Determination of optimal shapes for the stampings of arbitrary shapes
更新时间:2023-06-02 09:12:01 阅读量: 实用文档 文档下载
JournalofMaterialsProcessingTechnology121(2002)116±122
Determinationofoptimalshapesforthestampingsofarbitraryshapes
HyunboShim
DepartmentofMechanicalEngineering,YeungnamUniversity,214-1Daedong,Gyongsan712749,SouthKorea
Received29February2000;receivedinrevisedform15November2001;accepted15November2001
Abstract
Thesensitivitymethodhasbeenusedinthisstudyinorderto®ndinitialblankshapeswhichwillresultinthedesiredshapesafterdeformation.Byassumingthe®nalshapetobethedrawncupwithuniformtrimmingwidthatthe¯ange,thecorrespondinginitialblankwhichgivesthe®nalshapeafterdeformationhasbeenfound.Withtheaidofawell-knowndynamicexplicitanalysiscodePam-Stamp1,shapesensitivityhasbeenobtained.Toobtaintheshapesensitivitynumerically,acoupleofdeformationprocesseshavetobeanalyzedateachdesignstage.Drawingoftrapezoidalcup,oilpan,andAUDIfrontdoorpanel,thebenchmarktestproblemofNumisheet'99havebeenchosenastheexample.Ateverycasetheoptimalblankshapehasbeenobtainedafteronlyafewstepsofmodi®cationwithoutanyassumeddeformationpath.Withthepredictedoptimalblank,bothcomputersimulationandexperimentareperformed.Excellentagreementsareobtainedbetweensimulationandexperimentineverycase.Throughthepresentinvestigation,thesensitivitymethodisfoundtobeveryeffectiveinthedesignofarbitraryshapeddrawingprocesses.#2002ElsevierScienceB.V.Allrightsreserved.
Keywords:Optimalblankdesign;Sensitivityanalysis;Arbitraryshapedcup
1.Introduction
Traditionallytheoptimalblankisreferredtoaninitialblankshapetoproduceanetshape.Inthestrictsenseoftheword,thenetshapemeansthatthetrimmingprocessiseliminatedcompletelyinformingprocess.Howeverformingwithouttrimmingisverydif®cultandriskyalthoughnotimpossiblesinceevensmallvariationofprocessparameterscanresultindefects.Assumingthattheoptimalblankisreferredtoaninitialblankshapetoproduceadesiredshapewhichincludestrimmingallowance,theprocessdesignofdeepdrawingbecomeseasytohandle.
Ingeneral,sheetmetalformingprocessesinthemodernindustriesdealwithcomplicatedshapesandtheformingprocessconsistsofseveralsuccessiveoperationsuntilthe®nalshapeisformed.Becauseofthecomplexity,3DCADsystemisanecessarytoolinthesheetmetalproductdesign.Withthe3DCADdataoftheproduct,diesurfacetoproducetheproductcanbemachinedbytheCAMandthedeforma-tionprocesscanbeanalyzedbyaCAEtechnique.
Optimalblankhasmanyevidentadvantages.Theoptimalblanknotonlyimprovesformabilityandproductqualitybutalsoreducesmaterialcost,numberoftrialsinthetry-outstageandtheconsequentproductdevelopmenttime.How-ever,itisnoteasyto®ndtheoptimalblankbecauseofthecomplexityofdeformationbehavior,especiallyintheactualstampingdiesdescribedwith3DCADsystem.
Sincetheoptimalblankdesignisanattractivesubjecttothesheetmetalengineersandtheultimategoalofprocessdesign,severalmethodshavebeendevisedandlotsofdifferentapproachesarecurrentlyused.Amongthemeth-ods,slipline®eldmethod[1±5],geometricmappingmethod[6,7],trial-and-errormethodbasedonFEmethod[8±10],inversemethod[11±13],idealforming[14],backwardtra-cing[15],volumeaddition/subtractionmethod[16],analogymethod[17,18],constrainedoptimizationmethod[19],anddeformationpathiterationmethod[20]areworthwhile.Recently,asensitivitymethod[21]hasbeenproposedbytheauthorsandsuccessfullyappliedtothedrawingofsquarecup,clovercupandL-shapedcup.
Inthisstudy,asystematicmethodbasedonthesensitivitymethodhasbeenappliedto®ndoptimalblankfordeepdrawingofarbitraryshapecupsdescribedbya3DCADsystem.Themethodhasbeenvalidatedbycarryingoutexperimentwiththeoptimalshapepredictedwithsensitivitymethod.
