2018-2019年马鞍山市小升初数学模拟试题(共10套)附详细答案

更新时间:2024-01-11 10:04:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

小升初数学综合模拟试卷11

一、填空题:

2.下面三个数的平均数是170,则圆圈内的数字分别是: ○;○9;○26.

于3,至少要选______个数.

4.图中△AOB的面积为15cm,线段OB的长度为OD的3倍,则梯形ABCD的面积为______.

2

5.有一桶高级饮料,小华一人可饮14天,若和小芳同饮则可用10天,若小芳独自一人饮,可用______天.

6.在1至301的所有奇数中,数字3共出现_______次.

7.某工厂计划生产26500个零件,前5天平均每天生产2180个零件,由于技术革新每天比原来多生产420个零件,完成这批零件一共需要_______天.

8.铁路与公路平行.公路上有一个人在行走,速度是每小时4千米,一列火车追上并超过这个人用了6秒.公路上还有一辆汽车与火车同向行驶,速度是每小时67千米,火车追上并超过这辆汽车用了48秒,则火车速度为______,长度为______.

9.A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次,得到下面4个数:23,26,30,33,A、B、C、D4个数的平均数是______.

10.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒,………(连续奇数),就调头爬行.那么,它们相遇时,已爬行的时间是______秒.

二、解答题:

1.小红见到一位白发苍苍的老爷爷,她问老爷爷有多大年岁?老爷爷说:把我的年龄加上10用4除,减去15后用10乘,结果正好是100岁.请问这位老爷爷有多大年龄?

3.下图中8个顶点处标注数字a,b,c,d,e,f,g,h,其

数最小是几?

f+g+h)的值.

4.底边长为6厘米,高为9厘米的等腰三角形20个,迭放如下图:

每两个等腰三角形有等距离的间隔,底边迭合在一起的长度是44厘米.回答下列问题: (1)两个三角形的间隔距离;

(2)三个三角形重迭(两次)部分的面积之和; (3)只有两个三角形重迭(一次)部分的面积之和; (4)迭到一起的总面积.

答案

一、填空题:

2.(5,7,4)

由总数量÷总份数=平均数,可知这三个数之和170×3=510. 这样,一位数是5.两位数的十位数是7.三位数的百位数是4.

3.(11个)

要使所选的个数尽可能的少,就要尽量选用大数,而所给的数是从大到

说明答案该是11.

2

2

而S△CDO=15cm,在△BCD中,因OB=3OD,S△BCO=S△CDO×3=3×15=45cm,所以梯形ABCD面积=15+5+15+45=80cm. 5.(35天)

2

6.(46)

①“3”在个位时,必定是奇数且每十个数中出现一个.1×〔(301-1)÷10〕=30(个); ②“3”在十位上时,个位数只能是1,3,5,7,9,这个数是奇数.每100个数共有五个.5×[(301-1)÷100]=15(个);

③“3”在百位上,只有300与301两个数,其中301是奇数. 因此,在1~301所有奇数中,数字“3”出现30+15+1=46(次). 7.(11天)

(26500-2180×5)÷(2180+420)+5=(26500-10900)÷2600+5=11(天) 8.(76千米/时,120米)

把火车与人的速度差分成8段,火车与汽车速度差也就是1段.可得每段表示的是(67-4)÷(8-1)=9(千米/时).火车的速度是67+9=76(千米/时),9×1000÷3600=2.5(米/秒),2.5×48=120(米). 9.(28)

10. (49)

由相向行程问题,若它们一直保持相向爬行,直至相遇所需时间是

间是1秒,第二轮有效前进时间是5-3=2(秒)…….由上表可知实际耗时为1+8+16+24=49(秒),相遇有效时间为1+2×3=7秒.因此,它们相遇时爬行的时间是49秒. 二、解答题: 1. (90岁)

2.

小公倍数;N是28,56,20的最大公约数.因此,符合条件的最小分数: 3.(0)

由已知条件得:3a=b+d+e,3b=a+c+f,3c=b+d+g,3d=a+c+h,把这四式相加得3(a+b+c+d)=2(a+b+c+d)+(e+f+g+h).所以(a+b+c+d)=e+f+g+h,即原式值为0. 4.(1)2厘米

从图中可看出,有(20-1=)19个间隔,每个间隔距离是(44-6)÷19=2(厘米).

(2)观察三个三角形的迭合.画横行的两个三角形重迭,画井线是三个三角形重迭部分,它是与原来的三角形一般模样,但底边是原来三角形底

×2=3(cm).每三个连着的三角形重迭产生这样的一个小三角形,每增加一个大三角形,就多产生个一个三次重迭的三角形,而且与前一个不重迭.因此这样的小三角形共有20-2=18(个),面积之和是3×18=54(cm).

