沈维道-工程热力学第四版-思考题

更新时间:2024-05-31 09:22:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?

不一定,稳定流动系统内质量也保持恒定。

2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。对不对,为什么?

不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。 3.平衡状态与稳定状态有何区别和联系?

平衡状态一定是稳定状态,稳定状态则不一定是平衡状态。 4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式

p=pb+pg (p> pb), p= pb -pv (p< pb)

中,当地大气压是否必定是环境大气压?

当地大气压pb改变,压力表读数就会改变。当地大气压pb不一定是环境大气压。

5.温度计测温的基本原理是什么?

热力学第零定律

The zeroth law of thermodynamics enables us to measure temperature. In order to measure temperature of body A, we compare body C — a thermometer — with body A and temperature scales (温度的标尺,简称温

pb pg1 pg2 p2=pg2+p1 p1=pg1+pb 4题图

标) separately. When they are in thermal equilibrium, they have the same temperature. Then we can know the temperature of body A with temperature scale marked on thermometer. 6.经验温标的缺点是什么?为什么?

不同测温物质的测温结果有较大的误差,因为测温结果依赖于测温物质的性质。

7.促使系统状态变化的原因是什么?举例说明。

有势差(温度差、压力差、浓度差、电位差等等)存在。 8.分别以图1-20所示的参加公路自行车赛的运动员、运动手枪中的压缩空气、杯子里的热水和正在运行的电视机为研究对象,说明这些是什么系统。

参加公路自行车赛的运动员是开口系统、运动手枪中的压缩空气是闭口绝热系统、杯子里的热水是开口系统(闭口系统——忽略蒸发时)、正在运行的电视机是闭口系统。

9.家用电热水器是利用电加热水的家用设备,通常其表面散热可忽略。取正在使用的家用电热水器为控制体(但不包括电加热器),这是什么系统?把电加热器包括在研究对象内,这是什么系统?什么情况下能

电流 热水 冷水 传热 热水 传热 冷水 a b

9题图

构成孤立系统?

不包括电加热器为开口(不绝热)系统(a图)。包括电加热器则为开口绝热系统(b图)。

将能量传递和质量传递(冷水源、热水汇、热源、电源等)全部包括在内,构成孤立系统。或者说,孤立系统把所有发生相互作用的部分均包括在内。

10.分析汽车动力系统(图1-21)与外界的质能交换情况。

图1–21 汽车动力系统示意图

吸入空气,排出烟气,输出动力(机械能)以克服阻力,发动机水箱还要大量散热。不考虑燃烧时,燃料燃烧是热源,燃气工质吸热;系统包括燃烧时,油料发生减少。

11.经历一个不可逆过程后,系统能否恢复原来状态?包括系统和外界的整个系统能否恢复原来状态?

经历一个不可逆过程后,系统可以恢复原来状态,它将导致外界发生变化。包括系统和外界的整个大系统不能恢复原来状态。 12.图1-22中容器为刚性绝热容器,分成两部分,一部分装气体,一部分抽成真空,中间是隔板, (1)突然抽去隔板,气体(系统)是否作

功?

(2)设真空部分装有许多隔板,逐个抽去隔板,每抽一块板让气体先恢复平衡在抽下一块,则又如何?

(3)上述两种情况从初态变化到终态,其过程是否都可在p-v图上表示?

(1)不作功; (2)不作功;

(3)前者不行,后者可以。 13.图1–23中过程1a2是可逆过程,过程1b2是不可逆过程。有人说过程1a2对外作功大于过程1b2,你是否同意他的说法?为什么?

不同意。过程1a2的作功量是确定的,

p 1

a b 2

v

图1–23 思考题1–13附图

而过程1b2的作功量不确定,因而无法比较。

14.系统经历一可逆正向循环和其逆向可逆循环后,系统和外界有什么变化?若上述正向循环及逆向循环中有不可逆因素,则系统及外界有什么变化?

系统经历一可逆正向循环和其逆向可逆循环后,系统和外界没有变化。若上述正向循环及逆向循环中有不可逆因素,则系统恢复原来状态,外界则留下了变化(外界的熵增加)。

15.工质及气缸、活塞组成的系统经循环后,系统输出功中是否要减去活塞排斥大气功才是有用功?

不需要。作功过程中排斥大气功在压缩过程中被回收回来了(大气推动活塞作功)。

1.热力学能就是热量吗?

不是。热力学能是工质的状态参数,是工质的性质,是工质内部储存能量,是与状态变化过程无关的物理量。(传)热量是工质状态发生变化时通过系统边界传递的热能,其大小与变化过程有关,热量不是状态参数。

2.若在研究飞机发动机中工质的能量转换规律时把参考坐标建在飞机上,工质的总能中是否包括外部储存能?在以氢、氧为燃料的电池系统中系统的热力学能是否应包括氢和氧的化学能?

无论参考坐标建立在何处,工质的总能中始终包括外部储存能,只不过参考坐标建立合适,工质的宏观动能、宏观势能的值等于零,便于计算。

氢氧燃料电池中化学能变化是主要的能量变化,因而不可忽略。 3.能否由基本能量方程式得出功、热量和热力学能是相同性质的参数的结论?

q=?u+w

不能。基本能量方程式仅仅说明且充分说明功、热量和热力学能都是能量,都是能量存在的一种形式,在能量的数量上它们是有等价关系的。而不涉及功、热量和热力学能的其他属性,也表明功、热量和热力学能的其他属性与能量本质无关。

4.一刚性绝热容器,中间用绝热隔板分为两部分,A中存有高压空气,B中保持真空,如图2-12所示。若将隔板抽去,分析容器中空气的热力学能将如何变化?若在隔板上有一小孔,气体泄漏入B中,分析A、B两部分压力相同时A、B两部分气体热力学能如何变化?

q=?u+w

q=0,?u为负值(u减少),转化为气体的动能,动能在B中经内部摩擦耗散为热能被气体重新吸收,热力学能增加,最终?u =0。 5. 热力学第一定律的能量方程式是否可写成下列形式?为什么?

q=?u+pv q2-q1=(u2-u1)+(w2-w1)

不可以。w不可能等于pv,w是过程量,pv则是状态参数。q和w都是过程量,所以不会有q2-q1和w2-w1。

6. 热力学第一定律解析式有时写成下列两者形式:

q=?u+w q=?u+

分别讨论上述两式的适用范围。

前者适用于任意系统、任意工质和任意过程。 后者适用于任意系统、任意工质和可逆过程。

7.为什么推动功出现在开口系能量方程中,而不出现在闭口系能量方程式中?