2.Theoreticalprinciples
Fig.1showsthemovementofanodeontheoutline.Thenodewillmovealonganonlinearpathduringdeformation.Consequently,the®nalmovingdirectionwillbedifferentfromtheinitialdirection.Asmallvariationofthe
initial
0924-0136/02/$±seefrontmatter#2002ElsevierScienceB.V.Allrightsreserved.PII:S0924-0136(01)01222-5
H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122117
Fig.1.Movement
ofanoutermostnode.
positionthenodedesiredoftheshapenodeafterresultsinadifferent®nalposition.Thattion.initialInonordertheoutlinetomakeisformingonthetargetisobtainedcontourmeansafterthatdeforma-everytheamountpositionofshapeofthethenodenodesshouldliebeonrepositionedthetargetcontour,basedtheonlocatedLetrepresenttheerror.
positionvectorofamaterialpointanddeformation.
representattheoutlinethepositionofaninitialvectorblankofthebeforematerialdeformationafter®nalanalyzedWiththeinitialblankde®nedbydeformationprocessisFig.bythePam-Stamp1.Fig.2describesdetailsofdeformedIf1todoesexplainnotthelieconceptonthetargetoferrorcontourcorrection.
,hencethepositionbeofshapethecannotresultinthedesiredshape,thewithmovedshapethetargetinordermaterialcontourtomakepointbeforedeformationshouldthedeformedcontourcoincide.changed.sensitivity,byconsideringTheshapethetwosensitivityshapeByofblanks,originalhasinitialintroducingtheconceptofbeenblank,i.e.canbeblankderivedandoffsetnumericallyblank.resultTheofoffsetFEanalysisblankshapewiththehasinitialbeenblankdeterminedde®nedfrombythe d(1)
wherethedrepresentstheunitoutlineamountvectorofinthepositionvectorofanodelocatedattheoffsetmovingblankbeforedeformation.isthemationofoffset.Withthedirectionoffsetblankatthede®ned®rststep.bydisthe,defor-materialprocesshasbeenanalyzedagaintoobtaindtheasThesensitivitypointpositionfortheafterdeformationdeformationateachforthenodeoffsetisde®nedblank.S
(2)
Ifdeformation,,thepositioncoincidesofnodewithatoutlineoftheblankafterTwhichliesonthetarget
Fig.(b)final2.Conceptstate.
ofsensitivityandcontourerrorcorrection:(a)initialstate;contour,ofthereisnoneedtomovetheinitialUnlessinitialblank.
correspondingnodepositionliesonshouldthetargetbemovedcontour,bythenthecorresponding i iÀ1 e(3)
wheredistanceeisthedirectionbetweenshapeSuperscripterrorofeachnode,de®nedastheTand(i)measuredmeansthealongnumberthe®nalofiterations.movinganalyzedAfterblankoutermostagainshapeuntilemodi®cation,reachesaspeci®eddeformationtoleranceprocessatisoptimalblanknode.designFig.3method.
shows¯owthechartofthepresenteveryshapeTheerrorisconvergencedependentonofthetheamountpresentofmethodoffsettodandgettheanoptimalcontourthesizeallowance,oftheblank.whichshouldbedeterminedaccordingto3.Examples
drawingsUsingthesensitivitymethod,optimalblanksforthedeeppanel,beentheofbenchmarkatrapezoidaltestcup,problemoilpan,ofandAUDIfrontdoortionWithfound.
Numisheet'99,havefrontandtheoptimaldoorexperimentpredictedpanelforming.wereoptimalblank,bothcomputersimula-Incarriedorderouttocarryexceptoutforexperiment,theAUDITheness.sheetblanksTablemetalare1showsusedpreparedtheiscold-rolledbyawirecuttingforeachcase.material
propertiessteelof0.76ofthemmblank.
thick-
118H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122
Fig.3.Optimalblankdesignprocedure.
3.1.Trapezoidalcupdeepdrawing
inDieshapeFig.geometryof4.thef130blankcircularfortrapezoidalcupdeepdrawingisshownto®ndblankoptimalhasbeenshapechosenforthisastheprocess.
initialFig.4.Diegeometryfortrapezoidalcupdeep
drawing.
