutionofoptimalblankdesignstages:(a)initialshape(Numisheet'99);(b)2nddesign;(c)3rddesign(optimal

blank).

Acknowledgements

ThisworkwassupportedbytheBrainKorea21Project.References

parisonofdeformedshapeforNumisheet'99benchmark:(a)Numisheet'99benchmarkblank;(b)optimalblank.

[1]H.Gloeckl,nge,Computeraideddesignofblanksfordeep

drawnirregularshapedcomponents,in:Proceedingsofthe11thNAMRC,1983,pp.243±251.

[2]J.H.Vogel,D.Lee,Ananalyticalmethodfordeepdrawingprocess

design,Int.J.Mech.Sci.32(11)(1990)891±907.

[3]X.Chen,R.Sowerby,Thedevelopmentofidealblankshapesbythe

methodofplanestresscharacteristics,Int.J.Mech.Sci.2(1992)159±166.

[4]X.Chen,R.Sowerby,Blankdevelopmentandthepredictionof

earingincupdrawing,Int.J.Mech.Sci.8(5)(1996)509±516.[5]T.Kuwabara,W.H.Si,PC-basedblankdesignsystemfordeep-drawingirregularlyshapedprismaticshellswitharbitrarilyshapedflange,J.Mater.Proc.Technol.63(1997)89±94.

[6]R.Sowerby,J.L.Duncan,E.Chu,Themodelingofsheetmetal

stampings,Int.J.Mech.Sci.28(7)(1986)415±430.

[7]G.N.Blount,B.V.Fischer,Computerizedblankshapepredictionfor

sheetmetalcomponentshavingdoubly-curvedsurfaces,Int.J.Prod.Res.33(4)(1995)993±1005.

[8]C.H.Toh,S.Kobayashi,Deformationanalysisandblankdesignin

squarecupdrawing,Int.J.Mech.Sci.25(1)(1985)

15±32.

4.Conclusion

Asystematicmethodofoptimalblankdesignbasedonthesensitivityanalysishasbeenappliedtothedrawingsofarbitraryshape.Fromtheresultofdeformationprocessanalysis,shapesensitivityhasbeenobtainednumerically.Withtheshapesensitivity,initialblankhasbeenmodi®edinordertoobtainthedesiredshape.Thenumericalandexperi-mentalresultsdemonstratethatthepresentmethodprovidesexcellentpredictionofblankshapeandtheblankshapegivesthetargetshapealmostexactly.Throughtheinvestigationtheproposedsystematicmethodofoptimalblankdesignisfoundtobeveryeffective.

122H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122

[9]anN.approximateKim,S.Kobayashi,method,BlankInt.J.designMach.inToolrectangularDes.Res.cup26drawing(2)(1986)by

[10]125±135.

proceduresY.Q.Guo,forJ.L.strainBatoz,estimationsJ.M.Detraux,ofsheetP.metalDuroux,Finiteelement

[11]Num.deepH.Iseki,Meth.R.Sowerby,Eng.30(1990)Determination1385±1401.

formingparts,Int.J.oftheoptimalblankshapewhen

[12]JSMEdrawingLenoir,O.Barlat,Int.Anonaxisymmetriccupsusingafiniteelementmethod,J.L.38Batoz,(4)(1995)Y.Q.473±479.

approachOptimumandamathematicalblankdesignGuo,F.Mercier,H.Naceur,C.Knopf-programmingofblankcontoursusingtheinverse[13]ingsoftheNumisheet'96,1996,pp.178±185.

technique,in:Proceed-stampingC.H.Lee,H.Huh,Blankdesignandstrainpredictionofautomobile

[14]Technol.partsbyaninversefiniteelementapproach,J.Mater.Proc.forF.Barlat,63K.(1997)Chung,645±650.

O.Richmond,Anisotropicshapespolycrystalsandapplicationtothedesignofplasticoptimumpotentials

1209±1216.

insheetforming,Metall.Mater.Trans.A25A(1994)blank[15]formabilityS.D.Kim,M.H.Park,S.J.Kim,D.G.Seo,Blankdesign[16]elementmethod,fornon-circulardeepdrawingprocessesbythefiniteand

systemD.H.Kim,J.M.Lee,J.Mater.S.H.Proc.Park,D.YTechnol..Yang,75Y(1998).H.Kim,94±99.

Blankdesign

[17](1997)forsheetforming,J.KoreanSoc.Technol.Plasticity6(5)irregularL.Xueshan,400±407.

drawnL.cupsBingwen,usingaModellingfluidanalogy,ofInt.flangeJ.Mech.deformationSci.28of

[18](1986)irregularZ.Zhaotao,491±497.

(8)ingBingwen,anelectricalDeterminationanalogueofmethod,blankshapesInt.J.fordrawing

[19]28H.C.(8)Gea,(1986)R.499±503.

Mech.Sci.Ramamurthy,Blank[20]drawinginS.H.Park,ofJ.W.squareYoon,shells,D.YTrans..Yang,IIEY30design(10)(1998)optimization913±921.

ondeep

[21]J.sheetMech.metalSci.41forming(10)(1999)bythe.H.Kim,Optimumblankdesign

1217±1232.

deformationpathiterationmethod,Int.SensitivityH.B.Shim,K.C.Son,K.H.Kim,OptimumBlankShapeDesignby

France,1999,Analysis,pp.523±528.

in:ProceedingsoftheNumisheet'99,Besancon,

本文来源:https://www.bwwdw.com/article/q5z1.html

Top