A B 图2-12 自由膨胀

隔板 ?21pdv

推动功的定义为,工质在流动时,推动它下游工质时所作的功。开口系工质流动,而闭口系工质不流动,所以推动功出现在开口系能量方程中,而不出现在闭口系能量方程式中。

我个人认为推动功应该定义为由于工质在一定状态下占有一定空间所具有的能量,它是工质本身所固有的性质,是一个状态参数。推动功既可以出现在开口系能量方程中,也可以出现在闭口系能量方程式中(需要把w拆开,w=wt+?(pv))。——占位能

8.焓是工质流入(或流出)开口系时传递入(或传递出)系统的总能量,那么闭口系工质有没有焓值?

比较正规的答案是,作为工质的状态参数,闭口系工质也有焓值,但是由于工质不流动,所以其焓值没有什么意义。

焓=热力学能+占位能

9.气体流入真空容器,是否需要推动功?

推动功的定义为,工质在流动时,推动它下游工质时所作的功。下游无工质,故不需要推动功。利用开口系统的一般能量方程式推导的最终结果也是如此。

10.稳定流动能量方程式(2-21)是否可应用于像活塞式压气机这样的机械稳定工况运行的能量分析?为什么?

可以。热力系统的选取有很大的自由度。一般把活塞式压气机取为闭口系统,是考察其一个冲程内的热力变化过程。如果考虑一段时间内活塞式压气机的工作状况和能量转换情况,就需要把它当成稳定流动系统处理,包括进排气都认为是连续的。

11.为什么稳定流动开口系内不同部分工质的比热力学能、比焓、比熵等都会改变,而整个系统的?UCV=0、?HCV=0、?SCV=0?

控制体的?UCV=0、?HCV=0、?SCV=0是指过程进行时间前后的变化值,稳定流动系统在不同时间内各点的状态参数都不发生变化,所以?UCV=0、?HCV=0、?SCV=0。稳定流动开口系内不同部分工质的比热力学能、比焓、比熵等的改变仅仅是依坐标的改变。 12.开口系实施稳定流动过程,是否同时满足下列三式:

?Q=dU+?W ?Q=dH+?Wt

?Q=dH+

mdc2f+mgdz+?Wi 2??上述三式中,W、Wt和Wi的相互关系是什么?

答:都满足。 ?W=d(pV)+ ?Wt= d(pV)+

?Wt=

mdc2f+mgdz+?Wi 2??mdc2f+mgdz+?Wi 2??13. 几股流体汇合成一股流体称为合流,如图2-13所示。工程上几台

qm1 1 p1, T1 3 1 qm3 p3, T3 2 3 qm2 p2, T2 2 图2-13 合流 压气机同时向主气道送气以及混合式换热器等都有合流的问题。通常合流过程都是绝热的。取1-1、2-2和3-3截面之间的空间为控制体积,列出能量方程式并导出出口截面上焓值h3的计算式。

进入系统的能量–离开系统的能量=系统贮存能量的变化

系统贮存能量的变化:不变。

进入系统的能量:qm1带入的和qm2带入的。没有热量输入。

qm1(h1+cf12/2+gz1)+ qm2(h2+cf22/2+gz2)

离开系统的能量:qm3带出的,没有机械能(轴功)输出。

qm3(h3+cf32/2+gz3)

如果合流前后流速变化不太大,且势能变化一般可以忽略,则能量方程为:

qm1?h1+ qm2?h2= qm3?h3

出口截面上焓值h3的计算式

h3= (qm1?h1+ qm2?h2)/ qm3

本题中,如果流体反向流动就是分流问题,分流与合流问题的能量方程式是一样的,一般习惯前后反过来写。

qm1?h1 = qm2?h2+ qm3?h3

qm3 3 p3, T3 1 3 qm1 p1, T1 2 1 qm2 p2, T2 2 图2-13+ 分流

1.怎样正确看待“理想气体”这个概念?在进行实际计算时如何决定是否可采用理想气体的一些公式?

第一个问题很含混,关于“理想气体”可以说很多。可以说理想气体的定义:理想气体,是一种假想的实际上不存在的气体,其分子是一些弹性的、不占体积的质点,分子间无相互作用力。也可以说,理想气体是实际气体的压力趋近于零时极限状况。还可以讨论什么情况下,把气体按照理想气体处理,这已经是后一个问题了。后一个问题,当气体距离液态比较远时(此时分子间的距离相对于分子的大小非常大),气体的性质与理想气体相去不远,可以当作理想气体。理想气体是实际气体在低压高温时的抽象。

2.气体的摩尔体积Vm是否因气体的种类而异?是否因所处状态不同而异?任何气体在任意状态下摩尔体积是否都是0.022414m3/mol?

气体的摩尔体积Vm不因气体的种类而异。所处状态发生变化,气体的摩尔体积也随之发生变化。任何气体在标准状态(p=101325Pa,T=273.15K)下摩尔体积是0.022414m3/mol。在其它状态下,摩尔体积将发生变化。

3.摩尔气体常数R值是否随气体的种类而不同或状态不同而异?

摩尔气体常数R是基本物理常数,它与气体的种类、状态等均无关。

4.如果某种工质的状态方程式为pv=RgT,这种工质的比热容、热力学能、焓都仅仅是温度的函数吗?

其热力学能、焓都仅仅是温度的函数。定压比热和定容比热也仅仅是温度的函数。

5.对于确定的一种理想气体,cp–cv是否等于定值?cp/cv是否为定值?

cp–cv、cp/cv是否随温度变化?

cp–cv=Rg,等于定值,不随温度变化。cp/cv不是定值,将随温度发生变化。

6.迈耶公式cp–cv=Rg是否适用于动力工程中应用的高压水蒸气?是否适用于地球大气中的水蒸气?

不适用于前者,一定条件下近似地适用于后者。

7.气体有两个独立的参数,u(或h)可以表示为p和v的函数,即u=f(p, v)。但又曾得出结论,理想气体的热力学能(或焓)只取决于温度,这两点是否矛盾?为什么?

