上海市黄浦区2014-2015学年八年级上学期期末考试数学试卷
更新时间:2024-07-11 12:14:01 阅读量: 综合文库 文档下载
- 上海市黄浦区天气推荐度:
- 相关推荐
???????? ?__?__?__?__?__?__线___○_名?姓?? ? _?__?__?__?__?__?__?__?_号?学○ 封 ? _?__?__?__?__?__?__?__?_级?班?? ? _?__?__?__○__密__?__?__?__?__?校?学????????
2014学年第一学期期末考试试卷
八年级 数学学科
一、 选择题:(每题3分,共18分)
1、下列二次根式中,最简二次根式是 ??????????????( )
A.
12; B. 4; C. 6; D. 8 2、下列关于x的方程中一定没有实数根的是?????????????( )
A. x2?x?1?0;B. 4x2?6x?9?0;C. x2??x;D. x2?mx?2?0 3、已知函数y?kx中y随x的增大而减小,那么它和函数y?kx在同一直角坐标系内 的大致图像可能是 ??????????????????????( ) y y y
y
0 x
0 x
0 x
0 x
A.
B.
C.
D.
4、已知正比例函数y?kx(k>0)的图像上有两点A(x1,y1)、B(x2,y2),且
x1 >x2,则y1 与 y2的大小关系是 ????????????? ( )
A. y1 < y2; B. y1 > y2; C. y1 = y2; D. 不能确定. 5、下列说法中,正确的是 ???????????????????( ) A. 假命题的逆命题不一定是假命题; A B. 真命题的逆命题也是真命题;
C. 命题“若x>0,y<0,则xy<0”的逆命题是真命题; D D. 命题“对顶角相等”的逆命题是真命题.
E 6、已知,如图,△ABC中,AB=AC,DE是AB的垂直平分线,点D在AB上, 点E在AC上,若△ABC的周长为24cm,△EBC的周长15cm,则AC B C 第6题图 的长度为 ?????????????????????????( ) A. 16cm B. 9cm C. 8cm D. 7cm 二、 填空题:(每题2分,共24分) 7、计算:12?3=___________;
8、分母有理化:13?2= ; 1
9、方程?x?1??4?0的解为: ;
10、命题“等腰三角形两底角相等”的逆命题是___________________; 11、在实数范围内因式分解:2x2?3x?1?___________________ ;
12、已知直角坐标平面内两点A(3,-7)和B(-2,-2),那么A、B两点间的距离等于
______________; 13、函数y?2x?1中自变量x的取值范围是 ; x?214、经过点D半径为5的圆的圆心的轨迹是 ; 15、如果关于x的方程kx2?2x?4?0有两个实数根,那么k的取值范围是
______________;
16、如图, 正方形ABCD被分成两个小正方形和两个长方形, 如果两小正方形的面积分别是2和5, 那么两个长方形的 面积和为_____________;
52ABDC
17、如图,在△ABC中, ∠ACB=90°, ∠A=20°, CD与CE分别是 斜边AB上的高和中线, 那么∠DCE=_______________度; A
18、点E、F分别在一张长方形纸条ABCD的边AD、BC上,
将这张纸条沿着直线EF对折后如图,BF与DE交于点G, 如果∠BGD=30,长方形纸条的宽AB=3cm,那么这张 纸条对折后的重叠部分面积S?GEF= _________ cm2.
三、简答题:(每题6分,共42分) 19、计算:48?12?1
21.如图,已知点P(x,y)是反比例函数图像上一点,O是坐标 原点,Rt△PAO的面积为33,且∠OPA=30°. 求:(1) 反比例函数解析式;
(2) 直线OP的表达式.
0
第16题图
CEDB第17题图
E G F A B D C 第18题图 13?6 20、解方程:x(x?2)?8 34POA第21题图 2
22、某人沿一条直路行走,此人离出发地的距离S(千米)
与行走时间t(分钟)的函数关系如图所示,请根据图像 提供的信息回答下列问题:
4 A B S(千米) C (1)此人离开出发地最远距离是 千米; 3 (2)此人在这次行走过程中,停留所用的时间为 分钟;
(3)由图中线段OA可知,此人在这段时间内行走的 速度是每小时 千米;
(4)此人在120分钟内共走了 千米. 23、已知:?MON、点A及线段a(如图).
0 40 60 90 D 120 t(分钟)
求作:在?MON内部求作点P,使点P到OM和ON的距离相等,且PA=a.
(保留作图痕迹,不必写作法和证明)
A N
24、如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分
AB,求∠B的度数 .
25、已知:如图,在四边形ABCD中,?ABC??ADC?90?,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点. (1)求证:MN⊥BD;
(2)当?BCA?15?,AC = 10 cm,OB = OM时, 求MN的长.
D
a
M
O B A O N M 第25题图 C 3
四、解答题:(每题8分,共16分)
26、如图,等边△OAB和等边△AFE的一边都在x轴上,反比例函数y?k(k>0)的图x像经过边OB的中点C和AE的中点D.已知等边△OAB的边长为8, (1)直接写出点C的坐标; (2)求反比例函数y?k解析式; x
(3)求等边△AFE的边长 .
27、如图,在长方形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ . 线段PQ的垂直平分线与直线BC、AD分别相交与点E、F点. (1)若E、F分别与B、D重合,求AP的长 .
(2)当E、F在边BC、AD上时,设AP= x,BE= y,求y与x的函数关系式及x取值范围;
(3)是否存在这样的一点P,使△PQE为直角三角形?若存在,请求出AP的值,若不存在请说明理由.
