2010年上海市浦东新区高考预测(数学文含答案)

更新时间:2024-01-16 00:07:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高考资源网( www.ks5u.com),您身边的高考专家

上海市浦东新区2010年高考预测数学(文科)试卷

编辑:刘彦利 2010.4

注意:1.答卷前,考生务必在答题纸上将姓名、学校、考号填写清楚. 2.本试卷共有23道试题,满分150分,考试时间120分钟.

一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸编号的空格内直接填写

结果,每个空格填对得4分,否则一律得零分. 1.若cos??2.不等式

3,则tan2?? . 32x?1?0的解是 . x?11n? .

2?n3nn3. 若自然数n满足P7?42,则行列式

24.已知集合A?yy?sinx,x?R,集合B?xx?x?0,x?R,则A?B? .

????5.已知点A(2,?1),B(k?1,k),O是坐标原点,若OA//OB,则实数k? . 6. (3x2?25)的二项展开式中,常数项的值是 . x3开始7.已知一组数据7、8、9、x、y的平均数是8,则这组数据的 中位数是 .

8.阅读右边的程序框图,该程序输出的结果是 .

a?1,s?1a?4?否 是 输出s?2x?y?1?x?y?2?9.满足条件?的目标函数P?x2?y2的最大值是 . ?x?0??y?010.在等比数列?an?中,an?0,且a1?a2???a7?a8?16,则a4?a5

的最小值为 .

11.设点A(1,1)、B(1,?1),O是坐标原点,将?OAB绕y轴旋转一周,

所得几何体的体积为 .

s?s?9结束a?a?112.关于x的不等式|x?4x?m|?x?4的解集为A,且0?A,2?A,则实数m的取值范

围是 .

2x2y2??1的右焦点为圆心,且被其渐近线截得的弦长为6的圆的方程13.以双曲线

416为 .

14.设函数y?f(x)由方程x|x|?y|y|?1确定,下列结论正确的是 .(请将

欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

高考资源网( www.ks5u.com),您身边的高考专家

你认为正确的序号都填上) (1)f(x)是R上的单调递减函数; (2)对于任意x?R,f(x)?x?0恒成立;

(3)对于任意a?R,关于x的方程f(x)?a都有解; (4)f(x)存在反函数f?1(x),且对于任意x?R,总有f(x)?f?1(x)成立.

二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答

题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分. 15.“直线a与直线b没有公共点”是“直线a与直线b平行”的 ( )

A.充分不必要条件

B.必要不充分条件 D.既不充分也不必要条件

C.充要条件

16.若直线l的法向量n?(1,2),且经过点M(0,1),则直线l的方程为 ( )

A.2x?y?1?0

C.x?2y?2?0

B.2x?y?2?0 D.x?2y?1?0

17.设O为坐标原点,复数z1、z2在复平面内对应的点分别为P、Q,则下列结论中不一定正....

确的是 ( ) .

A.|z1?z2|?|OP?OQ| B.|z1?z2|?|OP?OQ|

y C.|z1|?|z2|?|OP|?|OQ|

D.|z1?z2|?|OP?OQ|

F O M A B C x E N D L 18.如图,在直角坐标平面内有一个边长为a,中心在原点O的

正六边形ABCDEF,AB//Ox. 直线L:y?kx?t(k为常数) 与正六边形交于M、N两点,记?OMN的面积为S,则函数

S?f(t)的奇偶性为 ( )

A.奇函数

B.偶函数

D.奇偶性与k有关

C.不是奇函数,也不是偶函数

三、解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应编号的规

定区域内写出必要的步骤.

19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.

欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

高考资源网( www.ks5u.com),您身边的高考专家

在?ABC中,A、B、C所对的边分别为a、b、c,且a?6,b?53,B?(1)求sinA;

(2)求cos(B?C)?cos2A的值.

2?. 320.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.

设函数f(x)?x2?2a|x|(a?0).

(1)判断函数f(x)的奇偶性,并写出x?0时f(x)的单调增区间; (2)若方程f(x)??1有解,求实数a的取值范围.

21.(本大题满分16分)本大题共有2个小题,第1小题满分8分,第2小题满8分.