不矛盾。pv=RgT。热力学能(或焓)与温度已经相当于一个状态参数,他们都可以表示为独立参数p和v的函数。

8.为什么工质的热力学能、焓和熵为零的基准可以任选,所有情况下工质的热力学能、焓和熵为零的基准都可以任选?理想气体的热力学能或焓的参照状态通常选定哪个或哪些个状态参数值?对理想气体的熵又如何?

我们经常关注的是工质的热力学能、焓和熵的变化量,热力学能、焓和熵的绝对量对变化量没有影响,所以可以任选工质的热力学能、焓和熵为零的基准。所有情况下工质的热力学能、焓和熵为零的基准都可以任选?不那么绝对,但是在工程热力学范围内,可以这么说。工质的热力学能、焓和熵的绝对零点均为绝对零度(0K),但是目前物理学研究成果表明,即使绝对零度,工质的热力学能、焓和熵也不准确为零,在绝对零度,物质仍有零点能,由海森堡测不准关系确定。(热力学第三定律可以表述为,绝对零度可以无限接近,但永远不可能达到。)

标准状态(p=101325Pa,T=273.15K)。(p=101325Pa,T=293.15K)、(p=101325Pa,T=298.15K),水的三相点,等等。 9.气体热力性质表中的u、h及s0的基准是什么状态?

一般是以标准状态为基准(88页的表是以水的三相点液体为焓和熵的基准点)。教科书后的附表7、8是以绝对零度(0K)为基准的。 10.在图3-15所示的T–s图上任意可逆过程1–2的热量如何表示?理想气体1和2状态间热力学能变化量、焓变化量能否在图上用面积表示?若1–2经过的是不可逆过程又如何?

曲线1-2下的曲边梯形面积就是任意可逆过程1–2的热量。dQ=TdS沿过程的积分。Q=?U+W,所以?U=Q–W。不可逆过程传热量不能用曲边梯形面积表达,但是热力学能和焓还可以用原方式表达,

T

U 2 p=0 1 p 1 2 0

s v 因为热力学能和焓都是状态参数,其变化与过程路径无关。 11.理想气体熵变计算式(3-39)、(3-41)、(3-43)等是由可逆过程导出,这些计算式是否可以用于不可逆过程初、终态的熵变?为什么?

可以。熵是状态参数,其变化与过程路径无关。

12.熵的数学定义式为ds=dq/T,又dq=cdT,故ds=(cdT)/T。因理想气体的比热容是温度的单值函数,所以理想气体的熵也是温度的单值函数,这一结论是否正确?若不正确,错在何处?

不正确。错在c不是状态参数,与过程有关。是温度单值函数的是定过程比热。

13.试判断下列各说法是否正确:

(1)气体吸热后熵一定增大;(2)气体吸热后温度一定升高;(3)气体吸热后热力学能一定增加;(4)气体膨胀时一定对外作功;(5)气体压缩时一定耗功。

(1)正确;(2)不正确;(3)不正确;(4)正确;(5)正确。 14.氮、氧、氨这样的工质是否和水一样也有饱和状态的概念,也存在临界状态?

是的。几乎所有的纯物质(非混合物)都有饱和状态的概念,也存在临界状态。此外的物质性质更为复杂。

15.水的三相点的状态参数是不是唯一确定的?三相点与临界点有什么差异?

水的三相点的状态参数是唯一确定的,这一点由吉布斯相律确认:对于多元(如k个组元)多相(如f个相)无化学反应的热力系,其独立参数,即自由度n = k–f + 2。三相点:k =1,f = 3,故n = 0。

三相点是三相共存点,在该点发生的相变都具有相变潜热。临界点两相归一,差别消失,相变是连续相变,没有相变潜热。三相点各相保持各自的物性参数没有巨大的变化,临界点的物性参数会产生巨大的峰值变化。三相点和临界点是蒸汽压曲线的两个端点。三相点容易实现,临界点不容易实现。

16.水的汽化潜热是否是常数?有什么变化规律?

水的汽化潜热不是常数,三相点汽化潜热最大,随着温度和压力的提高汽化潜热逐渐缩小,临界点处汽化潜热等于零。

17.水在定压汽化过程中,温度保持不变,因此,根据q=?u+w,有人认为过程中的热量等于膨胀功,即q=w,对不对?为什么?

不对。?u=cv?T是对单相理想气体而言的。水既不是理想气体,汽化又不是单相变化,所以q=w的结论是错的。

18.有人根据热力学第一定律解析式?q=dh–vdp和比热容的定义c=

?qdT,所以认为?hp?cpT2T1?T是普遍适用于一切工质的。进而推论

T2T1得出水定压汽化时,温度不变,因此其焓变量?hp?cp推论错误在哪里?

c=

?T=0。这一

?qdT是针对单相工质的,不适用于相变过程。

1.试以理想气体的定温过程为例,归纳气体的热力过程要解决的问题及使用方法。

要解决的问题:揭示过程中状态参数的变化规律,揭示热能与机械能之间的转换情况,找出其内在规律及影响转化的因素。在一定工质热力性质的基本条件下,研究外界条件对能量转换的影响,从而加以利用。

使用的方法:分析典型的过程。分析理想气体的定值的可逆过程,即过程进行时限定某一参数不发生变化。

分析步骤

1) 建立过程方程式;

2) 找出(基本)状态参数的变化规律,确定不同状态下参数之

间的关系;

3) 求出能量参数的变化(过程功、技术功、热力学能、焓、熵、

传热量等等);

4) 画出过程变化曲线(在T-s图、p-v图上)。

2.对于理想气体的任何一种过程,下列两组公式是否都适用?

?u=cv(t2–t1),?h=cp(t2–t1);q=?u=cv(t2–t1),q=?h=cp(t2–t1) 第一组都适用,第二组不适用。第二组第一式只适用于定容过程,第二式只适用于定压过程。

3.在定容过程和定压过程中,气体的热量可根据过程中气体的比热容乘以温差来计算。定温过程气体的温度不变,在定温膨胀过程中是否需要对气体加入热量?如果加入的话应如何计算?

需要加入热量。q=?u+w, 对于理想气体,q=w=RT1ln对于理想气体,q =wt=RT1lnv2或q=?h+wt, v1v2。 v14.过程热量q和过程功w都是过程量,都和过程的途径有关。由理想气体可逆定温过程热量公式q=p1v1lnv2可知,只要状态参数p1、v1v1和v2确定了,q的数值也确定了,是否可逆定温过程的热量q与途径无关?

