生物化学练习题及答案(全部)7

更新时间:2024-05-30 00:58:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一章 蛋白质化学

一、选择题

1、下列氨基酸哪个含有吲哚环?

a、Met b、Phe c、Trp d、Val e、His 2、含有咪唑环的氨基酸是:

a、Trp b、Tyr c、His d、Phe e、Arg 3、氨基酸在等电点时,应具有的特点是:

a、不具正电荷 b、不具负电荷 c、溶解度最大 d、在电场中不泳动 4、氨基酸与蛋白质共有的性质是:

a、胶体性质 b、沉淀反应 c、变性性质 d、两性性质 e、双缩脲反应 5、维持蛋白质三级结构主要靠:

a、疏水相互作用 b、 氢键 c、 盐键 d、 二硫键 e、 范德华力 6、蛋白质变性是由于:

a、氢键被破坏 b、肽键断裂 c、蛋白质降解 d、水化层被破坏及电荷被中和 e、 亚基的解聚 7、高级结构中包含的唯一共价键是:

a、疏水键 b氢键 c、离子键 d、二硫键

8、八肽Gly-Tyr-Pro-Lys-Arg-Met-Ala-Phe用下述那种方式处理不产生任何更小的肽?

a、溴化氰 b、胰蛋白酶 c、胰凝乳蛋白酶 d、盐酸 9、在蛋白质的二级结构α-螺旋中,多少个氨基酸旋转一周?

a、0.15 b、5.4 c、10 d、3.6

二、填空题

1、天然氨基酸的结构通式是 。

2、具有紫外吸收能力的氨基酸有 、 、 ,其中以 的吸收最强。

3、盐溶作用是 。 盐析作用是 。

4、维持蛋白质三级结构的作用力是 , , 和盐键。 5、蛋白质的三种典型的二级结构是 , , 。 6、Sanger反应的主要试剂是 。

7、胰蛋白酶是一种 酶,专一的水解肽链中 和 的 形成的肽键。

8、溴化氢(HBr)是一种水解肽链 肽键的化学试剂。

三、判断题

1、天然存在的氨基酸就是天然氨基酸。

2、氨基酸在中性水溶液中或在晶体状态时都以两性离子形式存在。

1

3、维系蛋白质二级结构的最重要的作用力是氢键。 4、所有蛋白质分子中氮元素的含量都是16%。

5、利用盐浓度的不同可以提高或降低蛋白质的溶解度。

6、能使氨基酸净电荷为0时的pH值即pI值就一定是真正的中性pH值即pH=7。 7、由于各种天然氨基酸都有280nm的光吸收特性,据此可以作为紫外吸收法定性 检测蛋白质的依据。

8、氨基酸的等电点可以由其分子上解离基团的解离常数来确定。

9、一般变性的蛋白质都产生沉淀现象,而沉淀的蛋白质一定是变性蛋白质。

10、某氨基酸的等电点为6.5,当它在pH=4.8的缓冲液中进行电泳时,将移向正极。

11、蛋白质的超二级结构就是三级结构。 12、CNBr能裂解Gly-Met-Pro三肽。 13、变性蛋白质溶解度降低是因为蛋白质分子的电荷被中和以及除去了蛋白质外面的水 化层所引起的。

四、名词解释

氨基酸等电点、盐溶、盐析、蛋白质的变性、蛋白质的复性、蛋白质的一级结构、二级结构、三级结构、四级结构、超二级结构、结构域、两性离子

五、问答题

1、简述蛋白质的各级结构的含义及主要特征,维系蛋白质构象的作用力有哪几种? 2、写出下列氨基酸的名称或英文缩写(三字符):

甘氨酸、酪氨酸、甲硫氨酸、Val、Try(Trp)、Phe、Cys、Asp 3、蛋白质具有哪些性质?

4、什么是蛋白质的等电点?为什么说在等电点时蛋白质的溶解度最低?

5、有一五肽,经酸完全水解后得到Asp、Gly、Val、Tyr、His和一分 子NH3。该五肽与DNFB试剂反应后,可得到DNP-Asn.经羧肽酶水解后得到 Val.经局部水解得到Gly-Val,His-Gly二肽。试推测该五肽的氨基酸残基顺序。

6、二十种氨基酸的三字符简写,哪些是非极性氨基酸,哪些是极性的带正电荷的、极 性的带负电荷的、极性的净电荷为零的氨基酸?

7、下面哪种多肽在280nm具有更大的吸收?

A:Gln—Leu—Glu—Phe—Thr—Leu—Asp—Gly—Tyr B:Ser—Val—Trp—Asp—Phe—Gly—Tyr—Trp—Ala 8、多肽:

Gly—Trp—Pro—Leu—Lys—Cys—Gly—Phe—Ala—His—Met—Val—Glu—Lys—Pro—Asp —Ala—Tyr—Gln—Met—Arg—Ser—Thr—Ala—Phe—Gly—Gly

分别用(1)胰蛋白酶、(2)胰凝乳蛋白酶、(3)CNBr处理时产生什么样的片段? 9、分别指出下列酶能否水解与其对应排列的肽,如能,则指出其水解部位。

肽 酶 (1)Phe-Arg-Pro 胰蛋白酶 (2)Phe-Met-Leu 羧肽酶B (3)Ala-Gly-Phe 胰凝乳蛋白酶

2

(4)Pro-Arg-Met 胰蛋白酶

10、由下列信息求八肽的序列。Ala-Thr-Arg-Val-Val-Met-Leu-Phe (a)酸水解得 Ala,Arg,Leu,Met,Phe,Thr,2Val (b)Sanger试剂处理得DNP-Ala。

(c)胰蛋白酶处理得Ala,Arg,Thr 和 Leu,Met,Phe,2Val。当以Sanger试剂处 理时分别得到DNP-Ala和DNP-Val。

(d)溴化氰处理得 Ala,Arg,高丝氨酸内酯,Thr,2Val,和 Leu,Phe,当用Sange 试剂处理时,分别得DNP-Ala和DNP-Leu。

11、羊毛衫等羊毛制品经热水洗后在电干燥器内干燥,则收缩。但丝制品进行同样处理, 却不收缩。如何解释这两种现象?

3

第一章《蛋白质化学》参考答案

一、选择题

c、c、d、d、a、 a、d、c、d

二、填空题

1、略

2、Tyr、Trp、Phe、Trp

3、在很低盐浓度时,适当增加盐浓度可以增大蛋白质的溶解度;向溶液中加入大量的中性盐使蛋白质从溶液中析出的现象

4、氢键、疏水作用、范德华力 5、α螺旋、β折叠、β转角 6、DNFB

7、肽链内切酶、赖氨酸、精氨酸、残基的羧基 8、甲硫氨酸残基羧基形成的

三、判断题

+、+、+、+、+、 ×、×、+、×、×、 ×、+、×

四、名词解释

氨基酸的等电点:当溶液在某一特定的pH值时,氨基酸主要是以两性离子形式存在,在溶液中所带的净电荷为零,这时虽在电场作用下,它也不会向正极或负极移动,这时溶液的PH值称为该氨基酸的等电点。 用pI或Ip表示。

盐溶现象:低盐浓度时,蛋白质表面吸附某种中性盐类离子,中性盐离子的水合能力比蛋白质强,加速了蛋白质和水分子间的促进溶解作用,同时降低了蛋白质分子之间的静电吸引,使蛋白质溶解度提高。

盐析:高盐浓度时,破坏水化层,使极性基团暴露,并相互作用,使之沉淀。

蛋白质的变性:天然蛋白质分子由于受到物理或化学因素的影响,使次级键断裂,引起天然构象的改变,导致其生物活性的丧失及一些理化性质的改变,但未引起肽键的断裂。

蛋白质的复性:当变性因素除去后,变性蛋白质又可重新回复到天然构象。 一级结构:指多肽链上氨基酸的排列顺序(隐含肽键及二硫键的位置)。全部是共价键连接。是蛋白质生物学功能多样性的基础。

