初中数学教学案例及反思
更新时间:2024-02-15 12:48:01 阅读量: 经典范文大全 文档下载
篇一:初中数学课堂教学案例分析
初中数学课堂教学案例分析
一、教学案例实录
教学过程 :
1. 习旧引新
⑴ 在 ⊙O 上 , 任到三个点 A 、 B 、 C, 然后顺次连接 , 得到的是什么图形 ? 这个图形与 ⊙O 有什么关系 ?
⑵ 由圆内接三角形的概念 , 能否得出什么叫圆的内接四边形呢 ( 类比 )?
2. 概念学习
⑴ 什么叫圆的内接四边形 ?
⑵ 如图 1, 说明四边形 ABCD 与 ⊙O 的关系。
3. 探讨性质
⑴ 前面我们已经学习了一类特殊四边形 ---- 平行四边形 , 矩形 , 菱形 , 正方形 , 等腰梯形的性质 , 那么要探讨圆内接四边形的性质 , 一般要从哪几个方面入手 ? ⑵ 打开《几何画板》 , 让学生动手任意画 ⊙O 和 ⊙O 的内接四边形 ABCD 。 ( 教师适当指导 )
⑶ 量出可试题的所有值 ( 圆的半径和四边形的边 , 内角 , 对角线 , 周长 , 面积 ), 并观察这些量之间的关系。
⑷ 改变圆的半径大小 , 这些量有无变化 ? 由 (3) 观察得出的某些关系有无变化 ?
⑸ 移动四边形的一个顶点 , 这些量有无变化 ? 由 (3) 观察得出的某些关系有无变化 ? 移动四边形的四个顶点呢 ? 移动三个顶点呢 ?
⑹ 如何用命题的形式表述刚才的实验得出来的结论呢 ?( 让学生回答 )
4. 性质的证明及巩固练习
⑴ 证明猜想
已知 : 如图 1, 四边形 ABCD 内接于 ⊙O 。求证 :∠BAD+∠BCD=180°,∠ABC+∠ADC=180° 。
⑵ 完善性质
① 若将线段 BC 延长到 E( 如图 2), 那么 ,∠DCE 与 ∠BAD 又有什么关系呢 ?
② 圆的内接四边形的性质定理 : 圆内接四边形的对角互补 , 并且任何一个外角都等于它的内对角。 ⑶ 练习
① 已知 : 在圆内接四边形 ABCD 中 , 已知 ∠A=50°,∠D-∠B=40°, 求 ∠B,∠C,∠D 的度数。
② 已知 : 如图 3, 以等腰 △ABC 的底边 BC 为直径的 ⊙O 分别交两腰 AB,AC 于点 E,D, 连结 DE,
求证 :DE∥BC 。 ( 演示作业本 )
5. 例题讲解
引例已知 : 如图 4,AD 是 △ABC 中 ∠BAC 的平分线 , 它与 △ABC 的外接圆交于点
D 。
求证 :DB=DC 。 ( 引例由学生证明并板演 )
教师先评价学生的板演情况 , 然后提出 , 若将已知中的“ AD 是 △ABC 中的 ∠BAC 的平分线 ” 改为“ AD 是 △ABC 的外角 ∠EAC 的平分线 ”, 又该如何证明 ? 引出例题。 例已知 : 如图 5,AD 是 △ABC 的外角 ∠EAC 的平分线 , 与 △ABC 的外接圆交于点 D,
求证 :DB=DC 。
6. 小结 : 为了使学生对所学的内容有一个完整而深刻的印象 , 让学生组成小组 , 从概念 , 性质 , 方法 , 特殊性进行讨论 , 然后对讨论的结果进行归纳。
⑴ 本节课我们学习了圆内接四边形的概念和圆内接四边形的和要性质 , 要求同学们理解圆内接四边形和四边形的外接圆的概念 , 理解圆内接四边形的性质定理 ; 并初步应用性质定理进行有关命题的证明和计算。
⑵ 我们结合《几何画板》的使用导出了圆内接四边形的性质 , 在这一过程中用到了许多数学方法 ( 实验 , 观察 , 类比 , 分析 , 归纳 , 猜想等 ), 同学们要逐步学会用并关于应用这些方法去探讨有关的数学问题 , 提高我们的数学实践能力与创新能力。
7. 作业
⑴ 如图 6, 在等腰直角 △ABC 中 ,∠C=90°, 以 AC 为弦的 ⊙O 分别交 BC,AB 于 D,E, 连结 DE 。求证 :△BDE 是等腰直角三角形。
⑵ 已知 :⊙O 和 ⊙O '相交于 A,B 两点 , 经过 A,B 两点分别作直线 CD 和 EF,CD 交 ⊙O,⊙O '于 C,D,EF 交 ⊙O,⊙O '于 E,F, 连结 CE,AB,DF 。