―可逆定温过程‖已经把途径规定好了,此时谈与途径的关系没有意义。再强调一遍,过程热量q和过程功w都是过程量,都和过程的

途径有关。

5.闭口系在定容过程中外界对系统施以搅拌功?w,问这时?Q=mcvdT是否成立?

不成立。搅拌功?w以机械能形式通过系统边界,在工质内部通过流体内摩擦转变为热,从而导致温度和热力学能升高。?Q是通过边界传递的热能,不包括机械能。

6.绝热过程的过程功w和技术功wt的计算式

w=u1–u2,wt=h1–h2

是否只适用于理想气体?是否只限于可逆绝热过程?为什么?

两式来源于热力学第一定律的第一表达式和第二表达式,唯一条件就是绝热q=0,与是否理想气体无关,且与过程是否可逆也无关,只是必须为绝热过程。

7.试判断下列各种说法是否正确?

(1) 定容过程即无膨胀(或压缩)功的过程; (2) 绝热过程即定熵过程; (3) 多变过程即任意过程。

答:(1) 定容过程即无膨胀(或压缩)功的过程; ——正确。

(2) 绝热过程即定熵过程; ——错误,可逆绝热过程是定熵过程,不可逆绝热过程不是定熵过程。

(3) 多变过程即任意过程。 ——错误,右图中的过程就不是多变过程。 8.参照图4-17,试证明:q1-2-3? q1-4-3。图

7题图

中1–2、4–3各为定容过程,1–4、2–3各为定压p 过程。

证明:q1-2-3=q1-2+q2-3,q1-4-3= q1-4+ q4-3

q1-2= cv(T2–T1),

q2-3= cp(T3–T2)= cv(T3–T2)+R(T3–T2), q4-3= cv(T3–T4),

q1-4= cp(T4–T1) = cv(T4–T1)+R(T4–T1)。 ? q1-2-3=q1-2+q2-3= cv(T2–T1)+ cv(T3–T2)+R(T3–T2) = cv(T3–T1)+R(T3–T2)

q1-4-3= q1-4+ q4-3= cv(T4–T1)+R(T4–T1)+cv(T3–T4)

= cv(T3–T1)+R(T4–T1)

于是 q1-2-3–q1-4-3= R(T3–T2)–R(T4–T1)

=R[(T4

p2pp–T12)–(T4–T1)]= R(2–1)(T4–T1)>0 p1p1p1 2 3 1 4 O v 图4-17

所以,q1-2-3? q1-4-3,证毕。

9.如图4-18所示,今有两个任意过程a–b及a–c,b点及c点在同一条绝热线上,(1) 试问?uab与?uac哪个大?(2) 若b点及c点在同一条定温线上,结果又如何?

p b

a c O v 图4-18 思考题4–9附图

p b Tb Tc a c O v 图4-18题解

依题意,Tb>Tc,所以?uab>?uac。若b点及c点在同一条定温线上,则?uab=?uac。

10.理想气体定温过程的膨胀功等于技术功能否推广到任意气体?

从热力学第一定律的第一表达式和第二表达式来看,膨胀功和技术功分别等于w=q–?u和wt=q–?h,非理想气体定温过程的?u和?h不一定等于零,也不可能相等,所以理想气体定温过程的膨胀功等于技术功不能推广到任意气体。 11.下列三式的使用条件是什么?

p2v2=p1v1,T1v1

k

k

k-1

=T2v2k-1,T1

p1?k?1k=T2p2?k?1k

使用条件是:理想气体,可逆绝热过程。

12.T–s图上如何表示绝热过程的技术功wt和膨胀功w?

p=0 v=0

4-13 在p–v和T–s图上如何判断过程q、w、?u、?h的正负。

通过过程的起点划等容线(定容线),过程指向定容线右侧,系统对外作功,w>0;过程指向定容线左侧,系统接收外功,w<0。

通过过程的起点划等压线(定压线),过程指向定压线下侧,系统对外输出技术功,wt>0;过程指向定压线上侧,系统接收外来技术功,

wt<0。

通过过程的起点划等温线(定温线),过程指向定温线下侧,?u<0、?h<0;过程指向定温线上侧,?u>0、?h>0。

通过过程的起点划等熵线(定熵线),过程指向定熵线右侧,系统吸收热量,q>0;过程指向定熵线左侧,系统释放热量,q<0。

p T, n=1 v, n→?∞ A p, n=0 s, n=k v

T s, n=k v, n→?∞

p, n=0

T, n=1 A s

4-14 试以可逆绝热过程为例,说明水蒸气的热力过程与理想气体的热力过程的分析计算有什么异同?

相同点:都是首先确定起始状态和结束状态,然后在计算过程的作功量等数据。计算过程中,始终要符合热力学第一定律。

不同点:理想气体的计算是依靠理想气体状态方程以及功和热量的积分计算式进行计算,而水蒸气是依靠查图查表进行计算。 4-15 实际过程都是不可逆的,那么本章讨论的理想可逆过程有什么意义?

理想可逆过程是对实际过程的近似和抽象,实际过程过于复杂不易于分析,通过理想可逆过程的分析以及根据实际过程进行适当修正,可以了解实际过程能量转换变化情况,以及如何向理想可逆过程靠近以提高相应的技术指标。

5-1热力学第二定律能否表达为:“机械能可以全部变为热能,而热能不可能全部变为机械能。”这种说法有什么不妥当?

答:热能不是不可能全部变成机械能,如定温过程就可以。但想要连续地将热能转变为机械能则是不可能的。

5-2理想气体进行定温膨胀时,可从单一恒温热源吸入的热量,将之全部转变为功对外输出,是否与热力学第二定律的开尔文叙述有矛盾?提示:考虑气体本身是否有变化。

答:理想气体进行定温膨胀时,压力不断降低,体积越来越大。当压力低到外界压力时,就不能再继续降低了,过程也就停止了。热力学第二定律的开尔文叙述的内容是:不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机(第二类永动机是不可能制造成功的。) 一方面压力降低,体积增大就是变化;另一方面,热力发动机要求连续工作,而定温过程做不到。所以,这个过程与热力学第二定律无矛盾。

5-3自发过程是不可逆过程,非自发过程必为可逆过程,这一说法是否正确?