2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数作了一个模拟预测. 为了方便起见,以10分钟为一个计算单位,上午9点10分作为第一个计算人数的时间,即n?1;9点20分作为第二个计算人数的时间,即n?2;依此类推??,把一天内从上午9点到晚上24点分成了90个计算单位.

对第n个时刻进入园区的人数f(n)和时间n(n?N)满足以下关系(如图1):

?3600?n?24??3600?312f(n)????300n?21600?0?(1?n?24)(37?n?72)(73?n?90)(25?n?36),n?N?

f(n)f(n) 10800 108003600 36001 1对第n个时刻离开园区的人数g(n)和时间 : n(n?N?)满足以下关系(如图2)

241 24 36 72 90 n g(n)24000 O1367290n(图1)

0(1?n?24)??g(n)??500n?12000(25?n?72),n?N??5000(73?n?90)?(1)试计算在当天下午3点整(即15点整)

时,世博园区内共有多少游客? (2)请求出当天世博园区内游客总人数最多

的时刻.

12000 6000 5000 O 24 36 72 90 n(图2)

欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

高考资源网( www.ks5u.com),您身边的高考专家

22.(本大题满分16分)本大题共有3个小题,第1小题满分4分,第2小题满分6分,第3

小题满分6分.

设复数??x?yi(x,y?R)与复平面上点P(x,y)对应. (1)在复数范围内解方程: t2?4t?6?0.

(2)设复数?满足条件|??3|?(?1)n|??3|?3a?(?1)na(其中n?N、常数

?3,当n为奇数时,动点P(x、y)的轨迹为C1. 当n为偶数时,动点P(x、y)的轨迹a?(,3))2为C2. 且两条曲线都经过点D(2,2),求轨迹C1与C2的方程;

(3)在(2)的条件下,轨迹C2上存在点A,使点A与点B?x0,0?(x0?0)的最小距离不小于

23.(本大题满分18分)本大题共有3个小题,第1小题满分4分,第2小题满分6分,第3

小题满分8分.

已知函数f(x)?log2x.

(1)若函数y?g(x)是函数y?f(x)的反函数,解方程:g(2x)?3g(x)?4; (2)当x?(3m,3m?3](m?N)时,定义h(x)?f(x?3m). 设an?n?h(n),数列{an}的前n项和为Sn,求a1、a2、a3、a4和S2010;

(3)对于任意a、b、c?[M,??),且a?b?c. 当a、b、c能作为一个三角形的三边长时,f(a)、f(b)、f(c)也总能作为某个三角形的三边长,试探究M的最小值.

浦东新区2010年高考预测

数学(文科)试卷 2010.4

注意:1.答卷前,考生务必在答题纸上将姓名、学校、考号填写清楚. 2.本试卷共有23道试题,满分150分,考试时间120分钟.

一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸编号的空格内直接填写

结果,每个空格填对得4分,否则一律得零分. 1.若cos??23,求实数x0的取值范围. 33,则tan2?? 2 . 3欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

高考资源网( www.ks5u.com),您身边的高考专家

2.不等式

2x?11?0的解是 (?1,) . x?121n? 6 .

2?n3nn3. 若自然数n满足P7?42,则行列式

4.已知集合A?yy?sinx,x?R,集合B?xx2?x?0,x?R,则A?B?(0,1). 5.已知点A(2,?1),B(k?1,k),O是坐标原点,若OA//OB,则实数k? ?6. (3x2?????1 . 3开始25)的二项展开式中,常数项的值是 1080 . x37.已知一组数据7、8、9、x、y的平均数是8,则这组数据的 中位数是 8 .

8.阅读右边的程序框图,该程序输出的结果是 729 .

a?1,s?1a?4?否 是 输出s?2x?y?1?x?y?2?9.满足条件?的目标函数P?x2?y2的最大值是 4 . ?x?0??y?010.在等比数列?an?中,an?0,且a1?a2???a7?a8?16,则a4?a5

的最小值为 22 . 11.设点A(1,1)、B(1,?1),O是坐标原点,将?OAB绕y轴旋转一周,

所得几何体的体积为

s?s?9结束a?a?14? . 312.关于x的不等式|x2?4x?m|?x?4的解集为A,且0?A,2?A,则实数m的取值范

围是 [?4,?2) .

x2y2??1的右焦点为圆心,且被其渐近线截得的弦长为6的圆的方程为 13.以双曲线

416(x?25)2?y2?25.