二级结构:指多肽链本身的折叠和盘绕方式。 主要有α螺旋、β折叠、β转角,氢键是稳定二级结构的主要作用力。

三级结构:指蛋白质的多肽链在二级结构、超二级结构、结构域的基础上,进一步折叠卷曲形成的复杂的球状分子结构。

四级结构:具有三级结构的球状PRO通过非共价键彼此缔合在一起形成的聚集体。 超二级结构:在蛋白质中,若干相邻的二级结构单元组和在一起,彼此相互作用,形成有规则,在空间上能辨认的二级结构组合体,充当三级结构的构件。

结构域:有些多肽链可以折叠成两个或更多个紧密的小区域,这些外观似球形的区域。

4

也叫辖区。

两性离子(偶极离子、兼性离子):指同一个氨基酸分子上含有等量的正负两种电荷,由于正负电荷相互中和而成电中性。

五、问答题

1、共价键:肽键、二硫键(由多肽链的两个半胱氨酸残基的巯基氧化后形成); 次级键(非共价键):

氢键:两个极性基团之间的弱键,但由于数量多,对pro的构象起重要作用; 盐键:pro中正、负电荷的侧链基团之间的一种静电吸引作用; 疏水键:pro的疏水基团或疏水侧链避开水相而相互粘附聚集; 范德华力:分子间的弱的吸引力,但是具有可加性。

2、Gly、Tyr、Met、缬氨酸、色氨酸、苯丙氨酸、半胱氨酸、天冬氨酸

3、两性性质、胶体性质与蛋白质沉淀、变性与复性、蛋白质的呈色反应

4、蛋白质分子所带静电荷为零时、溶液的pH值为该蛋白质的等电点。 处于等电点状态的蛋白质分子外层的水化层被破坏,分子之间相互聚集形成较大的颗粒而沉淀下来。

5、Asn-Tyr-His-Gly-Val

6、略

7、在280nm的吸收与Trp和Tyr有关,因为这两种氨基酸在280nm处具最大吸收,而Phe的最大吸收在260nm处。由于多肽B含有2个Trp残基和1个Tyr残基,而多肽A只含一分子的Tyr,因此多肽B在280nm处具更大的吸收。

8、(1)胰蛋白酶的作用特点是水解赖氨酸和精氨酸残基羧基所成的肽键,若羧基端是脯氨酸残基,则不能水解这样的肽键。因此,用胰蛋白酶水解该多肽可产生三个肽碎片:

Gly—Trp—Pro—Leu—Lys Cys—Gly—…Met—Arg Ser—Thr—…Gly—Gly (2)胰凝乳蛋白酶的作用特征是水解具芳香环侧链的氨基酸残基羧基所成的肽键,若羧基端是脯氨酸残基,则不能水解这样的肽键。因此,用胰凝乳蛋白酶水解该多肽可产生四个肽碎片:

Gly—Trp—…Gly—Phe、Ala—His—…Ala—Tyr、Gln—Met—…Ala—Phe Gly—Gly (3)CNBr的作用部位是甲硫氨酸残基羧基所成的肽键。因此,用CNBr处理该多肽可产生三个较小的碎片:

Gly—Trp—…His—Met、Val—Glu—…Gln—Met、Arg—Ser—…Gly—Gly 9、(1)不能,因为Arg与Pro连接。

(2)不能,因为羧肽酶B仅仅水解C-末端为Arg或Lys的肽。

(3)不能,因为胰凝乳蛋白酶主要水解Phe,Trp,Tyr和Leu的羧基形成的肽键。 (4)能,胰蛋白酶可作用于Arg和Met之间的肽键,产物为Pro-Arg和Met。

5

10、Ala-Thr-Arg-Val-Val-Met-Leu-Phe

11、羊毛纤维多肽链的主要结构单位是连续的α-螺旋圈,其螺距为5.4A。当处于热水 (或蒸汽)环境下,使纤维伸展为具有β-折叠构象的多肽链。在β-折叠构象中相邻R基团之间的距离是7.0A。当干燥后,多肽链重新由β折叠转化为α螺旋构象,所以羊毛收缩了。而丝制品中的主要成分是丝心蛋白,它主要是由呈现β折叠构象的多肽链组成的,丝中的β-折叠含有一些小的、包装紧密的氨基酸侧链,所以比羊毛中的α-螺旋更稳定,水洗和干燥其构象基本不变。

6

第二章 核酸化学

一、选择题

1、DNA碱基配对主要靠:

a、范德华力 b、氢键 c、疏水作用 d、盐键 e、共价键 2、mRNA中存在,而DN A中没有的是:

a、A b、C c、G d、U e、T 3、DNA与RNA两类核酸分类的主要依据是:

a、 空间结构不同 b、所含碱基不同 c、核苷酸之间连接方式不同 d、所含戊糖不同 e、在细胞中存在的部位不同

4、在一个DNA分子中,若A所占摩尔比为32.8%,则G的摩尔比为:

a、67.2% b、32.8 % c、17.2% d、65.6% e、16.4% 5、稳定DNA双螺旋的主要因素是:

a、氢键 b、与Na结合 c、碱基堆积力

++

d、与Mn2、Mg2的结合 e、与精胺、亚精胺的结合 6、DNA与RNA完全水解后产物的特点是:

a、核糖相同 碱基小部分相同 b、核糖不同 碱基相同 c、核糖相同 碱基不同 d、核糖不同 碱基不同 e、以上都不对

7、核酸中核苷酸之间的连接方式是:

a、2ˊ,3ˊ-磷酸二酯键 b、2ˊ,5ˊ-磷酸二酯键 c、3ˊ,5ˊ-磷酸二酯键 d、氢键 e、离子键

8、有关DNA的二级结构,下列叙述哪一种是错误的?

a、DNA二级结构是双螺旋结构 b、DNA双螺旋结构是空间结构 c、双螺旋结构中两条链方向相同 d、双螺旋结构中碱基之间相互配对 e、二级结构中碱基之间一定有氢键相连 9、有关DNA双螺旋结构,下列哪一种不正确?

a、DNA二级结构中都是由两条多核苷酸链组成

b、DNA二级结构中碱基不同,相连的氢键数目也不同

c、DNA二级结构中,戊糖3ˊ-OH与后面核苷酸的5ˊ-磷酸形成磷酸二酯键 d、磷酸与戊糖总是在双螺旋结构的内部 e、磷酸与戊糖组成了双螺旋的骨架

10、下列有关tRNA的叙述,哪一项是错误的?

a、tRNA二级结构是三叶草结构 b、tRNA分子中含有稀有碱基

7

c、tRNA的二级结构含有二氢尿嘧啶环 d、tRNA分子中含有1个附加叉

e、反密码子环有CAA三个碱基组成的反密码子 11、DNA变性的原因是:

a、温度升高是唯一的原因 b、磷酸二酯键断裂 c、多核苷酸链解聚 d、碱基的甲基化修饰 e、互补碱基之间的氢键断裂 12、热变性后的DNA:

a、紫外吸收增加 b、磷酸二酯键断裂 c、形成三股螺旋 d、(G-C)%含量增加

13、在一个DNA分子中,若A所占摩尔比为32.8%,则G的摩尔比为:

a、67.2% b、32.8% c、17.2% d、16.4% 14、假尿苷(Ψ)中的糖苷键连接方式为:

a、C-C b、C-N c、N-N d、以上都不是

二、填空题

1、核苷酸除去磷酸基后称为 。

2、DNA双螺旋沿轴向每 nm旋转一整圈,共有 对碱基对。 3、tRNA的二级结构呈 型,三级结构为 型。 4、DNA双螺旋稳定因素有 、 和 。 5、核酸完全水解的产物是 、 和 。