答:错。“非自发过程必为可逆过程。”的说法完全错误,非自发过程需付出代价(更强的自发过程)才能实现,可逆过程则是一种实际上不存在的理想过程,两者之间没有什么关系。

5-4请给“不可逆过程”一个恰当的定义。请归纳热力过程中有哪几种不可逆因素?

答:各种不可逆因素总可以表示为将机械能耗散为热能,例如温差传热,卡诺说:凡是有温度差的地方都可以产生动力。因此,温差

传热使得本可以作出的功没有作出,这就相当于将机械能耗散为热能。凡是最终效果可以归结为使机械能耗散为热能的过程都是不可逆过程。热力过程中的不可逆因素有功热转换、有限温差传热、自由膨胀、混合过程、电阻等等。

5-5 试证明热力学第二定律的各种说法的等效性:若克劳修斯说法不成立,则开尔文说法也不成立。

答:热力学第二定律的各种说法都是等效的,可以证明它们之间的等效性。

T1 Q1 Q2 E Q2 T2 W0 Q E T1 Q1 W R Q2 T2 图4-1 图4-2

如图4–1所示,某循环发动机E自高温热源T1吸热Q1,将其中一部分转化为机械能W0,其余部分Q2=Q1–W0排向低温热源T2,如果可以违反克劳修斯说法,即热量Q2可以不花代价地自低温热源传到高温热源,如图中虚线所示那样,则总的结果为高温热源失去热能(Q1–Q2),循环发动机产生了相应的机械能W0,而低温热源并无变化,相当于一台从单一热源吸热而作功的循环发动机。所以,违反克劳修斯说法必然违反开尔文说法,类似地,违反开尔文说法也必然违反克劳修斯说法,两种说法完全等价(图4-2)。

5-6下列说法是否有错误:(1)循环净功Wnet愈大则循环热效率愈高;

(2)不可逆循环热效率一定小于可逆循环热效率;(3)可逆循环热效率都相等,?t?1?(1) 错。

(2) 错。应当是在同样的高温热源和低温热源之间。否则没有比较基础。

(3) 错。应当是在同样的高温热源和低温热源之间。否则没有比较基础。

5-7循环热效率公式:?t?用于哪些场合?

答:不同。前者适用于一般的循环(可逆和不可逆循环),后者仅适用于在两个恒温热源之间工作的可逆循环。 (第三版5-8题)不违反。它是依赖于压力差作功的。

5-8下述说法是否正确:(1)熵增大的过程必定为吸热过程;(2)熵减小的过程必为放热过程;(3)定熵过程必为可逆绝热过程;(4)熵增大的过程必为不可逆过程;(5)使系统熵增大的过程必为不可逆过程;(6)熵产Sg>0的过程必为不可逆过程。

答:

(1) 错。不可逆绝热过程熵也会增大。

(2) 对。(不可逆放热过程,当放热引起的熵减大于不可逆引起的熵增时(亦即当放热量大于不可逆耗散所产生的热量时),它也可以表现为熵略微减少,但没有可逆放热过程熵减少那么多。——但是熵

T2。 T1T?T2q1?q2和?t?1是否完全相同?各适q1T1

确实减少了。)

(3) 错。不可逆放热过程,当放热引起的熵减等于不可逆引起的熵增时(亦即当放热量等于不可逆耗散所产生的热量时),它也可以表现为熵没有发生变化。

(4)错。可逆吸热过程熵增大。

(5)错。理由如上。可以说:“使孤立系统熵增大的过程必为不可逆过程。”

(6)对。

5-9下述说法是否有错误:(1)不可逆过程的熵变?S无法计算;(2)如果从同一初始态到同一终态有两条途径,一为可逆,另一为不可逆,则?S不可逆>?S可逆,?Sf,不可逆>?Sf,可逆,?Sg,不可逆>?Sg,可逆;(3)不可逆绝热膨胀终态熵大于初态熵S2>S1,不可逆绝热压缩终态熵小于初态熵S2

答:

(1)错。熵是状态参数,只要能够确定起迄点,就可以确定熵变?S。

(2)错。应为?S不可逆=?S可逆、Sf,不可逆Sg,可逆。因为熵是状态参数,同一初始状态和同一终了状态之间的熵差保持同一数值,与路径无关。

(3)错。不可逆绝热压缩过程的终态熵也大于初态熵,S2>S1。 (4)错。ds?0,因为熵是状态参数。

5-10从点a开始有两个可逆过程:定容过程a–b和定压过程a–c,b、

??T?qr?0。

?

c两点在同一条绝热线上(见图5–34),问qa–b和qa–c哪个大?并在

p b

a c

0 v 图5–34

T–s图上表示过程a–b和a–c及qa–b和qa–c。 答:可逆定容过程a-b和可逆定压过程a-c的逆过程c-a以及可逆绝热线即定熵线上过程b-c构成一可逆循环,它们围成的面积代表了对外作功量,过程a-b

T b 吸热,过程c-a放热,根据热力学第一定律,必然有?qa-b?>?qc-a?,才能对外输出净功。也就是,qa-b>qa-c。

图中,qa-b为absbsaa围成的面积,qa-c为acsbsaa围成的面积。

a sa c sb 10题图 s

5-11某种理想气体由同一初态经可逆绝热压缩和不可逆绝热压缩两种过程,将气体压缩到相同的终压,在p–v图上和T–s图上画出两过程,并在T–s图上示出两过程的技术功及不可逆过程的火用损失。

答:见图。

p T p2 v=0 2' 2 2' p2 2 h0

p1 p0

p1 T1 1 1 T0 0

v s

5-11题图

ex,H?h1?h0?T0?s1?s0?焓火用T-s图上表示

5-12孤立系统中进行了(1)可逆过程;(2)不可逆过程,问孤立系统的总能、总熵、总火用各如何变化?

答:(1)孤立系统中进行了可逆过程后,总能、总熵、总火用都不变。 (2)孤立系统中进行了不可逆过程后,总能不变,总熵、总火用都发生变化。

5-13 例5–12中氮气由0.45MPa、310K可逆定温膨胀变化到0.11MPa、310K,w1–2,max=w=129.71 kJ/kg,但根据最大有用功的概念,膨胀功减去排斥大气功(无用功)才等于有用功,这里是否有矛盾?