22

(3)(120cm)

每两个连着的三角形重迭部分,也是原来的三角形一般模样的三角形,

2

2

每增加一个大三角形就产生一个小三角形.共产生20-1=19(个),面积19×12=228(cm). 所求面积228-54×2=120(cm) (4)(312cm)

20个三角形面积之和,减去重迭部分,其中120cm重迭一次,54cm重迭两次.

2

2

2

2

小升初数学综合模拟试卷12

一、填空题:

2.“趣味数学”表示四个不同的数字:

则“趣味数学”为_______.

正好是第二季度计划产量的75%,则第二季度计划产钢______吨.

_______.

个数字的和是

积会减少______.

6.两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积,哪一个大?______

7.加工一批零件,甲、乙二人合作需12天完成;现由甲先工作3天,

则这批零件共有______个.

8.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是______立方厘米.

9.有一个算式,上边方格里都是整数,右边答案只写出了四舍五入后

二、解答题:

1.如图,阴影部分是正方形,则最大长方形的周长是______厘米.

四位数是______.

2.如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?

3.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍. 4.有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?

答案

一、填空题: 1.(81.4)

2.(3201)

乘积前两位数字是1和0.“趣味数学”ד趣”的千位数字是9,就有“趣”=3,显然,“数”=0.而味“味”ד趣”不能有进位,2ד味”ד趣”向百万位进1,所以“味”=2,同理,“学”=1. 3.(24000)

(吨).

4.(8,447)

÷75%=24000

由周期性可得,(1)100=16×6+4,所以小数点后第100个数字与小数点后第4个数字一样即为8;(2)小数点后前100个数字的和是:16×(1+4+2+8+5+7)+1+4+2+8=447.

6.(一样大)

甲、乙两杯中液体的体积,最后与开始一样多,所以有多大体积纯酒精从甲杯转到乙杯,就有多大体积的水从乙杯转入了甲杯,即甲杯中含水和乙杯中含酒精体积相同. 7.(240个)

8.(62.172,取π=3.14)

液体体积不变,瓶内空余部分的体积也是不变的,因此可知液体体积是

9.(1,2,3)

10.(7744)

到9999中找出121的倍数,共73个,即121×10,121×11,121×12,…,

积,只能取16,25,36,49,64,81经验算所求四位数为7744=121×64. 二、解答题: 1.(30)

由图可知正方形的边长等于长方形的宽边,这样长方形的周长应等于长方形的长边与正方形的边长之和的两倍.(9+6)×2=30(cm). 2.(3圈)

3.(9,18,27,36,45)

第一个数一定是一位数,其余为两位数,为使它的2倍是两位数,这个数必须大于4;由于给出九数中只有四个偶数,所以第一个数只能是奇数;由于没有0,所以这个数不是5,又7×2=14,7×3=21有重复数字1,所以不能是7,由此这个一位数是9. 4.(6)

这列数为2,9,8,2,6,2,2,4,8,2,6,2,2,4,8,2…除去前两个数2,9外,后面8,2,6,2,2,4六数一个循环. (1997-2)÷6=332余3.

按如下方法分组,使每组中的币值和为1元:(0,100),(1,99),(2,98),(3,97),…(49,51),(50,50)

因为0,2,4,6,…,50这26个数能用所给硬币构成,所以对应的100,98,96,94,…50也能用所给硬币构成.

下面讨论奇数:1,3,5,7,…,99.

因为4,6,8,10,…,50均可由贰分硬币构成,所以将其中两个贰分币换成一个伍分币,得到5,7,9,11,…,51,可用所给硬币构成.

只有1、3不能构成,对应的99、97也不能构成,所以共有4种不能构成的币值. 4.每分750米.

(1)7分时慢车与快车相距多少米?(800-600)×7=1400(米)

(2)骑车人的速度是每分多少米?600-1400÷(14-7)=400(米)(2)快车出发时与骑车人相距多少米?(800-400)×7=2800(米) (4)中速车每分行多少米? 400+2800÷8=750(米)

小升初数学综合模拟试卷14

一、填空题:

2.某单位举办迎春会,买来5箱同样重的苹果,从每箱取出24千克苹果后,结果各箱所剩的苹果重量的和恰好等于原来一箱的重量,那么原来每箱苹果重_______千克.

3.有5分、1角、5角、1元的硬币各一枚,一共可以组成______种不同的币值.

4.有500人报考的入学考试,录取了100人,录取者的平均成绩与未录取者的平均成绩相差42分,全体考生的平均成绩是51分,录取分数线比录取者的平均分少14.6分,那么录取分数线为______. 5.A、B、C、D分别代表四个不同的数字,依下列除式代入计算:

结果余数都是4,如果B=7,C=1,那么A×D=_______.

6.某校师生为贫困地区捐款1995元,这个学校共有35名教师,14个教学班,各班学生人数相同且多于30人,不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款______元. 7.数一数,图中包含小红旗的长方形有______个.