6、tRNA的三叶草结构主要含有 、 、 环及 还有 。

7、核苷酸是由 、 和磷酸基连接而成。

8、B型结构的DNA双螺旋,两条链是 并行,其螺距为 每个螺旋的 碱基数为 。

9、真核细胞中分布在细胞核和细胞质中的核酸分别主要是 和 ,前者所含

五碳糖是 ,二者所含的相同的碱基是 、 和 ,不同的分别是 和 。

10、大多数真核细胞的mRNA 5′一端都有______ 帽结构,3′一端有______结构。

三、判断题

1、核苷中碱基和戊糖的连接一般为C -C糖苷键。 2、双链DNA中一条链上某一片断核苷酸顺序为pCTGGAC,那么另一条链相应的核苷 酸顺序为pGACCTG。

3、核酸变性时紫外吸收值明显增加。 4、Tm值高的DNA,(A+T)百分含量也高。 5、真核细胞中DNA只存在于细胞核中。

8

6、真核mRNA分子5ˊ末端有一个PolyA结构。

7、任何一条DNA片段中,碱基的含量都是A=T,C=G。

8、由于RNA不是双链,因此所有的RNA分子中都没有双螺旋结构。

9、若双链DNA中的一条链碱基顺序为:pCpTpGpGpApC,则另一条链的碱基顺序为: pGpApCpCpTpG。

10、生物体内,天然存在的DNA分子多为负超螺旋。 11、核酸变性或降解时,出现减色效应。

12、双股DNA比单股DNA具有更大的紫外吸收能力。

四、名词解释

增色效应、减色效应、核酸的变性、DNA的复性、分子杂交

五、问答题

1、简述DNA双螺旋的结构特点。

2、有一噬菌体DNA长17μm,问它含有多少对碱基?螺旋数是多少? 3、简述核酸的种类,细胞定位,并比较两种核酸在化学组成上的异同。 4、比较两种核酸的一级结构。

5、根据DNA分子中的一条链的碱基序列写出另一条互补链的碱基序列。 TTGATC、ATGGTA、TCTAAC、TGCGCA

6、两种细菌DNA样品,其A分别占碱基总数的32%和17%。。分别计算碱基组成。 其中一种细菌DNA来自温泉为何种碱基组成?为什么?

7、分析DNA变性与复性,退火,分子杂交之间的联系。Tm的含义是什么? 8、比较下列已知一条链的三个DNA片段的Tm大小。 CTGCATTGACGACT CCTGGAGAGTCC TTCAAGAGACTT 9、根据同源蛋白质的知识,说明为什么编码同源蛋白质的基因(DNA片段)可以杂交? 10、(1)由两条互补链组成的一段DNA有相同的碱基组成吗?(2)(A+G)=(C+T)吗?

11、虽然大多数RNA分子是单股的,但是它们对作用于双股RNA的核糖核酸酶的降 解也是敏感的。为什么?

12、为什么没有一种核酸外切酶降解噬菌体φX174DNA? 13、为什么环状双螺旋DNA比线性双螺旋DNA复性更快?

14、比较蛋白质α螺旋中的氢键和DNA双螺旋中的氢键,并指出氢键在稳定这两种结 构中 的作用。

15、溶液A中含有浓度为1M的20个碱基对的DNA分子,溶液B中含有0.05M的400 个碱基对的DNA分子,所以每种溶液含有的总的核苷酸残基数相等。假设DNA分子都有相同的碱基组成。

(1)当两种溶液的温度都缓慢上升时,哪个溶液首先得到完全变性的DNA? (2)哪个溶液复性的速度更快些?

9

第二章《核酸化学》参考答案

一、选择题

b、d、d、c、c、 d、c、c、d、e、 e、a、c、a

二、填空题

1、核苷 2、3.4、10

3、三叶草形、倒L形

4、氢键、碱基堆积力、离子键 5、戊糖、碱基、磷酸

6、反密码环、DHU环、TψC环、额外环、氨基酸臂 7、戊糖、碱基

8、反向、34?、10对

9、DNA、RNA、脱氧核糖、A、G、C、T、U 10、M7G、polyA

三、判断题

×、×、+、×、×、 ×、×、×、×、+ ×、×

四、名词解释

DNA的增色效应:如DNA双螺旋结构发生解螺旋(如高温),使分子中碱基堆积程度下降,从而发生紫外吸光率增加。这种现象叫增色效应。

DNA的减色效应:在核酸的紫外吸收特征上,对于DNA而言,DNA分子的紫外吸光率小于形成该DNA分子的各单核苷酸的吸光率之和。这种现象叫减色效应。

核酸的变性:指核酸的双螺旋区的氢键断裂,变成单链,并不涉及共价键的断裂,分子量不变,一级结构不发生变化。

DNA的复性:变性DNA在适当条件下,又可使两条彼此分开的链重新缔合成为双螺旋,这个过程叫DNA的复性。

分子杂交:两条来源不同但有核苷酸互补关系的DNA单链分子,或DNA单链分子与RNA分子,在去掉变性条件后互补的区段能够退火复性形成双链DNA分子和DNA/RNA异质分子。

五、问答题

1、双螺旋模型要点

① 两条反向平行的多核苷酸链围绕同一中心轴向右盘旋形成右手双螺旋;

② 双螺旋的骨架是由磷酸和脱氧核糖组成,位于外侧,碱基位于螺旋内侧,配对平行,

10

与轴垂直;

③ 双螺旋平均直径为20?,螺距为34?,螺旋一周包含10个碱基对,相邻碱基距离为3.4?,之间旋转角度为36o;

④ 双螺旋结构上有两条螺形凹槽,大沟和小沟,对于DNA与Pro结合时的相互识别很重要,利于遗传信息的传递与表达。

⑤ 碱基按互补配对原则进行配对,A与T配对,之间形成两个氢键,C与G配对,之 间形成三个氢键。

2、因为17μm=17000nm

所以此核酸分子的碱基对数:17000/0.34=5×10000对

螺旋数:5×10000/10=5000圈

3、 4 、略

5、GATCAA TACCAT GTTAGA TGCGCA

6、DNA(A占32%):T:32% G:18% C:18% DNA(A占17%):T:17% G:33% C:33% 来自温泉的细菌DNA的碱基组成为第二种(G=C=33%),因为G,C含量高,Tm值高,这种细菌能在温泉生存。

7、都是指DNA单链分子,或DNA单链分子与RNA分子,在一定条件下形成双链DNA分子和DNA/RNA异质分子。

解链温度Tm:通常把DNA的变性达到50%,即增色效应达到一半时的温度称为该DNA的解链温度。

8、7/14=1/2=3/6 8/12=2/3=4/6 4/12=1/3=2/6 第二个DNA片段的Tm值大些。

9、同源蛋白质是指来源不同的同一种蛋白质,他们具有基本相同的氨基酸序列,所以它们的基因具有相同的核苷酸序列。当将带有同源蛋白质基因的DNA片段,进行杂交时,形成杂交分子的机会就比较多。

10、(1)DNA互补链的碱基组成通常是很不相同的。例如,如果一条链是由poly(dA)组成(100%A),那么另一条链必须是poly(dT)组成(100%T)。但是,由于两条链是互补的,对每一条链来说,(A+T)的量必定是相等的,(G+C)的量也必定是相等的。

(2)(A+G)=(C+T)。互补性表明,一条链上的嘌呤碱基数(A或者G)必须与互补链上的嘧啶碱基(T或者C)数相等。

11、虽然大多数RNA分子是单股的,但它们可通过自身的回折,在那些可以形成氢键的部位形成局部的双螺旋区。在这种双螺旋区内,碱基配对的规则是A与U、G与C。由于存在局部的双螺旋结构,因此,对专一于双股的核糖核酸酶的降解是敏感的。

12、因为核酸外切酶需要作为底物的DNA或RNA具有游离的3'末端和5'末端,而φ

11

X174DNA是单股环状分子,没有游离的3'末端和5'末端。

13、当变性时,环状DNA的组成单链仍连接在一起(假定没有链断裂),在复性中,它们能够彼此容易找到互补链;而完全分开的线性单链则要靠它们随机碰撞才能找到互补链。因此,前者比后者复性快。