答:没有矛盾。从例题的运算过程看,w1–2,max=ex,1–ex,2+ ex,Q= ex,H1–ex,H2+

?21?T0??1???q=121.34kJ/kg+8.37kJ/kg =129.71 kJ/kg。其?T?中焓火用变化带来的有用功为121.34kJ/kg,吸热带来的有用功为8.37kJ/kg,结果有用功总量为129.71 kJ/kg,数值上等于过程膨胀功w。焓火用的定义中已经包括了排斥大气功(表现在焓差里)。 5-14 下列命题是否正确?若正确,说明理由;若错误,请改正。

(1)成熟的苹果从树枝上掉下,通过与大气、地面的摩擦、碰撞,苹果的势能转变为环境介质的热力学能, 势能全部是火用,全部转变为火无。

(2)在水壶中烧水,必有热量散发到环境大气中,这就是火无,而使水升温的那部分称之为火用。

(3)一杯热水含有一定的热量火用,冷却到环境温度,这时的热量就已没有火用值。

(4)系统的火用只能减少不能增加。

(5)任一使系统火用增加的过程必然同时发生一个或多个使火用减

少的过程。

5-15 闭口系统绝热过程中,系统由初态1变化到终态2,则w=u1–u2。考虑排斥大气作功,有用功为wu= u1–u2–p0(v1–v2),但据火用的概念系统由初态1变化到终态2可以得到的最大有用功即为热力学能火用差:wu,max=ex,U1–exU2= u1–u2–T0(s1–s2)–p0(v1–v2)。为什么系统由初态1可逆变化到终态2得到的最大有用功反而小于系统由初态1不可逆变化到终态2得到的有用功小?两者为什么不一致?

T 由初态1可逆变化到终态2(即22),则s1=s2,

–T0(s1–s2)=0,则wu,max=wu;如果如果闭口

系统绝热过程是由初态1不可逆变化到终态2

(即23),则s10,则 21 22 23 S wu,max>wu;而过程1-21不可能发生。 图

1 答:如图所示:如果闭口系统绝热过程是

所以,不存在“系统由初态1可逆变化到

终态2得到的最大有用功反而小于系统由初态1不可逆变化到终态2得到的有用功”的问题。 P170 5-1 ?t=

T1273.15?20?=11.726

T1?T2293.15?268.15 Q2=

?t?111.726?1Q1??2.5?104=22867.99kJ/h ?t11.726N=W/95%=Q1/(0.95?t)=2.5?104/(0.95?11.726)=2244.23kJ/h=0.623kW

N电炉= Q1=2.5?104kJ/h= 6.944kW 5-3 不采用回热

p2=p1=0.1MPa, T4=T1=300K, T3=T2=1000K, q23=400kJ/kg, q12=cp(T2-T1)=1.004?(1000-300)=702.8kJ/kg q34=cp(T4-T3)=1.004?(300-1000)=-702.8kJ/kg

q23=RT2ln(p2/p3), q41=RT1ln(p4/p1)=RT1ln(p3/p2)= -RT1ln(p2/p3) ? q41=-T1 q23/T2= -300?400/1000=-120kJ/kg

?t=1-?q41+q34?/ (q12+q23) =1-?-702.8-120?/ (702.8+400) = 0.2539 采用极限回热,过程34放热回热给过程12,q34?q12 ?r=1-?q41?/q23) =1-?-120?/400=0.70

5-4 如图所示,如果两条绝热线可以相交,则令绝

热线s1、s2交于a点,过b、c两点作等压线分别与绝热线s1、s2交于b、c点。于是,过程bc、ca、ab组成一闭合循环回路,沿此回路可进行一可逆循环,其中过程ca、ab均为可逆绝热过程,只有定压过程bc为吸热过程,而循环回路围成的面积就是对外净输出功。显然,这构成了从单一热源吸热并将之全部转变为机械能的热力发动机循环,是违反热力学第二定律的。 5-5 (1) p1=p2??5-4题图 v s1 p b c s2 a ?T1????T2?kk?1?1500??0.1????300?1.41.4?1=27.95MPa

(2) 见图。 (3) q31=cp(T1-T3)=

kT R(T1-T2), q23= k?13 1 2 s 5-5题图

RT2ln(p2/p3)= RT2ln(p2/p1)

?t=1-

q23q31RT2ln?1?p2p1300?ln?1?0.127.95kR?T1?T2?k?11.4?1500?300?1.4?1

=0.5976

5-6 (1) QH=?'Wnet=?'?tQ1=3.5?0.40?100=140kJ

(2) ?c=1-

T0TH290360=5.14 ?1??0.71, ?'c=?T11000TH?T0360?290 QH,c=?'cWnet,c=?'c?cQ1=5.14?0.71?100=365.14kJ

(3) 此复合系统虽未消耗机械功,但由高温热源放出热量Q1作为代价,使得部分热量从低温热源T0传到较高温热源TH,因此并不违背热力学第二定律。 5-7 ?c=1-

T2300=0.85 ?1?T12000(1) W=?cQ1=0.85?1=0.85kJ,可能作出的最大功为0.85kJ,所以这

种情形是不可能实现的。

(2) W=?cQ1=0.85?2=1.70kJ,Q2=Q1-W=2-1.70=0.30kJ,所以这种

情形有实现的可能(如果自然界存在可逆过程的话),而且是可逆循环。

(3) Q1, c=Wnet/?c=1.5/0.85= 1.765kJ,Q1=Wnet+Q2=1.5+0.5=2.0kJ>Q1,

c,

此循环可以实现,且耗热比可逆循环要多,所以是不可逆

循环。

1. 实际气体性质与理想气体性质差异产生的原因是什么?在什么条

件下才可以把实际气体作理想气体处理?

答:差异产生的原因就是理想气体忽略了分子体积与分子间作用力。当p→0时,实际气体成为理想气体。实际情况是当实际气体距离其液态较远时,分子体积与分子间作用力的影响很小,可以把实际气体当作理想气体处理。

2. 压缩因子Z的物理意义怎么理解?能否将Z当作常数处理?

答:由于分子体积和分子间作用力的影响,实际气体的体积与同样状态下的理想气体相比,发生了变化。变化的比例就是压缩因子。Z不能当作常数处理。

3. 范德瓦尔方程的精度不高,但是在实际气体状态方程的研究中范

德瓦尔方程的地位却很高,为什么?