TableMaterial1
propertyoftheblankYoung'sPoisson'smodulusE 2Â105RrationStress±strain-value
R MPas 0:3Coulomb'srelationoffriction
coefficientm 1 514:38
0:24 0punch:001 =sheete 0:2 MPa
;m 0:12 die=sheet
shapeThe¯ange.withtargetshapeafterdeformationisdeterminedastheerrorTheuniformoffsetdistrimmingtakenaswidth1.0mmof1.75mmattheblank,allowancepunchdeformationistakenas0.5mm.WithandthegiventhecontourinitialcedureFig.displacementprocesshasbeenanalyzeduntilthe5reaches20mmwithPam-Stamp1.targetbyshowscomparingtheevolutionthedeformedofoptimal¯angeblankcontourdesignandpro-analysis.shape.withFig.The5(a)deformedshowstheshape¯angeisobtainedfromthetheFEcupf130circularblank.The¯angecontourcontourofofdrawnthedrawncupandexhibitsstages,(c)showssomethedeviation¯angecontoursfromtargetof2ndcontour.andFig.5(b)sensitivityrespectively,tionmethod.Aswhichtheshapeisdeterminederrorbythe3rdpresentdesign0.5mmofblankateveryreachedoutermostwithinnode,thecontoureaftertheblankerror2ndshapeallowancemodi®ca-has
been
ofFig.design5.(Blankf130);shapes(b)2ndanddesign;deformed(c)3rdflangedesignatthe(optimaldesignblank).
stages:(a)initial
H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122119
Fig.flange6.contour;Experimental(b)beforeresultsdrawing;forthe(c)optimalafter
drawing.
blank(trapezoidalcup):(a)determinedcupastheoptimalblankofthecuttingWithdrawingbeenmethod,thedeterminedatthepunchdisplacementpresentof20mm.
trapezoidalthetrapezoidaloptimalcupblank,drawingpreparedexperimentbyawireblankFig.carriedhas6showsout.
theexperimentalresultsfortheoptimal¯angeatthepunchdepthof20mm.Fig.6(a)showsthe¯angecontourscontourcontourspecimenalmostbeforeexactly.afterwithdeformationthecomparisonandafterFig.drawing6(b)andcoincidesoftargetshape.Theexperiment,(c)showswiththetherespectively.photostargetof3.2.Oilpandeepdrawing
oilInplicatedpanorderformingtotesthastheperformanceofthesensitivitymethod,formingshape.Thebeenmainchosencharacteristicsastheexampleofofcom-depthisthattheprocesscontainsrapidchangetheofdrawingoilpanprogressiveandhencegeometrycontactrisingbetweenwallwrinklepunchandisaptblank,tooccureffectdueoftoatThetargettransition.
theshapehascontourthe¯ange.errorallowanceTheoffsetuniformisdtakenistakentrimmingwidthof1.75mmas0.5asmm.1.0mmwhiletheFig.7.Diegeometryforoilpandeepdrawing.
Fig.Theprocedure7.dieFig.geometry8showstheforoilevolutionpandeepofdrawingisshownintheFEcupanalysis.targetshape.bycomparingthedeformedoptimal¯angeblankcontourdesignandFig.The8(a)deformedshowstheshape¯angeiscontourobtainedfromthedrawnwithf130circularblank.The¯angecontourofadrawnoftheFig.design8(b)cupandexhibits(c)showssomedeviationfromthetargetcontour.presentstages,respectively,the¯angewhichcontoursisdeterminedof2ndandby3rdmodi®cationsensitivityallowanceofblankmethod.reachedAstheshapeerroreafter2ndtheshapeof0.5mmateveryoutermostwithinthenode,contourtheblankerrorpresenthasoilbeenpandrawing.
determinedastheoptimalblankofthecuttingWithcarriedmethod,thedeterminedtheoiloptimalpandrawingblank,experimentpreparedbyhasabeenwireblank.Fig.9out.
showstheexperimentalresultswiththeoptimalcomparisonFig.9(a)afteroftargetshowsshape.the¯angecontourtogetherwiththethepantargetdeformationnearly,thoughThenotdeformedexactly,¯angecoincidescontourwithtobedrawingshape.verypromising.iscollected,HoweverFig.theifthe9(b)experimentdeformationbehaviorofoiland(c)showscanbetheconsideredphotos
of
120H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122
Fig.(a)initial8.Blankdesignshapes(f130);and(b)deformed2nddesign;flange(c)at3rdthedesigndesign(optimal
stages(oilblank).
pan):specimenexperiment,beforerespectively.
deformationandafterdrawingusedinthe3.3.AUDIfrontdoorpaneldrawing
panelAsthethesurfacewhere®naldatatheexample,dieisimportedsurfacetheisdrawingofanAUDIfrontdoortopreparedthePam-StampbyaCAD1systemandformatshownhavebeenanalyzed.DiegeometryforthisinprocessanIGESisthecedurecommitteeinFig.10.ofStartingNumisheet'99,fromtheoptimalblankshapepreparedbylyzedblanktoisthecarriedout.Deformationprocessblankhasdesignbeenpro-ana-shapeiswidtherrorapproximatelyfullstrokeofallowanceare900thistakenmm,diesetup.Sincethelengthofasboth5mmtheandoffsetdandtherespectively.