14、在?螺旋中,一个残基上的羧基氧与旋转一圈后的第四个残基上的?氨基中的氮形 成氢键,在骨架原子间形成的氢键粗略地平行于该螺旋的轴,从骨架向外伸出的氨基酸侧链不参与螺旋内的氢键之形成,在双链DNA中糖-磷酸骨架不形成氢键,相反在相对的两条链中互补的碱基之间粗略地垂直于于螺旋轴心的方向上形成2个或3个氢键。

在?螺旋中,单独的氢键是很弱的,但是这些键的合力稳定了该螺旋结构。尤其是在一个蛋白质的疏水性的内部,这里水不能参与竞争形成氢键,情况更是如此。在DNA中氢键的主要作用是使每一条链作为另一条链的模板,尽管互补碱基之间的氢键帮助稳定这一螺旋结构,在疏水的内部碱基对之间的堆积对螺旋结构的稳定性作出更大的贡献。

15、(1)溶液A中的DNA将首先被完全变性,因为在20个碱基对螺旋中的堆积作用 力比在400个碱基对螺旋中的力小很多,在DNA双链的末端的DNA的碱基对只是部分堆积。在片段短的分子中这种“末端效应”更大。

(2)在溶液A中复性的速率更大。成核作用(第一个碱基对的形成)是一个限速步骤, 单链分子的数目越大,重新形成碱基对的机率就越大,因而在溶液A中的DNA(含有2M单链DNA)将比溶液B中的DNA(含有0.1M单链DNA)更快地复性。

12

第三章 酶与维生素

一、选择题

1、下列关于酶的描述,哪一项不正确?

a、所有的蛋白质都是酶 b、酶是生物催化剂

c、酶是在细胞内合成的,但也可以在细胞外发挥催化功能 d、酶具有专一性

e、酶在强碱、强酸条件下会失活

2、下列关于酶活性部位的描述,哪一项是错误的?

a、活性部位是酶分子中直接与底物结合,并发挥催化功能的部位

b、活性部位的基团按功能可分为两类,一类是结合基团、一类是催化基团 c、酶活性部位的基团可以是同一条肽链但在一级结构上相距很远的基团 d、不同肽链上的有关基团不能构成该酶的活性部位 e、酶的活性部位决定酶的专一性

3、下列关于乳酸脱氢酶的描述,哪一项是错误的?

a、乳酸脱氢酶可用LDH表示 b、它是单体酶

c、它的辅基是NAD+ d、它有六种结构形式

e、乳酸脱氢酶同工酶之间的电泳行为不尽相同 4、下列哪一项不是酶具有高催化效率的因素?

a、加热 b、酸碱催化 c、张力和形变 d、共价催化 e、邻近定位效应 5、酶的活性中心是指:

a、酶分子上的几个必需基团 b、酶分子与底物结合的部位

c、酶分子结合底物并发挥催化作用的关键性三维结构区 d、酶分子中心部位的一种特殊结构 e、酶分子催化底物变成产物的部位 6、下列关于酶辅基的正确叙述是:

a、是一种小肽,与酶蛋白结合紧密

b、只决定酶的专一性,与化学基团传递无关 c、一般不能用透析的方法与酶蛋白分开 d、是酶蛋白的某肽链C末端的几个氨基酸 e、是酶的活性中心内的氨基酸残基 7、酶促反应的初速度不受那一因素影响:

a、[S] b、[E] c、[pH] d、时间 e、温度 8、下列有关某一种酶的几个同工酶的陈述哪个是正确的?

a、有不同亚基组成的寡聚体 b、对同一底物具有不同专一性 c、对同一底物具有相同的Km值 d、电泳迁移率往往相同

13

e、结构相同来源不同

9、关于米氏常数Km的说法,哪个是正确的:

a、饱和底物浓度时的速度

b、在一定酶浓度下,最大速度的一半 c、饱和底物浓度的一半

d、速度达最大速度半数时的底物浓度 e、降低一半速度时的抑制剂浓度

10、作为催化剂的酶分子,具有下列那一种能量效应?

a、增高反应活化能 b、降低反应活化能 c、增高产物能量水平 d、降低产物能量水平 e、降低反应自由能 11、磺胺药物致病原理是:

a、直接杀死细菌

b、细菌生长某必需酶的竞争性抑制剂 c、细菌生长某必需酶的非竞争性抑制剂 d、细菌生长某必需酶的不可逆抑制剂 e、分解细菌的分泌物

12、丙二酸对琥珀酸脱氢酶的影响是属于:

a、产物反馈抑制 b、产物阻遏抑制 c、非竞争性抑制 d、竞争性抑制 e、不可逆抑制 13、同工酶的特点是:

a、催化作用相同,但分子组成和理化性质不同的一类酶 b、催化相同反应,分子组成相同,但辅酶不同的一类酶 c、催化同一底物起不同反应的酶的总称 d、多酶体系中酶组分的统称

e、催化作用,分子组成及理化性质相同,但组织分布不同的酶 14、将米氏方程改为双倒数方程后:

a、1/V与1/[S]成反比

b、以1/V对1/[S]作图,其横轴为1/[S] c、V与[S]成正比 d、Km值在纵轴上 e、Vmax值在纵轴上

15、竞争性抑制作用特点是指抑制剂:

a、与酶的底物竞争酶的活性中心 b、与酶的产物竞争酶的活性中心 c、与酶的底物竞争非必需基团 d、与酶的底物竞争辅酶

e、与其他抑制剂竞争酶的活性中心

16、一个简单的米氏酶促反应,当[S]<

14

a、反应速度最大

b、反应速度难以测定

c、底物浓度与反应速度成正比

d、增加酶浓度,反应速度显著变大 e、[S]增加,Km值也随之变大

17、酶促反应体系中增加酶的浓度时,可出现下列哪一种效应?

a、不增加反应速度

b、1/[S] 对1/V作图所得直线的斜率下降 c、Vmax保持不变

d、V达到Vmax/2时的[S]已全部转变成产物 e Km值变小

18、乳酸脱氢酶是由两种亚基H、M组成的四聚体,共形成几种同工酶:

a、两种 b、五种 c三种 d、四种 e、十六种 19、在下列pH对酶反应速度的影响作用的叙述中,正确的是:

a、所有酶的反应速度对pH的曲线都表现为钟罩形 b、最适pH值是酶的特征常数

c、pH不仅影响酶蛋白的构象,还会影响底物的解离,从而影响ES复合物的形成与解

d、针对pH对酶反应速度的影响,测酶活力时只要严格调整pH为最适pH,而不需缓

冲体系 e、以上都对

20、下列有关温度对酶反应速度的影响的叙述中,错误的是:

a、温度对酶促反应速度的影响不仅包括升高温度使速度加快,也同时会使酶逐步变性 b、在一定的温度范围内,在最适温度时,酶反应速度最快 c、最适温度是酶的特征常数

d、最适温度不是一个固定值,而与酶作用时间长短有关 e、一般植物酶的最适温度比动物酶的最适温度稍高 21、关于酶的激活剂的叙述错误的是:

a、激活剂可能是无机离子,中等大小有机分子和具蛋白质性质的大分子物质 b、激活剂对酶不具选择性

c、Mg2是多种激酶及合成酶的激活剂

d、作为辅阻因子的金属离子不是酶的激活剂 e、激活剂可使酶的活性提高

22、关于酶的抑制剂的叙述正确的是:

a、酶的抑制剂中一部分是酶的变性剂

b、酶的抑制剂只与活性中心上的基团结合 c、酶的抑制剂均能使酶促反应速度下降 d、酶的抑制剂一般是大分子物质

e、酶的抑制剂都能竞争性地使酶的活性降低 23、酶的比活力是指:

a、以某种酶的活力作为1来表示其它酶的相对活力 b、每毫克蛋白的酶活力单位数

c、任何纯酶的活力与其粗酶的活力比 d、每毫升反应混合液的活力单位 e、一种酶与另一种酶的活力比

15

24、唾液淀粉酶经透析后,水解淀粉能力显著降低,其主要原因是:

a、酶蛋白变性 b、失去Cl c、失去辅酶 d、酶含量减少 e、酶的活性下降 25、根据米氏方程,不符合[S]与Km与关系的是

a、当[S]>>Km时,反应速度与底物浓度无关,成零级反应

b、当[S]<< Km时,反应速度与底物浓度成正比,反应成一级反应 c、当 [S]= Km时,V=Vmax/2 d、度量二者的单位是相同的 e、当[S]= Km/3时,V=67%Vmax