问 : 当 CD 和 EF 满足怎样的条件时 , 四边形 CEDF 是怎样的特殊四边形 ? 并证明所得的结论。 ( 选做 )
二、对教学案例的分析
这一教学案例当然不能被看作是培养学生创新意识的初中数学课堂教学的范例 , 其中许多环节还需要进一步改进完善。但其较为真实地反映了目前数学课堂教学的一些情况 , 一些教学环节的处理还是值得肯定的。
1. 突出了数学课堂教学中的探索性
关于圆的内接四边形性质的引出 , 在本教学案例上没有像教材那样直接给出定理 , 然后证明 ; 而是利用《几何画板》采取了让学生动手画一画 , 量一量的方式 , 使学生通过对直观图形的观察归纳和猜想 , 自己去发现结论 , 并用命题的形式表述结论。关于圆内接四边形性质的证明 , 没有采用教师给学生演示定理证明 , 而是引导学生证明猜想 , 并做了进一步的完善。这种探索性的数学教学方式在其后的例题讲解中亦得到了进一步的贯彻。这样既调动了学生学习数学的积极性和主动性 , 增强了学生参与数学活动的意识 , 又培养了学生的动手实践能力。同时 , 也向学生渗透了实践 ---- 认识 ---- 再实践 ---- 再认识的辩证观点。一方面 , 使数学不再是一门单调枯燥 , 缺乏直观印象的高度抽象的学科 , 通过提供生动活泼的直观演示 , 让学生多角度 , 快节奏地去认识教学内容 , 达到事半功倍的教学效果 ; 另一方面 , 计算机所特有的 , 对数学活动过程的展示 , 对数学细节问题的处理可以使学生体验到用运动的观点来研究图形的思想 , 让学生充分感受到发现总是代和解决问题带来的愉悦 , 培养学生的数学创新意识。
2. 引进了计算机《几何画板》技术
本课例在引导学生得出圆内接四边形的性质时 , 通过使用《几何画板》 , 从而实现了改变圆的半径 , 移动四边形的顶点等 , 从而使初中平面几何教学发生了重大的变化 , 那就是让图形出来说话 , 充分调动学生的直觉思维。这样一来不仅极大地激发了学生学习的兴趣 , 而且比过去的教学更能够使学生深刻地理解几何。当然 , 本教学案例在这方面的探索还是初步的 , 设想今后通过计
算机技术的进一步开发与应用 , 初中平面几何课能够给学生更多动手的机会 , 让学生以研究的方式学习几何 , 进一步突出学生在学习中的主体地位。
3. 引入了数学开放题
本教学案例在增大数学课堂教学的探索性 , 计算机技术进入数学课堂的同时 , 在学生作业中还增加了开放题 ( 作业 2), 为学生创造了更为广阔的思维空间 , 对此应大力提倡。目前 , 世界各国在数学教育改革中都十分强调高层次思维能力的培养 , 这些高层次思维能力包括了推理 , 交流 , 概括和解决问题等方面的能力。要提高学生这种高层次的思维 , 在数学课堂教学中引进开放性问题是十分有益的。我国的数学题一直是化归型的 , 即将结论化归为条件 , 所求的对象化归为已知的结果。这种只考查逻辑连接的能力固然重要 , 并且永远是主要部分 , 但是 , 它不能是惟一的。单一的题型已经严惩阻碍了学生数学创新能力的培养。
在数学教学中还可将一些常规性题目发行为开放题。如教材中有这样一个平面几何题“证明 : 顺次连接四边形四条边的中点 , 所得的四边形是平行四边形。 ” 这是一个常规性题目 , 我们可以把它发行为“画一个四边形是什么样的特殊四边形 , 并加以证明。 ” 我们还可用计算机来演示一个形状不断变化的四边形 , 让学生观察它们四条边中点的连线组成一个什么样的特殊四边形 , 在学生完成猜想和证明过程后 , 我们进而可提出如下问题 :” 要使顺次连接四条边的中点所得的四边形是菱形 , 那么对原来的四边形应有哪些新的要求 ? 如果要使所得的四边形是正方形 , 还需要有什么新的要求 ?” 通过这些改造 , 常规题便具有了“开放题 ” 的形式 , 例题的功能也可更充分地发挥。
在此 , 我们进一步强调培养学生创新意识的数学课堂教学 , 不应仅仅把开放题作为一种习题形式 , 而应作为一咱教学思想。这种教学思想反映了数学教学观的转变 , 这主要反映在开放性问题强调了数学知识的整体性 , 数学教学的思维性 , 数学解决问题的过程性 , 强调了学生在教学活动中的主体作用于以及有利于提高学生学习的乐趣 , 提高了学生学习的内在动力等。