答:范德瓦尔方程是第一个实际气体状态方程,在各种实际气体状态方程中它的形式最简单;它较好地定性地描述了实际气体的基本特征;其它半理论半经验的状态方程都是沿范德瓦尔方程前进的。 4. 范德瓦尔方程中的物性常数a和b可以由实验数据拟合得到,也

可以由物质的Tcr、pcr、vcr计算得到,需要较高的精度时应采用哪种方法,为什么?

答:实验数据来自于实际,而范德瓦尔临界压缩因子与实际的压缩因子误差较大,所以由试验数据拟合得到的接近于实际。

5. 如何看待维里方程?一定条件下维里系数可以通过理论计算,为

什么维里方程没有得到广泛应用?

答:维里方程具有坚实的理论基础,各个维里系数具有明确的物理意义,并且原则上都可以通过理论计算。但是第四维里系数以上的高级维里系数很难计算,三项以内的维里方程已在BWR方程、MH方程中得到了应用,故在计算工质热物理性质时没有必要再使用维里方程,而是在研究实际气体状态方程时有所应用。

6. 什么叫对应态定律?为什么要引入对应态定律?什么是对比参

数?

答:在相同的对比态压力和对比态温度下,不同气体的对比态比体积必定相同。引入对应态原理,可以使我们在缺乏详细资料的情况下,能借助某一资料充分的参考流体的热力性质来估算其它流体的性质。某气体状态参数与其临界参数的比值称为热力对比参数。(对比参数是一

种无量纲参数)

7. 物质除了临界状态、p–v图上通过临界点的等温线在临界点的一

阶导数等于零、两阶导数等于零等性质以外,还有哪些共性?如何在确定实际气体的状态方程时应用这些共性? 答:

8. 自由能和自由焓的物理意义是什么?两者的变化量在什么条件下

会相等?

答:H=G + TS,U=F + TS。

dg =dh–d(Ts) =dh–Tds–sdT,简单可压缩系统在可逆等温等压条件下,处于平衡状态:dg =–Tds,ds=0?dg=0。若此时系统内部发生不可逆变化(外部条件不变),则ds>0,?dg<0。例如系统内部发生化学反应,化学能转化为内热能(都是热力学能),必要条件是dg<0,否则过程不能发生。

类似地,简单可压缩系统在等温等容条件下,内部发生变化的必要条件是:df<0。

引申:系统的g、f没有时,dg=0,df=0。内部变化不再进行。进而可以认为g、f是系统内部变化的能力和标志,所以分别称为自由焓、自由能,相应地,TS可称为束缚能。

与火用相比,吉布斯自由能和亥姆霍兹自由能不需要与环境状态联系,且是工质的状态参数。——搞理论热力学的人(物理学家们)根本不拿火用当回事。

两者的变化量在什么条件下会相等?有什么意义呢?dg–df=d(h–Ts)–d(u–Ts)=dh–du=0,对于理想气体可逆等温过程,两者的变化量相等。或者:dh–du= d(pv)=0

9. 什么是特性函数?试说明u=u(s, p)是否是特性函数。

答:某些状态参数表示成特定的两个独立参数的函数时,只需一个状态参数就可以确定系统的其它参数,这样的函数就称为特性函数。热力学能函数仅在表示成熵及比体积的函数时才是特性函数,换成其它独立参数,如u=u(s, p),则不能由它全部确定其它平衡性质,也就不是特性函数了。

10. 常用的热系数有哪些?是否有共性?

答:热系数由基本状态参数p、v、T构成,可以直接通过实验确定其数值。

11. 如何利用状态方程和热力学一般关系式求取实际气体的?u、?h、

?s?

答:根据热力学一般关系式和状态方程式以及补充数据,可以利用已知性质推出未知性质,并求出能量转换关系。例如,当计算单位质量气体由参考状态p0、T0变到某一其它状态p、T后焓的变化时,可利用dH方程式,即式(5-45)。由于焓是一种状态p 参数,所以dH为全微分,因而dH的线积分只是端态的函数,与路径无关。这样就可以在两个端态之间选择任意一个过程或几个过程的组合。两种简单的组合示于图(5-)中。

对于图(5-)中由线0aA所描述的过程组合,将式(5-45)先在等压p0下由T0积分到T,随后在等温T下由p0积分到p,其结果为:

?T??ha?h0??cpdT? ???T0?p0??p????v???h?ha????v?T???dp?

p0??T?p????????Tb(p, T0) p= const. A(p, T) T0= const.

T= const.

p0= const.

0(p0, T0) a(p0, T)

T 图5-

将上两式相加,就可得到:

?T?p????v?????h?h0??cpdT????v?T?dp? (5-47) ?????T0?p0?p0???T?p??????T 对于0bA的过程组合,将式(5-45)先在等温T0下由p0积分到p,

随后在等压p下由T0积分到T,由这种组合可以得到:

?T?p????v???h?h0????v?T?cpdT? (5-48) ??dp??????p0?T0?p??T?p????????T0式(5-47)需要在p0压力下特定温度范围内的cp数据,而式(5-48)则需要

较高压力p时的cp数据。由于比热的测量相对地在低压下更易进行,所以选式(5-47)更为合适。

12. 试导出以T、p及p、v为独立变量的du方程及以T、v及p、v为

独立变量的dh方程。

13. 本章导出的关于热力学能、焓、熵的一般关系式是否可用于不可

逆过程?

答:由于热力学能、焓、熵都是状态参数,其变化与过程无关,所以其结果也可以用于不可逆过程。

14. 试根据cp–cv的一般关系式分析水的比定压热容和比定容热容的

关系。

答: 0.5MPa,100℃水的比体积v=0.0010435m3/kg;0.5MPa,110℃时v=0.0010517 m3/kg;1MPa,100℃时v=0.0010432m3/kg。

??v???p?cp?cv??T????

??T?p??v?T??1?0.5??106?0.0010517?0.0010435?????373.15?????? 110?100??p?0.0010432?0.0010435?T22=418.18 J/(kg?K)

15. 水的相图和一般物质的相图区别在哪里?为什么?