26、酶的不可逆性一致的机制是:

a、使酶蛋白变性

b、与酶的催化部位以共价键结合 c、使酶降解

d、与酶作用的底物以共价键结合 27、、米氏常数:

a、随酶浓度的增加而增大 b、随酶浓度的增加而减小 c、随底物浓度的增加而增大 d、是酶的特征性常数 28、、下列哪种辅酶结构中不含腺苷酸残基:

a、FAD b、NADP+ c、辅酶Q d、辅酶A 29、酶的专一性决定于:

a、金属离子 b、酶的辅助因子 c、酶蛋白 d、必需基团 e、以上都不是 30、如果某酶催化反应的底物浓度等于1/2Km时,那么反应的初速度是:

a、0.25Vmax b、0.33Vmax c、0.50Vmax d、0.67Vmax e、0.75Vmax 31、丙二酸对琥珀酸脱氢酶的影响属于:

a、反馈抑制 b、底物抑制

c、竞争性可逆抑制 d、非竞争性可逆抑制 e、反竞争性可逆抑制

二、填空题

1、使酶具有高催化效应的因素是 、 、 、 和 。

2、全酶由 和 组成。 3、酶对 的 性称为酶的专一性,一般可分为 和 。 4、磺胺类药物能抑制细菌生长,因为它是 的结构类似物,能 性地 抑制 酶活性。

5、pH对酶活力的影响有 和 。

6、目前认为酶促反应的机理是 。

7、如果一个酶对A、B、C三种底物的米氏常数分别为Kma、Kmb和Kmc,且

Kma>Kmb>Kmc,则此酶的最适底物是 ,与酶亲和力最小的底物是 。

8、影响酶促反应速度的因素有 。

16

9、米氏方程为 。

10、酶的专一性分为两大类 和 。

11、酶与底物的亲和关系是以米氏常数为依据,用双倒数作图法求Km和Vmax时,横 坐标为 ,纵坐标为 。

三、判断题

1、一般酶和底物大小差不多。

2、酶的分类是依据其催化反应类型。 3、酶影响它所催化反应的平衡。 4、酶原激活作用是不可逆的。

5、同工酶是指催化一类化学反应的一类酶

6、在酶已被饱和的情况下,底物浓度的增加能使酶促反应初速度增加 7、当复合物[ES]的量增加时,酶促反应速度也增加。

8、在极低底物浓度时,酶促反应初速度与底物浓度成正比。

9、如已知在给定酶浓度时的Km和Vmax,则可计算在任何底物浓度时的酶促反应初速度。

10、辅酶是酶的一个类型,而辅基是辅助酶起作用的基团。 11、1/Km愈大,表明酶与底物的亲和力越小。

12、变构剂与酶的催化部位结合后使酶的构象改变,从而改变酶的活性,称为酶的变构作用。

13、酶促反应速度为最大反应速度90%的底物浓度与最大反应速度50%的底物浓度之 比值总是9,而与Vmax和Km绝对值无关。

14、Km值是酶的一种特征常数,有的酶虽可以有几种底物,但其Km值都是固定不变的。

15、酶分子除活性中心部位和必需基团外,其他部位对酶的催化作用是不必需的。 16、当[S]≤[E]时酶促反应的速度与底物浓度无关。

17、在底物浓度为限制因素时,酶促反应速度随时间而减小。 18、辅酶和辅基都是酶活性不可少的部分,他们与酶促反应的性质有关,与专一性无关。 19、所有的酶在生理pH时活性都最高。 20、别构酶都是寡聚酶。

21、酶的化学本质是蛋白质,但并非所有的蛋白质都是酶。 22、迄今为止发现的酶的化学本质都是蛋白质。

23、酶活性中心一般由在一级结构中相邻的若干氨基酸残基组成。 24、Km是酶的特征常数,只与酶的性质有关,与酶浓度无关。 25、Kcat/Km比值能用来测定一种酶对它不同底物的优先权。 26、一种酶对它底物的Km与该底物的浓度无关。

27、酶促反应的初速度与底物浓度无关。

28、当底物处于饱和水平时,酶促反应的速度与酶浓度成正比。

29、在非竞争性抑制剂存在下,加入足够量的底物,酶促反应能够达到正常Vmax。

四、名词解释

酶、酶的活性中心、变构酶、酶活力、酶的比活力、酶的转换数、同功酶

17

五、问答及计算题

1、试简述Km的意义及应用。

2、当[S]=0.5Km;[S]=4Km;[S]=9Km;[S]=99Km时,计算V占Vmax的百分比。

-4

3、某一个酶的Km=24×10mol/L,当[S]=0.05mol/L时测得V=128μmol/L.min,计算

-4

出底物浓度为10mol/L时初速度。

4、什么是酶的活性中心?底物结合部位、催化部位和变构部位之间有什么关系? 5、请简要说明Fisher提出的“锁钥学说”和Koshland提出的“诱导契合假说”的主要内容。

6、举例说明同工酶存在的生物学意义。

7、绝大多数酶溶解在纯水中会失活,为什么?

8、以下表所列数据,用作图法求某酶促反应的Km和Vmax值 [S] mmol/L 1.5 2.0 3.0 4.0 8.0 16.0 1/[S] 0.67 0.50 0.33 0.25 0.13 0.06 V μmol/L/min 0.21×10-3 0.24×10-3 0.28×10-3 0.33×10-3 0.40×10-3 0.45×10-3 1/V 4.76×103 4.17×103 3.57×103 3.03×103 2.50×103 2.22×103 9、称取25mg蛋白酶配成25ml酶液。其0.1ml酶液在1小时分解酪蛋白产生1500μg 酪氨酸。另取2ml酶液,用凯氏定氮法测得其蛋白氮含量为0.2mg。若以每分钟产生1μg酪氨酸的酶量为1个酶活力单位,据以上数据,求:

?1ml酶液的蛋白质含量和酶活力 ?比活力

?1克酶制剂的总蛋白含量和总活力

10、试述TPP、FAD、FMN、NAD、NADP、CoA的分子组成及生物化学功能。 11、维生素B6叶酸和维生素C在体内有何重要作用?

12、指出下列症状分别是由于哪种(些)维生素缺乏引起的?(1)脚气病(2)坏血病(3)佝偻 病(4)干眼病(5)蟾皮病(6)软骨病(7)新生儿出血(8)巨红细胞贫血

13、把鸡蛋保存在冰箱4—6周而不会损坏。但是将去除卵清的卵黄保存冰箱中时,很 快就变坏了。

(1)什么原因会引起损坏?(2)为什么卵清能防止卵黄损坏?(3)这种保护方式对鸟类来说,其生物学上的优点是什么?

14、某细菌在营养上需要叶酸。但是,如果该细菌生长的培养基含有A和T,在叶酸 缺乏的情况下,它也能很快生长。分析这样的培养基,表明以这种方式生长的细菌缺乏叶酸。为什么细菌需要叶酸?为什么A和T加入到培养基中能取消这种需要?

15、巨红细胞性贫血是一种由于DNA合成的速度降低而导致红细胞成熟缓慢所致的疾 病。红细胞不正常变大(巨红细胞),容易破裂。叶酸的缺乏为什么会引起该病症的发生?

16、新掰下的玉米的甜味是由于玉米粒中的糖浓度高。可是掰下的玉米贮存几天后就不那么甜了,因为50%糖已经转化为淀粉了。如果将新鲜玉米去掉外皮后浸入沸水几分钟,然后于冷水中冷却,储存在冰箱中可保持其甜味。这是什么道理?