4. 学生学习方式被确定为“发现学习 ”
篇二:初中数学教学反思案例分析
初中数学教学反思案例分析
【案例一】“简单的轴对称图形”教学反思
(北师大版版教材七年级(下)第七章生活中的轴对称第二节 “简单的轴对称图形”第一课时)
1. 根据新课程概念:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。本节课的设计遵循了这一理念,注意通过折纸等丰富多彩的活动激发学生学习本课的积极性,注意让学生动手操作实践,在操作中进行自主探索和师生、生生互动交流,从而使学生能很好地掌握角平分线的性质。并获得用折纸这样的操作发现法探究图形性质的活动经验。
2. 在本节课的教材内容处理上,既注意了教材是最基本的课程资源,它是满足所有七年级学生最基本的知识内容,又注意了我校学生的实际情况。因此,本节课突出了课程资源的开发,即对原有例题作了补充(如例2),又增加了反馈练习活动,让学生在议练活动中学会运用角平平分线性质解决问题,同时还进行了思维拓展,这样充分体现了让不同的学生“在数学上得到不同的发展”基本理念。
3. 本节课在教法上采用了“探究——发现”教学模式,这是基于本节课的知识内容,有实践背景,适用于让学生动手操
作探究,因此本节课在教学活动设计中,注意突出学生活动,设置了四个活动:①动手活动:通过动手度量、折纸等活动,探索角平分线的性质;②表述活动:用文字语言、图形语言、符合语言表述角平分线性质,并互动说理证明;③应用活动:角平分线的性质的认识及应用;④拓展活动:结合本节课的知识,对线段的轴对称性进行探索。
4. 教材中只给出了角平分线性质的文字语言叙述,并没有给出符号语言的表述,由于我校的学生在第二章、第五章学习时,已经接触了符号语言的叙述,并且能够进行简单的说理。因此在这里,教师引导学生将文字语言结合图形语言转化为符号语言,并且对性质进行了说理,同时在对性质说理以及例1的解答中,教师都给出了规范的证明过程,这样既符合学生的实际学习情况,又为后面学习证明(一)、(二)、(三)打下基础。
5. 评价方式
根据新课程的评价理念,教学中教师关注了学生在学习过程中是否积极参与教学活动,是否能在教师的引导下进行说理,是否能运用所学知识来解决实际问题,并注意在教学过程中给予学生适当的评价和鼓励。
【案例二】“等腰三角形”教学反思
(华东师大版教材七年级(下)第十章第三节“等腰三角形”第一课时)
成功之处:
我用一句话来说明本节课中我的成功之处,那就是:“仰望星空,脚踏实地”。达尔文说过:“最有价值的知识,是关于方法的知识”,本节课我围绕“方法比知识更重要”这一教学价值观,紧扣“方法”二字进行突破;使学生从知识技能到思想方法上都得到培养;让学生在带着问题自读教材中学会阅读;在小组活动中学会知识的探索和归纳;在一题多解中训练发散思维,从而使能力目标得以达成,也使本节课的教学难点得以突破。
为了真正让学习知识落到实处,我又在每得出一个知识点后及时给出专项练习题强化训练;再分别以A、B、C三个水平层次进行分层练习,使不同层次的学生都有所收获,使知识目标顺利达成,也使学生真正掌握了本节课的教学重点。 不足之处:
反思本节课的教学过程,我认为有两个地方需要改进,第一个地方是等腰三角形“三线合一”性质的文字语言转化为符号语言的教学,是本节课的教学难点。上课时我发现基础较差的同学不太容易理解,反思之后我觉得:如果老师先把第一个性质的符号语言转化示范出来,再以填空的形式由学生尝试完
成后两个性质的转化可能效果会更好,教学难点更容易突破。
第二个地方是小组合作环节,让学生通过分组活动折纸探索等腰三角形的性质时,主要还是优等生控制着整个局面,成绩较差的学生就只是看和做助手的份。如果我改成每个小组都定成绩较差的那个学生为发言人,使他们有表现的机会,然后成绩较好的一名学生为补充发言人,及时补充和完善小组得到的结论,可能更能调动全体学生学习的积极性。
教学是一门遗憾的艺术,因此教师只有不断地在反思中消除遗憾,才能不断地改进、完善教学,不断地提高教学水平。
仰望星空,它是那样的辽阔而深邃:教学教育的真理,让我苦苦地思考,“路漫漫其修远兮,吾将上下而求索”。