14.设函数y?f(x)由方程x|x|?y|y|?1确定,下列结论正确的是(1)(2)(3)(4).

(请将你认为正确的序号都填上) (1)f(x)是R上的单调递减函数; (2)对于任意x?R,f(x)?x?0恒成立;

(3)对于任意a?R,关于x的方程f(x)?a都有解; (4)f(x)存在反函数f?1(x),且对于任意x?R,总有f(x)?f?1(x)成立.

欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

高考资源网( www.ks5u.com),您身边的高考专家

二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答

题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.

15.“直线a与直线b没有公共点”是“直线a与直线b平行”的 ( B )

A.充分不必要条件

B.必要不充分条件 D.既不充分也不必要条件

C.充要条件

16.若直线l的法向量n?(1,2),且经过点M(0,1),则直线l的方程为 ( C )

A.2x?y?1?0

C.x?2y?2?0

B.2x?y?2?0 D.x?2y?1?0

17.设O为坐标原点,复数z1、z2在复平面内对应的点分别为P、Q,则下列结论中不一定正....确的是 ( D ) .

A.|z1?z2|?|OP?OQ| B.|z1?z2|?|OP?OQ| C.|z1|?|z2|?|OP|?|OQ|

D.|z1?z2|?|OP?OQ|

F O 正六边形ABCDEF,AB//Ox. 直线L:y?kx?t(k为常数) 与正六边形交于M、N两点,记?OMN的面积为S,则函数

M A B C x E y N D L 18.如图,在直角坐标平面内有一个边长为a,中心在原点O的

S?f(t)的奇偶性为 ( B )

A.奇函数

B.偶函数

D.奇偶性与k有关

C.不是奇函数,也不是偶函数

三、解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应编号的规

定区域内写出必要的步骤.

19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.

在?ABC中,A、B、C所对的边分别为a、b、c,且a?6,b?53,B?(1)求sinA;

(2)求cos(B?C)?cos2A的值.

2?. 3欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

高考资源网( www.ks5u.com),您身边的高考专家

解:(1)在?ABC中,由正弦定理得分

将a?6,b?53,B?ab?????????????????2?sinAsinB6532?代入上式得,???????????2?2?3sinAsin3分

解得sinA?3;?????????????????????????2分 5(2)?ABC中,A?B?C??,且B为钝角,所以cosA?分

4??????????254cos(B?C)??cosA?????????????????????????2

5分

cos2A?1?2sin2A?7???????????????????????2分 254713????????????????2分 52525所以cos(B?C)?cos2A??

20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.

设函数f(x)?x2?2a|x|(a?0).

(1)判断函数f(x)的奇偶性,并写出x?0时f(x)的单调增区间; (2)若方程f(x)??1有解,求实数a的取值范围.

解:(1)由题意,函数f(x)?x2?2a|x|(a?0)的定义域D?R,对于任意的x?D,恒有

f(?x)?x2?2ax?f(x),所以函数f(x)是偶函数.??????????3分

当x?0时,函数f(x)?x2?2ax(a?0)

且[a,??)?(0,??),所以此时函数f(x)的单调递增区间是[a,??).??3分 (2)由于函数f(x)?(x?a)2?a2??????????????????2分

f(x)min??a2??????????????????????????2分

只须?a2??1,即a?1或a??1?????????????????2分 由于a?0,所以a?1时,方程f(x)??1有解.???????????2分

欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

高考资源网( www.ks5u.com),您身边的高考专家

21.(本大题满分16分)本大题共有2个小题,第1小题满分8分,第2小题满8分.

2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数作了一个模拟预测. 为了方便起见,以10分钟为一个计算单位,上午9点10分作为第一个计算人数的时间,即n?1;9点20分作为第二个计算人数的时间,即n?2;依此类推??,把一天内从上午9点到晚上24点分成了90个计算单位.