17、人对烟酸(尼克酸)的需要量为每天 7.5毫克。当饮食中给予足量的色氨酸时,尼 克酸的需要量可以降低。由此观察,尼克酸与色氨酸的代谢有何联系?当饮食是以玉米为主食,而肉类很少时,人们易得癞皮病,为什么这种情况会导致尼克酸缺乏,你能给予说明吗?

18

第三章《酶与维生素》参考答案

一、选择题

a、d、b、a、c、 c、d、a、d、b、 b、d、a、b、c、 c、b、b、c、c c、c、b、b、e b、d、c、c、b c

二、填空题

1、酸碱催化、共价催化、邻近定向效应、张力和形变、微环境的影响 2、酶蛋白、辅因子

3、底物、选择、立体异构专一性、结构专一性 4、对氨基苯甲酸、竞争、二氢叶酸合成酶 5、影响酶和底物的基团解离、使酶变性 6、通过诱导契合过程来降低反应的活化能 7、C、A

8、[S]、[E]、pH、温度、激活剂、抑制剂 9、V=Vmax[S]/(Km+[S])

10、结构专一性和立体异构专一性 11、1/[S]、1/V

三、判断题

×、+、×、+、×、 ×、+、×、+、+、 ×、×、+、×、×、 ×、+、+、×、+、 +、×、×、+、+、 +、+、+、×

四、名词解释

酶:是生物活细胞所产生的以蛋白质为主要成分的生物催化剂。

或:酶是一类有活细胞产生的,具有高效催化活性和高度专一性的特殊蛋白质。 或:酶是一种高效能、高专一性、高度可变性的高分子有机催化剂。

酶的活性中心:酶分子中直接和底物结合,并和酶催化作用直接相关的部位。

或酶分子中与底物直接结合并使之转变出产物的小区。

别构酶(变构酶):具有别构作用的酶。

酶活力:也称酶活性,指酶催化一定化学反应的能力,是酶特性的一大指标。 酶的比活力:指每mg酶蛋白(制剂)所含的酶的活力单位数。 酶的转换数:每秒钟每个酶分子转换底物的μmol数。

同功酶:指能催化同一种化学反应,但其酶蛋白本身的结构、组成、功能却有所不同的一组酶。

五、问答及计算题

19

1、Km的意义

(1)物理意义:当酶促反应速度达到最大反应速度一半时的底物浓度。单位:mol/L (2)Km对于酶促反应来说,它不代表某一步反应的物理常数。

(3)Km值是酶的特性常数,只与酶的性质有关,而与酶的浓度无关。

(4)Km可近似表示酶与底物的亲和力。因为Km=(k2 + k3)/ k1,那么当k2 >> k3时,Km≈k2/ k1,此时:

A:如果k2 >> k1,Km很大,表示ES的解离大于形成,说明E与S亲和力弱; B:如果k2 << k1,Km很小,表示ES的形成大于解离,说明E与S亲和力强。

(5)在已知Km时,应用米式方程,可计算任意底物浓度时的反应速度,或任意反应 速度下的底物浓度。

(6)Km值可以帮助推断某一代谢反应的方向和途径。

2、33.3%Vmax 80%Vmax 90%Vmax 99%Vmax

3、因为:V=(Vmax×[S])/([S]+Km)

-6-4

128×10=(Vmax×0.05)/(0.05+24×10)

-6

Vmax=134×10mol/L

-4

当[S]=1×10mol/L时

V=(Vmax×[S])/([S]+Km)

-6-4-4-4

=(134×10×1×10)/(1×10+24×10)

-6

=5.36×10mol/L.MIN =5.36μmol/L.min

4、活性中心的概念:酶分子中直接和底物结合,并和酶催化作用直接相关的部位。

或酶分子中与底物直接结合并使之转变出产物的小区。

酶活性中心包括底物结合部位和催化部位。

底物结合部位是指酶分子中能与底物结合的活性基团所在的部位,与酶促反应的底物特异性有关。

催化部位是指酶分子中使底物转变为产物的活性基团所在的部位,与酶促反应的类型有关。

别构部位是指效应物与酶分子结合的部位,两者结合后酶蛋白的构象发生变化,引起酶活性改变。

5、?锁钥学说

底物分子或底物分子的一部分象钥匙一样,专一地插入到酶的活性中心部位,使底物分子进行化学反应的部位与酶分子具催化功能的必需基团之间,在结构上具有紧密的互补关系。

缺陷:认为酶作用过程中,酶分子结构固定不变。不能解释酶的专一性的所有现象。例如如酶分子发生微小变化即不能催化。

?诱导契合学说

当酶分子与底物分子接近时,酶蛋白受底物分子诱导,构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合,进行反应。

X射线衍射实验结果支持这一假说。

20

6、同工酶:指能催化同一种化学反应,但其酶蛋白本身的结构、组成、功能却有所不同的一组酶。

如:乳酸脱氢酶有五种同工酶,分布在不同的组织和器官中,在不同的条件下,催化乳酸脱氢。在物质代谢中起调节作用,如在氨基酸的合成过程中,通常是几种氨基酸由同一起始物合成,合成反应的第一步都是共同的,由共同的酶催化,这种酶以及在分支途径起作用的酶常常存在着同工酶,他们受不同氨基酸的反馈调节。在生物的不同发育阶段,常有同工酶出现,这是基因表达的结果,适应不同发育阶段的需要。

7、酶溶解在纯水中,?不能为酶催化反应提供最适的pH环境,特别是当反应过程中,pH发生变化时,不能起缓冲作用;?在纯水中蛋白质容易变性;?酶在纯水溶液中缺乏必需的离子,且对温度变化敏感,所以对酶来说在纯水中容易失活。

8、1/Vmax=2.02×103 -1/Km=-0.485

Vmax=0.50×10-3 μmol/L/min Km=2.062mmol/L

9、解:?2ml中含N0.2mg根据x×16%=0.2

2ml酶液中蛋白质含量为:0.2×100/16mg

则1ml酶液中蛋白质含量为:0.2×100/16/2=0.625mg 因为0.1ml酶液1小时产生1500μg酪氨酸, 则1min产生酪蛋白为1500/60=25μg=25个单位 所以1ml酶液的活力为:25×10=250Units ?比活力为:250/0.625=400Units/mg ?因为1g=1000mg=1000ml

而1ml酶液的蛋白质含量为0.625mg,250Units

所以1g酶制剂的总蛋白含量为:0.625×1000=625mg 1g酶制剂的总活力为:250×1000=2.5×105Unites

10、11、略

12、(1)维生素B1 (2)维生素C (3)维生素D (4)维生素A (5)维生素B5 (6)维生素D (7)维生素K (8)维生素B11

13、(1)卵黄为细菌的快速生长提供了丰富营养物质。细菌的快速生长及相联系的代谢活动构成卵黄损坏的原因。 (2)许多细菌需要外源生物素才能生长。因为生物素是细菌代谢活动的不可缺少的因素,是羧化酶的辅酶,其功能是参入或转移CO2。卵清中含有一种叫做抗生物素蛋白的碱性蛋白质。该蛋白质具有很强的结合生物素的能力。对于细菌来说,为了进入到卵黄中,它必须穿过一厚厚的粘稠状的卵清层。由于卵清完全缺乏所必需的生物素,细菌存活是不可能的,因而防止了卵黄的损坏。 (3)这种对鸟类种群的保护方式在生物学上的优点是非常明显的。因为在小鸟孵出之前,鸟卵必须温育好几周,卵清能保证卵黄和发育着胚胎不受细菌的侵袭。

14、叶酸是辅酶四氢叶酸的前体。四氢叶酸是胸腺嘧啶核苷酸和腺嘌呤核苷酸生物合成 所必需的,而胸腺嘧啶核苷酸是DNA的前体。在胸腺嘧啶核苷酸的缺乏下,DNA的复制

21

是不可能的。将T补充到生长介质中可以防止发生对四氢叶酸生物合成的需要。

15、胸腺嘧啶核苷酸的合成需要四氢叶酸(FH4)的衍生物作为辅酶。叶酸的缺乏能导 致胸腺嘧啶核苷酸的减少,从而不能为DNA的合成提供有效的胸腺嘧啶核苷酸。红细胞DNA合成的减少会降低细胞分裂的速度,产生巨红细胞。细胞容易破裂而使细胞受到损失,引起贫血。