whichdeterminetargetshapeissetthebytrimming20mm,theFig.deformedchange11(a)±(c)oftheshows¯angethecontoursevolutionofofundeformeddesignstageswithcontourinitialstagedesignexhibitsshapestage.someandtargetAsdeviationshape.theshapefromTheshape,errortargetdeformed¯angeeatthecontour3rddesignintheeveryreachedoptimaloutermostwithinblankofnode,thethepresenttheshapeblankerrorallowanceof5mmatfrontshapedoorhaspanelbeendrawing.
chosenastheFig.contour;9.Experimental(b)beforedrawing;results(c)forafter
theoptimaldrawing.
blank(oilpan):(a)flangeFig.10.DiegeometryforAUDIfrontdoorpaneldrawing.
frontFig.12(a)and(b)showsthedeformedshapeblank,panelwiththegiveninitialblankshapeandtheofoptimalAUDImethodThroughrespectively.
theinvestigationtheinthedesignofoptimalofdeep
blankdrawing.
designisfoundproposedtobeverysystematiceffective
H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122121
Fig.11.Evolutionofoptimalblankdesignstages:(a)initialshape(Numisheet'99);(b)2nddesign;(c)3rddesign(optimal
blank).
Acknowledgements
ThisworkwassupportedbytheBrainKorea21Project.References
parisonofdeformedshapeforNumisheet'99benchmark:(a)Numisheet'99benchmarkblank;(b)optimalblank.
[1]H.Gloeckl,nge,Computeraideddesignofblanksfordeep
drawnirregularshapedcomponents,in:Proceedingsofthe11thNAMRC,1983,pp.243±251.
[2]J.H.Vogel,D.Lee,Ananalyticalmethodfordeepdrawingprocess
design,Int.J.Mech.Sci.32(11)(1990)891±907.
[3]X.Chen,R.Sowerby,Thedevelopmentofidealblankshapesbythe
methodofplanestresscharacteristics,Int.J.Mech.Sci.2(1992)159±166.
[4]X.Chen,R.Sowerby,Blankdevelopmentandthepredictionof
earingincupdrawing,Int.J.Mech.Sci.8(5)(1996)509±516.[5]T.Kuwabara,W.H.Si,PC-basedblankdesignsystemfordeep-drawingirregularlyshapedprismaticshellswitharbitrarilyshapedflange,J.Mater.Proc.Technol.63(1997)89±94.
[6]R.Sowerby,J.L.Duncan,E.Chu,Themodelingofsheetmetal
stampings,Int.J.Mech.Sci.28(7)(1986)415±430.
[7]G.N.Blount,B.V.Fischer,Computerizedblankshapepredictionfor
sheetmetalcomponentshavingdoubly-curvedsurfaces,Int.J.Prod.Res.33(4)(1995)993±1005.
[8]C.H.Toh,S.Kobayashi,Deformationanalysisandblankdesignin
squarecupdrawing,Int.J.Mech.Sci.25(1)(1985)
15±32.
4.Conclusion
Asystematicmethodofoptimalblankdesignbasedonthesensitivityanalysishasbeenappliedtothedrawingsofarbitraryshape.Fromtheresultofdeformationprocessanalysis,shapesensitivityhasbeenobtainednumerically.Withtheshapesensitivity,initialblankhasbeenmodi®edinordertoobtainthedesiredshape.Thenumericalandexperi-mentalresultsdemonstratethatthepresentmethodprovidesexcellentpredictionofblankshapeandtheblankshapegivesthetargetshapealmostexactly.Throughtheinvestigationtheproposedsystematicmethodofoptimalblankdesignisfoundtobeveryeffective.
122H.Shim/JournalofMaterialsProcessingTechnology121(2002)116±122
[9]anN.approximateKim,S.Kobayashi,method,BlankInt.J.designMach.inToolrectangularDes.Res.cup26drawing(2)(1986)by
[10]125±135.
proceduresY.Q.Guo,forJ.L.strainBatoz,estimationsJ.M.Detraux,ofsheetP.metalDuroux,Finiteelement
[11]Num.deepH.Iseki,Meth.R.Sowerby,Eng.30(1990)Determination1385±1401.
formingparts,Int.J.oftheoptimalblankshapewhen
[12]JSMEdrawingLenoir,O.Barlat,Int.Anonaxisymmetriccupsusingafiniteelementmethod,J.L.38Batoz,(4)(1995)Y.Q.473±479.
approachOptimumandamathematicalblankdesignGuo,F.Mercier,H.Naceur,C.Knopf-programmingofblankcontoursusingtheinverse[13]ingsoftheNumisheet'96,1996,pp.178±185.
technique,in:Proceed-stampingC.H.Lee,H.Huh,Blankdesignandstrainpredictionofautomobile
[14]Technol.partsbyaninversefiniteelementapproach,J.Mater.Proc.forF.Barlat,63K.(1997)Chung,645±650.