【案例三】“平方差公式”教学反思
(人教版教材八年级(上)15.2.1平方差公式)
新课程标准中明确指出:“教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。”
在教学活动的组织中始终注意:
(1)以问题为活动的核心。在组织活动前,结合学习内容和学生实际,创设问题情境。
(2)探究是一个活动过程也是学生的思维过程,引导学生多角度思考问题,理解公式的结构特征,达到运用自如的效果。
(3)促进学生发展是活动的目的。让学生在参与平方差公式的探究推导、归纳证明、验证应用的过程中促进学生代数推理能力、表达能力、数学思想方法等得方面的进一步发展。
通过这节课我认为今后的教学还需要备好教材,设计好自己的教案,注重学生的主体地位,渗透数学思想方法,把握好知识的发生过程,不是机械的记忆、简单的叠加,而要做到在理解基础上记忆,符合认知规律的重新构建,设计时注意要有阶梯,且要适度,提高自己的点拨技巧,为上好每一节课而不懈努力。
【案例四】“垂径定理”教学反思
本节课最成功的地方是课题的引入,通过用今年的热门话题世博国家馆作为新课的引入点,很好地激发了学生的学习兴趣,学生热情高,回答问题踊跃。其次课前准备充分,课件、简易教具利用得当,学生预习及学具的准备做得到位,学生配合默契为本节的顺利进行提供了保障。本节课不足的地方是时间安排上不够好,定理的探究上用时偏多,最后超时两分钟。需要在今后的课堂设计中注意,另外对数学模型已提出,但对这种模型的强调还需加强,还要在第2节课中对弦、直径和弦所对的弧的特殊位置关系通过练习,进一步完善。
篇三:初中数学教学案例分析
初中数学教学案例分析 传统的课程理念认为:教师讲得越多越好,因此在课堂上教师总是尽量讲深讲透,生怕遗漏,将讲整理好的数学呈现给学生;学生则是被动的吸收,机械的记忆,重复的练习。《初中数学新课程标准》也要求教学的变革,那么我们首先要在理念上更新,明确。
下面我就想以一些数学教学案例为例,就新课程标准下的部分课堂环节进行一些探讨:
1、导入
随着课改的深入,教师的新课导入设计形式多样,精彩纷呈,逐步体现出新课程理念,但是也有一些过于形式化,牵强附会。
有个老师是以生活情境导入的:
班上要举行联欢会,生活委员小明去市场买一种水果,价格为每公斤9.8元,现称出水果10.2公斤,小明随即报出了要付现金99.96元,你知道小明为什么算得这么快吗?说说你的理由。
导入材料呈现后,教师让学生对上述问题发表看法,学生积极发言,有人说小明是神童,有人说小明用了计算器,等等。为了弄清小明为什么会这么快算出结果,教师让学生翻书阅读,并示意学生安静,但部分学生难以从刚才的讨论中静下来。
许多教师都认为,此导入设计从生活中的事例出发让学生感悟数学,符合学生的生活实际,体现了数学来自生活,同时该情境导入设置悬念,能激发学生的学习兴趣。因此认为这种情境导入是有意义的。但事实上,教学效果理想吗?并不理想,问题出在哪呢?上述导入设计使得学生并不清楚自己要学什么?学习内容需要用到什么样的知识和经验,所以学生往往会无从下手,这是难免会产生一些随意的各种各样的想法。
其实,上述导入设计的教师没有很好的发挥该导入的作用,不妨将小明的思考过程暴露出来,原来小明是这样计算的:9.8×10.2=(10-0.2)
(10+0.2)=100-0.04=99.96。请问,(1)他这样处理正确吗?请验证。
(2)这种运算是不是巧合呢?你能举例说明吗?(3)你能写出一般结论吗?并与前面学过的知识进行比较。这样的导入设计就能充分发挥导入材料的作用了。
2、合作与探究
探究式教学是时下流行的一种教学方法,既能提高学生的各种能力,又能活跃课堂,调节课堂气氛,提高课堂效果。如何才能做到感性探究,理性课堂呢?
我们以“垂线”这一节的教学设计为例,进行探讨。
上课开始,教师播放一组图片,其中含有垂线形象,简洁明快,且配以舒缓的背景音乐。
环节1:动手操作
在音乐中,老师说:“我们来做一个数学活动,请大家拿出两支笔,两笔交叉,固定一支笔和焦点,转动另一支笔到你认为的特殊位置停下,举起模型。
教师:老师观察大家停下来的位置全都是“十”字的性质,这是为什么呢?