16、采下的玉米在沸水中浸泡数分钟,可以使其中将糖转化成淀粉的酶基本失活,而后 将玉米存放在冰箱中,可以使残存的酶处于一种低活性状态,从而保持了玉米的甜度。

17、人体内的某些细菌可以利用色氨酸合成尼克酸。因为玉米中只含有少量尼克酸,以 玉米为主食会导致体内尼克酸的缺乏,易得赖皮病。

22

第四章 生物膜

一、填空题

1、构成生物膜的三类主要膜脂为 、 和 。

2、膜的独特功能由特定的 执行,按照在膜上的定位,膜蛋白可分为 和 。 3、1972年 提出生物膜的“流动镶嵌”模型。该模型突出了膜的 性和膜蛋白分 布的 性。

4、被动转运是 进行的,溶质的净转运从 一侧向 一侧扩散,包括 和 。 5、主动转运是 进行的,必须借助于某些 来驱动;主动转运的方向性是由 提 供的。

二、选择题(1-n个答案)

1、以下哪些因素影响膜脂的流动性?

a、膜脂的脂肪酸组分 b、胆固醇含量 c、膜蛋白与脂双层的相互作用 d、温度 2、哪些组分可以用去垢剂或有机溶剂从生物膜上分离下来

a、外周蛋白 b、整合蛋白 c、跨膜蛋白 d、共价结合的糖类 3、以下哪种转运系统属于被动转运?

a、红细胞质膜上的阴离子通道 b、质膜上的Na-K-ATPase

c、大肠杆菌质膜上的H-乳糖透性酶 d、嗜盐菌质膜上的细菌视紫红质 4.以下哪些转运系统属于初级主动转运?

a、红细胞质膜上的阴离子通道 b、质膜上的Na-K-ATPase

c、大肠杆菌质膜上的H-乳糖透性酶 d、嗜盐菌质膜上的细菌视紫红质。 5、以下哪种系统属于次级主动转运?

a、红细胞质膜上的阴离子通道

+

+

+

+

+

+

23

b、质膜上的Na-K-ATPase

c、大肠杆菌质膜上的H-乳糖透性酶 d、嗜盐菌质膜上的细菌视紫红质

+

++

三、判断题

1、质膜中与膜蛋白和膜脂共价结合的糖都朝向细胞外侧定位。

2、生物膜是由极性脂和蛋白质通过非共价健形成的片状聚集体,膜脂和膜蛋白都可以 自由地进行侧向扩散和旋转扩散。

3、膜脂沿膜平面的侧向扩散速度与从一侧到另一侧的旋转扩散速度大体相等。 4、膜蛋白实际上不作旋转扩散,因此生物膜可以看作定向的膜蛋白与膜脂组成的二维溶液。

5、生物膜的不对称性仅指膜蛋白的定向排列,膜脂可作侧向和旋转扩散,在双分子层 中的分布是相同的。

6、各类生物膜的极性脂均为磷脂、糖脂和胆固醇。

7、主动转运有两个显著特点:一是逆浓度梯度进行,因而需要能量驱动;二是具有方向性。

8、所有的主动运输都具有ATPase活性。细胞中这种偶联通常多是间接的。 9、极少数的膜蛋白通过共价键结合于膜脂。

10、膜脂的双分子层结构及其适当的流动性,是膜蛋白保持一定构象、表现正常功能的 必要条件。

11、原核细胞中大多数主动转运直接与放能反应相偶联;动物细胞中这种偶联通常多是 间接的。

四、问答题

1、“流动镶嵌”模型的要点是什么? 2、细胞的跨膜转运有哪些主要类型?

24

第四章《生物膜》参考答案

一、填空题

1、磷脂、糖鞘脂和胆固醇

2、蛋白质、内在膜蛋白、外周膜蛋白

3、S.Jonathan Singer和Garth L.Nicolson、流动、不对称 4、沿着浓度梯度、浓度高、浓度低、简单扩散、协助扩散 5、逆浓度梯度、外来能量、ATP

二、选择题

1、abd 2、bc 3、a 4、ad 5、bc

三、判断题

×、+、×、×、×、 +、+、×、+、+、 ×

四、问答题

1、1972年S.Jonathan Singer和Garth L.Nicolson就生物膜的结构提出了流动镶嵌模型(fluid mosaic model)。根据这一模型的描述,膜蛋白看上去象是圆形的“冰山”飘浮在高度流动的脂双层“海”中(图6.18)。内在膜蛋白(integral membrane proteins)插入或跨越脂双层,与疏水内部接触。外周膜蛋白(peripheral membrane proteins)与膜表面松散连接。生物膜是一个动态结构,即膜中的蛋白质和脂可以快速地在双层中的每一层内侧向扩散。

2、(1)被动转运:物质从高浓度的一侧,通过膜转运到低浓度的另一侧,即沿着浓度梯度(膜两边的浓度差)的方向跨膜转运的过程。

(2)主动转运:主动转运是在外加能量驱动下进行的物质跨膜转运过程。

25

第五章《糖化学及糖代谢》参考答案

一、选择题

b、c、a、c、a、 a、e、e、c、c、 c、c、d、d、d、 a、c、c、a、d、b、d、c、b、e、 c、c、b、c、d、 b、c、c、b

二、填空题

1、半乳糖 2、胞液 3、线粒体 4、胞液

5、3-磷酸甘油醛氧化为1,3-二磷酸甘油酸、NAD 6、6-磷酸葡萄糖 7、6-磷酸果糖激酶

8、丙酮酸脱氢酶、丙酮酸氧化脱羧、五

9、丙酮酸脱氢酶、二氢硫辛酸转乙酰基酶、二氢硫辛酸脱 10、2、2 11、乳酸 12、12、1 13、4、1

14、NADPH+H、5-磷酸核糖 15、糖原合成酶、磷酸化酶

16、琥珀酰辅酶A、琥珀酸、琥珀酸硫激酶、GTP 17、6

18、D-葡萄糖 D-半乳糖 β-1,4

19、维管束鞘细胞、磷酸烯醇式丙酮酸、苹果酸或天冬氨酸、叶肉 20、CO2、苹果酸、液泡 21、淀粉合成酶、Q酶

三、判断题

×、×、+、+、+、 ×、×、+、×、× +

四、名词解释

糖酵解:将G经磷酸化并裂解成三碳糖,最终生成丙酮酸的过程。 糖异生:指由非糖物质合成G的过程。

五、问答及计算题

31

1、?三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。 ?糖代谢产生的碳骨架最终进入三羧酸循环氧化。

?脂肪分解产生的甘油可通过糖有氧氧化进入三羧酸循环氧化,脂肪酸经β—氧化产生乙酰CoA可进入三羧酸循环氧化。

?蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受NH3后合成非必需氨基酸。所以,三羧酸循环是三大物质代谢的共同通路。

2、?成熟红细胞没有线粒体等亚细胞器,故能量来源主要是糖酵解,不消耗氧。 ?成熟红细胞中需要还原型递氢体提供足够的NADPH和NADH,使细胞内膜蛋白,酶+

和Fe2处于还原状态,其中NADH可来源于糖酵解,NADPH则来源于磷酸戊糖途径。

3、各种糖的氧化分解,包括糖酵解、磷酸戊糖途径、糖有氧氧化、糖原合成和分解、糖异生途径均有6-磷酸葡萄糖中间产物生成。

4、略

5、过程 略

EMP指葡萄糖分解为丙酮酸的过程;