8.在3时与4时之间,时针与分针在______分处重合.一昼夜24小时,时针与分针重合______次. 9.如图,大长方形的面积是小于200的整数,它的内部有三个边长是

10.将自然数按如下顺序排列:

在这样的排列下,9排在第三行第二列,那么1997排在第______行第______列. 二、解答题: 1.计算:

2.5个工人加工735个零件,2天加工了135个,已知2天中有1人因事请假1天,照这样的工作效率,如果以后几天无人请假,还要多少天才能完成任务?

3.老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,

4.甲、乙在椭圆形跑道上训练,同时从同一地点出发反向而跑,每人跑完第一圈回到出发点立即回头加速跑第二圈.跑第一圈时,乙的速度是甲

条椭圆形跑道长多少米?

答案

一、填空题:

2.30.

根据题设可知,5箱苹果中共取出(24×5=)120千克,相当于原来4箱苹果的重量,所以每箱苹果重(120÷4=)30千克. 3.15.

分类计算:从4枚硬币中任取一枚,有4种取法;从4枚硬币中任取二枚,有6种取法;从4枚硬币中任取三枚,有4种取法;从4枚硬币中取4枚,有1种取法,所以共有(4+6+4+1=)15种取法. 4.70分.

(1)录取者总成绩比未录取者总成绩多多少分? 42×100=4200(分)

(2)未录取者平均分是多少分? 51-4200÷500=42.6(分) (3)录取分数线是多少分? (42.6+42)-14.6=70(分) 5.45.

验证其余四个算式均满足条件,所以A×D=45. 6.3

因为1995=3×5×7×19.平均每人捐款钱数定是1995的一个约数.

经试验可知,只有3满足条件,此时每个教学班人数为(1995÷3-35)÷14=45(人). 7.48.

(1)在小红旗所在的竖行中,按照由1个、2个、3个、4个小长方形所组成的长方形的顺序去计算,包含小红旗的长方形共有

1+2+2+1=6(个)

(2)在小红旗所在的横行中,按照由1个、2个、3个、4个、5个小长方形所组成的长方形的顺序去计算,包含小红旗的长方形共有 1+2+2+2+1=8(个)

所以包含小红旗的长方形共有

从3时开始计算,时针与分针重合需要

24小时重合次数:

9.53.

因为三个正方形的边长是整数,所以长方形的长和宽也是整数.因此长方形的长是16的倍数,长方形的宽是4的倍数.

当长是16时,正方形②的边长为16-7=9,所以长方形的宽是大于9且是4的倍数.故宽至少是12. 因为长×宽<200,且6×12=192,所以只能是长为16,宽为12. S阴=192-9×9-7×7-3×3=53. 10.44;20.

先将原图形变形成下图:

观察新旧图形发现,新图形中每行从右往左数,第i个位于原图形的第i行.新图形中每行从左往右数,第j个位于原图形的第j列,且第n行左数第1个是(1+n)×n÷2. 下面找出1997所在的行数.

因为63×62÷2=1953,所以1997在第63行.第62行左数第一个数是1953,第63行左数第一个数是(1953+63=)2016.

根据1997-1953=44和2016-1997+1=20,可知1997在第44行第20列. 二、解答题:

2.8天.

(1)1个工人每天可加工多少零件? 135÷(5×2-1)=15(个) (2)还需要几天完成? (735-135)÷5÷15=8(天) 3.22.

+13+14=105,178-105=73>14,不符合条件. 所以378-356=22为擦掉的数字. 4.400米.

设跑道的长为1,甲跑第一圈时的速度为1. (1)甲、乙第一次相遇时,甲跑离起点多远?

(2)当甲回到起点时,乙离起点还有多远?

(3)当乙回到起点时,甲又跑离起点多远?

(4)当乙又跑离起点时,何时与甲相遇?

(5)第二次相遇时,乙跑离起点多远?

(6)跑道的长度是多少米?

小升初数学综合模拟试卷14

一、填空题:

2.某单位举办迎春会,买来5箱同样重的苹果,从每箱取出24千克苹果后,结果各箱所剩的苹果重量的和恰好等于原来一箱的重量,那么原来每箱苹果重_______千克.

3.有5分、1角、5角、1元的硬币各一枚,一共可以组成______种不同的币值.

4.有500人报考的入学考试,录取了100人,录取者的平均成绩与未录取者的平均成绩相差42分,全体考生的平均成绩是51分,录取分数线比录取者的平均分少14.6分,那么录取分数线为______. 5.A、B、C、D分别代表四个不同的数字,依下列除式代入计算:

结果余数都是4,如果B=7,C=1,那么A×D=_______.

6.某校师生为贫困地区捐款1995元,这个学校共有35名教师,14个教学班,各班学生人数相同且多于30人,不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款______元. 7.数一数,图中包含小红旗的长方形有______个.

8.在3时与4时之间,时针与分针在______分处重合.一昼夜24小时,时针与分针重合______次. 9.如图,大长方形的面积是小于200的整数,它的内部有三个边长是

本文来源:https://www.bwwdw.com/article/q4ko.html

Top