学生:两直线互相垂直。
教师:在小学时大家对垂直已经有了初步认识,今天我们就来学习与垂直有关的内容—垂线。我们能用什么方法来说明这个位置是真的垂直呢? 学生:拿三角板的直角去度量。
教师:很好,大家都会解决问题了,大家思考,垂直的关键是?? 学生思考,大部分都会回答是直角。
通过学生动手操作,让学生感受到垂线是随处可见的,利用实物(两支笔)这一动态过程引入,加强直观教学,在逐步探究中使学生对垂直从定量认识深化到定性认识,并为下面过一点作已知直线的垂线的唯一性作铺垫。 环节2:观察思考
观察生活中的实物 ,让学生找垂直,验证垂直,相互谈论垂直,从而引出垂直的定义。
图片中熟悉的场景,使教学内容贴近学生的生活实际,通过做垂直、找垂直、验证垂直,一系列的探究活动形成了丰富的概念表象。此环节培养学生将背景抽象成数学化的能力。
环节3:理解概念
(1)定义:
当两条直线相交所成的四角中有一个角是直角时,我们就说这两条直线相互垂直,其中一条直线叫做另一条直线的垂线,交点叫做垂足。
教师引导学生找定义中的关键词,师生共同比较垂直与垂线的区别,强调垂线是一条直线。
(2)表示法
垂直符号:“⊥”读作“垂直于”
如图(教师画出互相垂直的直线图形)
(3)应用格式(教师书写出规范的格式)
学生接触几何的时间不长,掌握几何概念的学习方法很重要,在感性认识的基础上进行抽象概念的教学,培养学生的抽象概括能力,在原型基础上进行变式,突出概念的本质特征,有利于培养学生的读图、识图能力。用图形、文字、符号三种语言来表示,让学生感受三种数学语言是密不可分的。
深化概念
(1)两条直线相交,当满足 时,则这两条直线相互垂直。
学生得出一下一些条件:①有一个角直角②四个角相等③有三个角相等④邻补角相等⑤对顶角互补。
教师让学生比较哪种说法条件最简单、学生明白数学定义的简约性,最终都归结为有一个角是直角。
设置开放性问题作为探究问题,多角度进行思考,拓展思维空间,但对部分学生也可肯能难度太大,思维跳跃度太快,而且定义的得出是一个逐步抽象逐步简约的过程,这里出现了一次循环,此问题放在定义得出前可能更符合学生的认知规律。
(2)如图,找出图中垂直的线段(教师画出一个三角形中的垂线段) 教师:观察图形中的垂线出现了两条,那么任意一条直线的垂线有几条呢?(大部分学生回答无数条,有几位学生回答两条)
教师:结合大家的经验,任意一条直线的垂直有无数条。
本环节的作用是承上启下,显然结论的得出教师操之过急,如不妨让学生尝试一下画一条直线的垂线,结论的得出更自然合理,也有利于培养学生的合情推理能力。
正在阅读:
初中数学教学案例及反思02-15
北师大版二年级语文上册课课练05-28
CPA考试 - 企业合并以及合并报表调整复习笔记(原创)10-15
财务报表分析(一)历年计算题及公式06-06
河南省人力资源和社会保障厅关于公布规范性文件清理结果的通知06-21
旅游城市推介词02-11
北师大版小学语文二年级下册07-02
产细菌纤维素菌培养基的研究探讨01-02
市场营销学05-11
我是一名教师(朗诵稿)03-16
- 关于实施新冠肺炎疫情精准防控的指导意见
- 学生党员在疫情期间做出的思想汇报
- 《深度工作》读书感悟
- 抗"疫"期间思想汇报5篇
- 学校承诺书|面对疫情,我们承诺
- 公司战“疫”感悟_我想和你们在一起
- 国培送教下乡培训感悟总结
- 只盼“樱花”早盛开,烂漫如当年
- 疫情防控工作感悟
- 关于疫情的几点思考及感悟
- 读蒋廷黻《中国近代史》有感
- 党小组长培训资料汇
- 2019年度副镇长述职述德述廉报告
- 疫情期间教师直播感悟
- 新型冠状病毒肺炎疫情防控心得体会4篇
- 在书记抓党建工作述职评议大会上的讲话
- 《老师请回答》观后感
- 2020年党组织书记党建工作考核办法
- 在疫情防控暨企业复工复产工作会议上的讲话
- 企业疫期复工管理方式与措施
- 教学案例
- 反思
- 初中
- 数学