O.Richmond,Anisotropicshapespolycrystalsandapplicationtothedesignofplasticoptimumpotentials
1209±1216.
insheetforming,Metall.Mater.Trans.A25A(1994)blank[15]formabilityS.D.Kim,M.H.Park,S.J.Kim,D.G.Seo,Blankdesign[16]elementmethod,fornon-circulardeepdrawingprocessesbythefiniteand
systemD.H.Kim,J.M.Lee,J.Mater.S.H.Proc.Park,D.YTechnol..Yang,75Y(1998).H.Kim,94±99.
Blankdesign
[17](1997)forsheetforming,J.KoreanSoc.Technol.Plasticity6(5)irregularL.Xueshan,400±407.
drawnL.cupsBingwen,usingaModellingfluidanalogy,ofInt.flangeJ.Mech.deformationSci.28of
[18](1986)irregularZ.Zhaotao,491±497.
(8)ingBingwen,anelectricalDeterminationanalogueofmethod,blankshapesInt.J.fordrawing
[19]28H.C.(8)Gea,(1986)R.499±503.
Mech.Sci.Ramamurthy,Blank[20]drawinginS.H.Park,ofJ.W.squareYoon,shells,D.YTrans..Yang,IIEY30design(10)(1998)optimization913±921.
ondeep
[21]J.sheetMech.metalSci.41forming(10)(1999)bythe.H.Kim,Optimumblankdesign
1217±1232.
deformationpathiterationmethod,Int.SensitivityH.B.Shim,K.C.Son,K.H.Kim,OptimumBlankShapeDesignby
France,1999,Analysis,pp.523±528.
in:ProceedingsoftheNumisheet'99,Besancon,
正在阅读:
Determination of optimal shapes for the stampings of arbitrary shapes06-02
24进一步优化我国民营经济的发展环境10-05
汉英语言对比02-01
半月评论2011年第03期呵护亲情05-30
美丽的芭比公主作文500字06-25
我国资本市场发展现状及障碍09-25
2011年指导性施工组织设计03-10
2017年中国疗养院现状分析及市场前景预测(目录) - 图文11-09
《骆驼祥子》辅助阅读资料11-23
《排球-正面屈体扣球》体育试讲稿02-23
- 1determination of ten steroid hormones in animal origin food
- 2Simultaneous determination of catechol and hydroquinone by carbon paste electrode modified
- 3From Pigou to extended liability - on the optimal taxation of externalities under imperfect
- 4Liquid-phase microextraction–gas chromatography–mass spectrometry for the determination
- 5Liquid-phase microextraction–gas chromatography–mass spectrometry for the determination
- 6Multi-view ensemble learning an optimal feature set
- 7Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social Development, and Well
- 8Design-Expert 8.0使用指南-Multifactor RSM-Optimal design
- 9Design-Expert 8.0使用指南-Multifactor RSM-Optimal design
- 10金融危机理论经典Presentation of Optimal Financial Crises_孙建飞
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- shapes
- Determination
- stampings
- arbitrary
- optimal
- 尼康D90 d700 d300s 7d对比
- 高一数学必修1 集合教案
- 八年级传统文化人生规划试题
- 航空发动机涡轮叶片材料的应用与发展
- 施工物资试验项目与取样规定
- 民营医院经营管理
- 一年级上册语文教学反思
- 图书馆管理系统实验报告
- 《数字与文化——表格数据的处理》教学设计新部编版
- 汨罗市已婚育龄妇女避节育措施知情选择情况分析
- 城市规划中的社会公平性问题浅析_陈清明
- 绘画里的中国;走进大师与经典1-6章答案
- SBS朗文国际英语教程第二册学生用书最新版同步配套练习册答案
- 初级汽车维修工试题
- 船体分段合拢设备方案设计
- PLC与传感器在磷矿输送系统中的应用-技师论文
- 食堂财务管理制度
- 高二信息技术知识点复习 (1)
- 防范和控制采购风险管理的主要方法对策
- 到底要不要穿防辐射服 防辐射服是否有用