发酵指葡萄糖分解为丙酮酸后,再发生无氧分解生成乙醇和乳酸的过程。

6、 G有氧分解 G无氧分解

过程 G→→→丙酮酸 G→→→丙酮酸→→→乙醇或乳酸 物质变化 CO2+H2O 乙醇或乳酸

能量变化 1molG产生38或36molATP 1molG产生2molATP

7、8、9、10、略

11、(1)α—磷酸甘油 DHAP 生成1molNADH+H (2)DHAP 3—磷酸甘油醛

(3)3—磷酸甘油醛 1,3—2—磷酸甘油酸 生成1molNADH+H (4)1,3—2—磷酸甘油酸 3—磷酸甘油酸 生成1molATP (5)3—磷酸甘油酸 2—磷酸甘油酸 (6)2—磷酸甘油酸 PEP+H2O

(7)PEP 丙酮酸 生成1molATP

(8)丙酮酸 乙酰CoA 生成1molNADH+H

(9)乙酰CoA 经TCA彻底氧化分解 生成3molNADH+H 1molFADH2

1molATP

因为1molNADH+H氧化磷酸化可生成3molATP

1molFADH2氧化磷酸化可生成2molATP

所以共产生ATP数为 6×3+1×2+1+1+1=23molATP

32

12、一个。虽然支链淀粉和糖原含有多个非还原性末端,但都只含有一个还原性末端。

13、由于直链淀粉只有一个非还原性末端的葡萄糖可被动用,而支链淀粉具有多个非还 原性末端可用于降解,故直链淀粉很可能成为植物体内长期储存的多糖。

14、通过加入更多的底物(在该反应中,底物是琥珀酸)可以克服竞争性抑制作用。草 酰乙酸之所以能克服丙二酸的抑制作用,是因为它能通过柠檬酸循环转变成琥珀酸。

15、硫胺素是辅酶焦磷酸硫胺素(TPP)的前体,与柠檬酸循环密切相关的两种酶复合 体丙酮酸脱氢酶复合物和α-酮戊二酸复合物需要这个辅酶的参与。TPP的缺乏降低了这两种酶复合物的活性,丙酮酸不能有效地转变成乙酰CoA,也降低了α-酮戊二酸向琥珀酸的转变,引起丙酮酸和α-酮戊二酸在血液中水平增高。

16、当糖原因饥饿而被耗尽时,乳酸、甘油和丙氨酸等生糖氨基酸是葡萄糖合成的主要 前体。当饥饿急需时,肌肉蛋白降解成氨基酸,后者可被用作糖异生作用的前体。剧烈运动需要肌肉无氧酵解高速运转,结果导致大量血乳酸的生成。乳酸被肝脏吸收并将其转变成丙酮酸,后者可用于葡萄糖的合成(Cori cycle)。

17、柠檬酸浓度升高,表明乙酰基和ATP可用于脂肪酸的合成。柠檬酸是乙酰CoA羧 化酶的变构激活剂,同时也是乙酰基跨膜转运的载体。所以,柠檬酸水平的升高极大地促进脂肪酸的合成。

33

第六章 生物氧化与氧化磷酸化

一、选择题

1、近年来关于氧化磷酸化的机制是通过下列那个学说被阐明的?

a、巴斯德效应 b、化学渗透学说 c、华伯氏学说 d、共价催化理论 e、协同效应 2、线粒体呼吸链的磷酸化部位可能位于下列哪些物质之间?

a、辅酶Q和细胞色素b b、细胞色素b和细胞色素c

c、丙酮酸和NAD d、FAD和黄素蛋白

e、细胞色素c和细胞色素aa3

3、关于有氧条件下,NADH从胞液进入线粒体氧化的机制,下列哪项是正确的?

a、NADH直接穿过线粒体膜而进入。

b、磷酸二羟丙酮被NADH还原成3—磷酸甘油进入线粒体,在内膜上又被氧化成磷酸二羟丙酮同时生成NADH。

c、草酰乙酸被还原成苹果酸,进入线粒体后再被氧化成草酰乙酸,停留于线粒体内。 d、草酰乙酸被还原成苹果酸进入线粒体,然后再被氧化成草酰乙酸,再通过转氨基作用生成天冬氨酸,最后转移到线粒体外。 e、通过肉毒碱进行转运进入线粒体。

4、寡霉素通过什么方式干扰了高能化合物ATP的生成?

a、使细胞色素c与线粒体内膜分离

b、使电子在NADH与黄素酶之间的传递被阻断 c、阻断线粒体膜上的肉毒碱穿梭 d、抑制线粒体内的ATP酶

e、使线粒体内膜不能生成有效的氢离子梯度

5、肌肉或神经组织细胞内NADH进入线粒体的穿梭机制主要是:

a、α—磷酸甘油穿梭机制 b、柠檬酸穿梭机制 c、肉毒碱穿梭机制 d、丙酮酸穿梭机制 e、苹果酸穿梭机制

6、下列关于化学渗透学说的叙述哪一条是不对的?

a、呼吸链各组分按特定的位置排列在线粒体内膜上 b、各递氢体和递电子体都有质子泵的作用

c、线粒体内膜外侧H不能自由返回膜内

d、ATP酶可以使膜外H返回膜内

e、H返回膜内时可以推动ATP酶合成ATP 7、下列化合物除何者外都是高能化合物?

a、3-磷酸甘油酸 b、磷酸烯醇式丙酮酸 c、琥珀酰CoA d、酰基磷酸 8、下述哪种物质专一地抑制F0因子?

a、鱼藤酮 b、抗霉素A c、寡霉素 d、苍术苷

34

二、填空题

1、真核细胞生物氧化是在 进行的,原核细胞生物氧化是在 进行的。

2、生物氧化主要通过代谢物 反应实现的,生物氧化产生的H2O是通过 形成的。

3 、典型的呼吸链包括 和 两种,这是根据接受代谢物脱下的氢的 不同而区别的。

4、呼吸链中氧化磷酸化生成ATP的偶联部位是 、 和 。 5、绿色植物生成ATP的三种方式是 、 和 。 6、NADH通常转移 和 给O2,并释放能量,生成 ;而NADPH 通常转移 和 给某些氧化态前体物质,参与 代谢。

7、线粒体内膜外侧的3-磷酸甘油脱氢酶的辅酶是 ;而线粒体内膜内侧 的3-磷酸甘油脱氢酶的辅酶是 。

8、动物体内高能磷酸化合物的生成方式有 和 两种。

9、用特殊的抑制剂可将呼吸链分成许多单个反应,这是一种研究氧化磷酸化中间步骤 的有效方法,常用的抑制剂及作用如下:

?鱼藤酮抑制电子由 向 的传递。

?抗霉素A抑制电子由 向 的传递。 ?氰化物、CO抑制电子由 向 的传递。

三、判断题

1、电子通过呼吸链的传递方向是从ΔEoˊ正→ΔEoˊ负。 2、2,4-二硝基苯酚是氧化磷酸化的解偶联剂。

3、ATP虽然含有大量的自由能,但它并不是能量的储存形式。

4、ATP在高能化合物中占有特殊地位,它起着共同的中间体的作用。 5、磷酸肌酸是ATP高能磷酸基的储存库。

6、解偶联剂的作用是解开电子传递和磷酸化的偶联关系,并不影响ATP的形成。 7、抗霉素A能阻断异柠檬酸氧化过程中ATP的形成,但不阻断琥珀酸氧化过程中ATP 的形成。

8、NADH和NADPH都可以直接进入呼吸链。 9、生物氧化只有在氧气的存在下才能进行。 10、解偶联剂可抑制呼吸链的电子传递。

11、寡霉素专一地抑制线粒体F1-F0-ATP合酶的F0,从而抑制ATP的合成。

四、名词解释

呼吸链、P/O比、氧化磷酸化、生物氧化、高能磷酸化合物、F1F0—ATP合酶

五、问答题

1、解释氧化磷酸化作用机理的化学渗透学说的主要论点是什么?在几种学说中,为什么它能得到公认?

2、在体内ATP有哪些生理作用?

35

本文来源:https://www.bwwdw.com/article/q1c6.html

Top