对第n个时刻进入园区的人数f(n)和时间n(n?N)满足以下关系(如图1):

?3600?n?24??3600?312f(n)????300n?21600?0?(1?n?24)(37?n?72)(73?n?90)(25?n?36),n?N?

f(n)f(n) 10800 108003600 36001 11 24 36 72 90 O172n 3624对第n个时刻离开园区的人数g(n)和时间 : n(n?N?)满足以下关系(如图2)

90ng(n)24000 (图1) 0(1?n?24)??g(n)??500n?12000(25?n?72),n?N??5000(73?n?90)?(1)试计算在当天下午3点整(即15点整)

时,世博园区内共有多少游客? (2)请求出当天世博园区内游客总人数最多

的时刻.

解:(1)当0?n?24且n?N时,f(n)?3600,

当25?n?36且n?N时,f(n)?3600?3?? 12000 6000 5000 O 24 36 72 90 n(图2)

n?2412,????????????2分

所以S36??f(1)?f(2)?f(3)???f(24)?????f(25)?f(26)???f(36)?

?12312312?1??3600×24?3600×?123?1??????? ???86400?82299.59?168700;???????????????2分

另一方面,已经离开的游客总人数是:

T12?g(25)?g(26)???g(36)?12×500?12?11?500?39000;??2分 2欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

高考资源网( www.ks5u.com),您身边的高考专家

所以S?S36?T12?168700?39000?129700(人)

故当天下午3点整(即15点整)时,世博园区内共有129700位游客. ????2分 (2)当f(n)?g(n)?0时园内游客人数递增;当f(n)?g(n)?0时园内游客人数递减.

(i)当1?n?24时,园区人数越来越多,人数不是最多的时间;?????????2分

(ii)当25?n?36时,令500n?12000?3600,得出n?31,

即当25?n?31时,进入园区人数多于离开人数,总人数越来越多;???????2分

当32?n?36时,3600?3n?2412?500n?12000,进入园区人数多于离开人数,总人

数越来越多;????????????????????????????2分 (iii)当37?n?72时, 令?300n?21600?500n?12000时,n?42, 即在下午4点整时,园区人数达到最多.

此后离开人数越来越多,故园区内人数最多的时间是下午4点整. ?????2分 22.(本大题满分16分)本大题共有3个小题,第1小题满分4分,第2小题满分6分,第3

小题满分6分.

设复数??x?yi(x,y?R)与复平面上点P(x,y)对应. (1)在复数范围内解方程: t2?4t?6?0.

(2)设复数?满足条件|??3|?(?1)n|??3|?3a?(?1)na(其中n?N、常数

?3y)的轨迹为C1. 当n为偶数时,动点P(x、y)的轨迹,当n为奇数时,动点P(x、a?(,3))

2为C2. 且两条曲线都经过点D(2,2),求轨迹C1与C2的方程;

(3)在(2)的条件下,轨迹C2上存在点A,使点A与点B?x0,0?(x0?0)的最小距离不小于

23,求实数x0的取值范围. 3解:(1)t?4?22i????????????????????????2分 2化简得t?2?2i???????????????????????2分 (2)方法1:①当n为奇数时,??3???3?2a,常数a?(,3)),

32x2y2?1;????????????2分 轨迹C1为双曲线,其方程为2?2a9?a欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

高考资源网( www.ks5u.com),您身边的高考专家

②当n为偶数时,??3???3?4a,常数a?(,3)),

32x2y2?1;???????????????2分 轨迹C2为椭圆,其方程为2?4a4a2?92?4??122??4a4?45a2?99?0?4a4a?92a?3, 依题意得方程组?解得??42?a?15a?36?0?4?2?1??a29?a2因为

3?a?3,所以a?3, 2x2y2x2y2??1,??1.????????2分 此时轨迹为C1与C2的方程分别是:

36123?|??3|?|??3|?4a?|??3|?3a方法2:依题意得? ?????????????2??|??3|?|??3|?2a|??3|?a??分

轨迹为C1与C2都经过点D(2,2),且点D(2,2)对应的复数??2?2i,

代入上式得a?3????????????????????????????2分

x2y2??1; 即|??3|?|??3|?23对应的轨迹C1是双曲线,方程为

36x2y2??1.???????2分 |??3|?|??3|?43对应的轨迹C2是椭圆,方程为

123x2y2??1,设点A的坐标为?x,y?, (3)由(2)知,轨迹C2:

123则|AB|?(x?x0)?y?(x?x0)?3?222212x 4?分

3234122,x?[?23,23]????????2x?2x0x?x0?3?(x?x0)2?3?x04433当0?当

334124时,|AB|2min?3?x0x0?23即0?x0???0?x0?5 23333323834?x0?时,|AB|min?|x0?23|?,?????2分 x0?23即x0?233383.?????????????????????2分 3综上 0?x0?5或x0?23.(本大题满分18分)本大题共有3个小题,第1小题满分4分,第2小题满分6分,第3

小题满分8分.

欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

高考资源网( www.ks5u.com),您身边的高考专家

已知函数f(x)?log2x.

(1)若函数y?g(x)是函数y?f(x)的反函数,解方程:g(2x)?3g(x)?4; (2)当x?(3m,3m?3](m?N)时,定义h(x)?f(x?3m). 设an?n?h(n),数列{an}的前n项和为Sn,求a1、a2、a3、a4和S2010;

(3)对于任意a、b、c?[M,??),且a?b?c. 当a、b、c能作为一个三角形的三边长时,f(a)、f(b)、f(c)也总能作为某个三角形的三边长,试探究M的最小值.

x解:(1)?函数y?g(x)是函数y?f(x)的反函数,f(x)?log2x,?g(x)?2(x?R)

而g(2x)?3g(x)?4,?2分

2x?3?2x?4?????????????????2

(2x?1)?(2x?4)?0,?2x?4

故:原方程的解为x?2????????????????????2分 (2) 若1?(3m,3m?3],?m?0,??(1)?f(1)?0,?a1?1?0?0

若2?(3m,3m?3],?m?0,??(2)?f(2)?1,?a2?2?1?2 若3?(3m,3m?3],?m?0,??(3)?f(3)?log23,?a3?3log23 若4?(3m,3m?3],?m?1,??(4)?f(1)?0,?a4?4?0?0????2分

当n?3m?1(m?N)时,?(n)?f(n?3m)?f(1)?0,?an?n?0?0 当n?3m?2(m?N)时,?(n)?f(n?3m)?f(2)?1,?an?n?1?n 当n?3m?3(m?N)时,?(n)?f(n?3m)?f(3)?log,?an?nlog23?223分

?S2010?a1?a2?a3?a4???a2010

?1?0?2?1?3?log23?4?0?5?1???2010?log23 ?(2?5?8???2009)?1?(3?6?9???2010)?log23 ?2?20093?2010?670??670?log23 22欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

高考资源网( www.ks5u.com),您身边的高考专家

?673685?674355?log23???????????????2分 (3) 由题意知,c?b?a

f(a),f(b),f(c)能作为某个三角形的三边长

?log2c?log2b?log2a?bc?a????2分

又:bc?b?c?(b?1)(c?1)?1

当b?2,c?2时,有(b?1)(c?1)?1成立,就一定有bc?a成立. ???????2分

M?M当0?M?2时,取b?M,c?M,a?M2,有M?2,即b?c?a,此时a,b,c可作为一个三角形的三边长????????????????????????????2分

b)?f(c)但log2M?log2M?2log2M?log2M2,即f(f(c)不能作为三角形的三边长.

f?(a),所以f(a)、f(b)、

综上所述,M的最小值为2. ??????????????????????2分 解法2:a?b?c 由题意知,b?c?a 若

f(a),f(b),f(c)能作为某个三角形的三边长

?log2b?log2c?log2a?bc?a????2分

设a?c?p1 , b?c?p2 p1?p2?0

若p1?0?p2?0,则a?b?c?1,f(a),f(b),f(c)显然能作为某个三角形三边长????2分

若p1?0,由(1)知c?p1?p2 由(2)知bc?a?c?p?p2ac?p1??1?1????????????????2分 bc?p2c?p2p1?p2p1?p2p?p2p?p2p??1?1?1?1?2?2?2

c?p2p1c?p2p1p1而c?p2?p1,则0?故:c?2?????????????????????????????2分

欢迎广大教师踊跃来稿,稿酬丰厚。 www.ks5u.com

本文来源:https://www.bwwdw.com/article/pvho.html

Top