三角形典型题(三边关系)

更新时间:2023-12-20 15:55:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一、

已知△ABC,

(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.

(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)

(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.

考点:三角形的外角性质. 专题:计算题.

分析:(1)由∠BDC=∠2+∠CED,∠CED=∠A+∠1,可以得出∠D=∠A+∠ABD+∠ACD.

(2)由∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+DCB=180°,可以得出∠D+∠A+∠ABD+∠ACD=360°. (3)根据三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和,可知∠AED=∠1+∠A,∠AED=∠D+∠2,所以可知∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.

解答:解:(1)证明:延长BD交AC于点E.

∵∠BDC是△CDE的外角,∴∠BDC=∠2+∠CED, ∵∠CED是△ABE的外角,∴∠CED=∠A+∠1. ∴∠BDC=∠A+∠1+∠2.即∠D=∠A+∠ABD+∠ACD.

(2)∵∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB, ∠A+∠ABC+∠ACB=180°,∠D+∠DBC+DCB=180°, ∴∠D+∠A+∠ABD+∠ACD=360°.

(3)证明:令BD、AC交于点E, ∵∠AED是△ABE的外角, ∴∠AED=∠1+∠A, ∵∠AED是△CDE的外角, ∴∠AED=∠D+∠2.

∴∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.

点评:本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角

形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和.

二、

观察并探求下列各问题,写出你所观察得到的结论,并说明理由.

(1)如图,△ABC中,P为边BC上一点,试观察比较BP+PC与AB+AC的大小,并说明理由.

(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.

(3)将(2)中点P变为两个点P1、P2得下图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.

(4)将(3)中的点P1、P2移至△ABC外,并使点P1、P2与点A在边BC的异侧,且∠P1BC<∠ABC,∠P2CB<∠ACB,得图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.

(5)若将(3)中的四边形BP1P2C的顶点B、C移至△ABC内,得四边形B1P1P2C1,如图⑤,试观察比较四边形B1P1P2C1的周长与△ABC的周长的大小,并说明理由.

考点:三角形三边关系.

分析:(1)、(2)、(3)通过作辅助线,利用三角形的第三边小于两边之和,大于两边

之差进行解答;

(4)通过将四边形BP1P2C沿直线BC翻折,使点P1、P2落在△ABC内,转化为(3)情形,从而问题得解;

(5)延长B1P1、C1P2分别与AB相交,再利用三角形的第三边小于两边之和,大于两边之差进行解答.

解答:解:(1)BP+PC<AB+AC,理由:三角形两边之和大于第三边,或两点之间线段

最短.

(2)△BPC的周长<△ABC的周长.理由:

如图,延长BP交AC于M,在△ABM中,BP+PM<AB+AM,在△PMC中,PC<PM+MC,两式相加得BP+PC<AB+AC,于是得:△BPC的周长<△ABC的周长.

(3)四边形BP1P2C的周长<△ABC的周长.理由:

如图,分别延长BP1、CP2交于M,由(2)知,BM+CM<AB+AC,又P1P2<P1M+P2M,可得,BP1+P1P2+P2C<BM+CM<AB+AC,可得结论.

或:作直线P1P2分别交AB、AC于M、N(如图),△BMP1中,BP1<BM+MP1,△AMN中,MP1+P1P2+P2M<AM+AN,△P2NC中,P2C<P2N+NC,三式相加得:BP1+P1P2+P2C<AB+AC,可得结论.

(4)四边形BP1P2C的周长<△ABC的周长.理由如下:将四边形BP1P2C沿直线BC翻折,使点P1、P2落在△ABC内,转化为(3)情形,即可. (5)比较四边形B1P1P2C1的周长<△ABC的周长.理由如下:

如图,分别作如图所示的延长线交△ABC的边于M、N、K、H,在△BNM中,NB1+B1P1+P1M<BM+BN,又显然有,B1C1+C1K<NB1+NC+CK,及C1P2+P2H<C1K+AK+AH,及P1P2<P2H+MH+P1M,将以上各式相加,得B1P1+P1P2+P2C+B1C1<AB+BC+AC,于是得结论.

点评:比较线段的长短常常利用三角形的三边关系以及不等式的性质,通过作辅助线进行解

答.

如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3. (1)若点P在图(1)位置时,求证:∠3=∠1+∠2;

(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系; (3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明; (4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系.

考点:平行线的性质;三角形的外角性质. 专题:证明题;探究型.

分析:此题四个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质

得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系.

解答:解:(1)证明:过P作PQ∥l1∥l2,

由两直线平行,内错角相等,可得: ∠1=∠QPE、∠2=∠QPF; ∵∠3=∠QPE+∠QPF, ∴∠3=∠1+∠2.

(2)∠3=∠2-∠1;

证明:过P作直线PQ∥l1∥l2, 则:∠1=∠QPE、∠2=∠QPF;

本文来源:https://www.bwwdw.com/article/pzb5.html

Top