答: 一般物质的相图中,液固平衡曲线的斜率为正值,压力越高,

平衡温度(相变温度)越高。水的相图中,液固平衡曲线的斜率为负值,导致压力越高,平衡温度(相变温度)越低。

16. 平衡的一般判据是什么?讨论自由能判据、自由焓判据和熵判据

的关系。

答:孤立系统熵增原理给出了热力学平衡的一般判据,即熵判据。孤立系统中过程进行的方向是使熵增大的方向,当熵达到最大值时,过程不能再进行下去,孤立系统达到热力学平衡状态。

在等温定压条件下,熵判据退化为吉布斯自由能(自由焓)判据:系统的自发过程朝着使吉布斯自由能减小的方向进行;等温定容条件下,熵判据退化为亥姆霍兹自由能(自由能)判据:系统的自发过程朝着使亥姆霍兹自由能减小的方向进行。

1.对改变气流速度起主要作用的是通道的形状还是气流本身的状态变化?

答:对改变气流速度起主要作用的是气流本身的状态变化,即力学条件。通道的形状即几何条件也对改变气流速度起重要作用,两者不可或缺。但在某些特殊的、局部的场合,矛盾的主次双方发生转化,通道的形状可能成为主要作用方面。

2.如何用连续性方程解释日常生活的经验:水的流通截面积增大,流速就降低?

答: qm?

Acfv?constant

在日常生活中,水可视为不可压缩流体,其比体积不会发生变化,因而由上式有 Acf=常数,即截面积变化与速度变化成反比。 3.在高空飞行可达到高超音速的飞机在海平面上是否能达到相同的高马赫数?

答:不能。高空气温低,由理想气体音速a=?kpv?kRT可知当地声速比较低,一定的飞行速度可以取得较高的马赫数,而海平面温度比高空高几十K,相应声速较大,同样的飞行速度所获得的马赫数要小一些。此外,高空空气比海平面稀薄得多,飞行阻力也小得多,所以飞行速度上也会有差异。

4.当气流速度分别为亚声速和超声速时,下列形状的管道(图7–16)宜于作喷管还是宜于作扩压管?

图7–16 思考题7–4附图

答:亚声速时

喷管 扩压管 喷管 都不适合 超声速时

扩压管 喷管 扩压管 都不合适 5.当有摩擦损耗时,喷管的流出速度同样可用cf2=2?h0?h2?来计算,似乎与无摩擦损耗时相同,那么,摩擦损耗表现在哪里呢?

答:如右侧温熵图,两条斜线是等压线,垂直线是可逆绝热膨胀过程。有摩擦时,过程为不可逆,如虚线所表示。显而易见,过程结束时温度比可逆情况下要高,这两个温度对应的焓之差就是摩擦损耗的表现。 6.考虑摩擦损耗时,为什么修正出口截面上速度后还要修正温度? 答:如上。

7.考虑喷管内流动的摩擦损耗时,动能损失是不是就是流动不可逆损失?为什么?

答:不是。动能损失就是5题图中的焓差。但是由于出口温度高于可逆情形下的出口温度,卡诺讲,凡是有温差的地方就有动力,所以这部分焓还具有一定的作功能力,并不是100%作功能力损失(火用损失)。 8.如图7–17所示,(a)为渐缩喷管,(b)为缩放喷管。设两喷管工作背压均为0.1MPa,进口截面压力均为1MPa,进口流速cf1可忽略不计。若(1)两喷管最小截面积相等,问两喷管的流量、出口截面流速和压力是否相同?(2)假如沿截面2'–2'切去一段,将产生哪些后果?出口截面上的压力、流速和流量将起什么变化?

1 2' 2 1 2' 2 p1=1MPa pb=0.1MPa p1=1MPa pb=0.1MPa 1 2' 2 1 2' 2 (a) (b)

图7–17 思考题7–8附图

答:(1)两喷管最小截面积相等,则两喷管的流量相等,出口截面流速和压力不相等。渐缩喷管出口截面流速为当地音速,出口截面压力

等于临界压力(0.528Mpa),缩放喷管出口截面压力等于背压(充分膨胀情况下),出口截面流速为超声速()。

(2)渐缩喷管,沿截面2'–2'切去一段后,临界状态前移到2'–2'截面,出口速度为当地音速,出口截面压力等于临界压力(0.528Mpa),由于出口面积变大,喷管流量增大。

缩放喷管,沿截面2'–2'切去一段后,喷管形状不足以保持完全膨胀,出口压力高于背压,出口流速比切去一段以前小(仍为超声速),喷管流量不变。(喷管内剩余部分流动没有变化)。

9.图7–13(b)中定焓线是否是节流过程线?既然节流过程不可逆,为何在推导节流微分效应?J时可利用dh=0?

答:不是。节流过程的起迄点落在等焓线上,但过程不沿着定焓线进行。节流微分效应?J表达的是节流过程中温度–压力的关系,温度、压力均为状态参数,其变化与路径无关,所以可以利用等焓线分析推导。

10.既然绝热节流前后焓值不变,为什么作功能力有损失? 答:绝热节流后气体的压力降低,可逆绝热膨胀过程焓降所能作出的功没有作出,导致节流后焓仍然等于节流前。该作出的功没有作出,就产生了作功能力损失。

11.多股气流汇合成一股混合气流称作合流,请导出各股支流都是理

Ti,min 图7–13 转回曲线(b)

Ti Ti,max 转回曲线 等焓线

想气体的混合气流温度表达式。混合气体的熵值是否等于各股支流熵值之和,为什么?应该怎么计算?

1.利用人工打气筒为车胎打气时用湿布包裹气筒的下部,会发现打气时轻松了一点,工程上压气机气缸常以水冷却或气缸上有肋片,为什么?

答:湿布使打气筒散热增强,气缸水冷或加装肋片也是为了增强散热,从而使压缩过程离开绝热靠近定温,压缩耗功减少。

p.s.,打气筒包裹湿布后耗功减少,人能感觉出来?值得怀疑。 2.既然余隙容积具有不利影响,是否可能完全消除它?

答:对于往复式压气机,余隙容积不可能完全消除;对于旋转式压气机,则有可能完全消除。

3.如果由于应用气缸冷却水套以及其他冷却方法,气体在压气机气缸中已经能够按定温过程进行压缩,这时是否还需要采用分级压缩?为什么?

答:还需要分级压缩。是为了减小余隙容积的影响。但不需要中间冷却。

4.压气机按定温压缩时,气体对外放出热量,而按绝热压缩时,不向外放热,为什么定温压缩反较绝热压缩更为经济?

答:压气机耗功中有意义的部分是技术功,不考虑宏观动能和势能的变化,就是轴上输入的功(由设备直接加诸气体的机械功),而同

本文来源:https://www.bwwdw.com/article/q106.html

Top