A
P
E
Q
C
B A B
F D
D
C
4
2014学年第一学期期末考试试卷
八年级 数学学科
一、
二、选择题(每题2分,共12分)
1、C; 2、B; 3、D; 4、B; 5、A; 6、B; 二、填空题(每题3分,共36分)
7、3; 8、?3?2; 9、?1或3; 10、如果有一个三角形两内角相等,那么这个三角形是等腰三角形; 11、2(x?3?173?1712、52; 13、)(x?);
441x?2; 14、以D为圆心,5为半径的圆 15、k?且k?0; 16、210;
417、50°; 18、9; 二、简答题:(每题6分共36分) 19、解:原式=43?12?4273353? =43?4? = 4? 20、3422解: x2?2x?8?0 (x?4)(x?2)?0 x?4或?2 ∴原方程的解为x1?4,x2??2 ????????1分 21、解:(1)设反比例函数解析式为y?k ????????1分 x ??1分
Qs?PAO?33,且图像在第一象限.?k?63?y?63x63 ??????????1分 x∴反比例函数解析式是:y?(2) 解法一: 设直线OP的表达式是y?kx ,P点坐标为(a,b)
则OA=a,PA=b ????????????1分
Q?A?90?,?OPA?30? ????????????1分 PAb??3??3OAa?k?3?y?3x?直线OP的表达式是y?3x????????????1分
5
解法二:设P(a,3a) ????????????1分 代入y=kx得k=3 ????????????1分
?y?3x ????????????1分
解法三:设P(a,3a) ????????????1分
代入y?63得a?x6,?P(6,32)???????1分
把点P的坐标代入y=kx得k=3
?y?3x ????????????1分
22、解:(1)4千米;????1分 (2)20;????1分
(3)4.5千米;?? ?2分(4)8 千米?? ?2分
23、作出∠MON的平分线 并痕迹清晰 ?? ?1分
以A为圆心画弧,两个交点每个2分 答句?? ?1分
24、∵AD平分∠CAB ∴∠1=∠2; ?????1分
∵DE垂直平分AB ∴DA=DB ?????1分 ∴∠2=∠B ?????1分 ∴∠1=∠2=∠B ?????1分
在Rt△ACB中,∵ ∠C =90°
∴∠1+∠2+∠B =90°??????????1分
∴ ∠B= 300 ??????????1分
25、(1)联接MB、MD ??????????????1分
∵∠ABC=∠ADC=90°,M、N分别是AC,BD中点
∴MB=MD ??????????1分 ∴MN⊥BD ??????????1分 (2) ∵∠ABC =90°,M是AC中点
∴BM=CM=5 ∴∠BCA=∠MBC=15°??????1分 ∵OB=OM ∴∠1=∠2=30° ???????1分
1 2
B
A 1 O N 2 M D
C
15 ∴MN=BM= ??????????1分
22
6
四、解答题(每题8分,共16分)
26、(1)C点坐标(2,23 ) ??????????2分 (2) 设反比例函数解析式为y?k,把C点坐标代入得; x y?43 ??????????????????1分 x (3)过D点作DM垂直于x轴,交点为M;
设AM=x, 则D点坐标为(8?x,3x)??????2分 把D点坐标代入反比例函数解析式得
M
(8?x)?3x?43 ?????1分
x?25?4 ;AM?25?4 ????1分 AE?85?16 ∴等边△AFE的边长是85?16 ??1分 27、(1)设AP = x,则BP = 8 - x; ∵BD垂直平分PQ;
∴PB = BQ = 8 - x
在Rt△BQC中 (8?x)?x?6 ????1分 x?222P
A
B E
77 ∴AP= ????1分 44F D
Q
C
(2)联接EP、EQ
∵EF垂直平分PQ;
∴EP=EQ 在Rt△PBE和Rt△QCE中
(8?x)?y?x?(6?y)????1分
22224x?7 ????1分 3725 ∵0?y?6 ∴ ?x?????1分
44 y?(3)当E在BC边上,若△PQE为直角三角形,则只有∠PEQ=90°
可证△PBE≌△ECQ,则BE=CQ=x=y ∵y?4x?7 ∴x=7 3 ∵x=7不在定义域范围内∴不存在????2分
当E在边BC(或CB)延长线上时,△PQE每个角都小于90°,不可能为直角三角形
综上所述,这样的P点不存在。 ????1分
7
正在阅读:
上海市黄浦区2014-2015学年八年级上学期期末考试数学试卷07-11
写风的作文400字06-22
3 回龙河 岸线规划 正文 - 图文11-24
开题报告 - 图文02-28
基于英语原声电影的大学英语写作教学实践与模式探讨-精选作文03-25
急危重症护理学复习题12-07
2022年北京市培养单位国家纳米科学中心807材料力学之04-04
北爱01-17
2017年版中国密封圈行业调研报告目录01-31
初中化学教案大全优秀8篇03-27
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 黄浦区
- 期期
- 数学试卷
- 上海市
- 学年
- 上学
- 年级
- 考试
- 2014
- 2015
- XX职代会领导讲话稿
- 北京交通大学电气复试电力电子2
- 财经法规讲义笔记(基础班)第一章
- 武汉市武珞路中学2014-2015学 年八年级下学期期中数学模拟试卷
- MOPES指标体系2.0(终2012)
- 过程控制实验指导书 - 图文
- 改后计算书(完整版)
- 高数小结与各年试题
- 人力资源管理概论知识点汇总
- 解开货币的神秘面纱
- 天津市和平区2015届九年级下学期结课质量调查英语试题
- 创业计划书(模本,要求)
- 2017年茂名市注册会计师会考试《审计》专项练习题及答案(16)
- 北师大版六年级数学《圆》专项练习
- 预拌商品混凝土质量控制手册下载
- 融资融券业务的二套考题及答案
- Brocade SAN交换机常用配置操作指南
- 拌合站基础施工技术交底
- 苏教版五年级数学分数基本性质试题
- 节地措施体系