Multiresolution Representation for Orbital Dynamics in Multipolar Fields
更新时间:2023-06-06 09:37:01 阅读量: 实用文档 文档下载
We present the applications of variation -- wavelet analysis to polynomial/rational approximations for orbital motion in transverse plane for a single particle in a circular magnetic lattice in case when we take into account multipolar expansion up to an a
MULTIRESOLUTIONREPRESENTATIONFORORBITALDYNAMICSIN
MULTIPOLARFIELDS
000
A.Fedorova,M.Zeitlin,IPME,RAS,V.O.Bolshojpr.,61,199178,St.Petersburg,Russia 2 guAbstract
AWepresenttheapplicationsofvariation–waveletanalysis 3topolynomial/rationalapproximationsfororbitalmotionin1transverseplaneforasingleparticleinacircularmagnetic latticeincasewhenwetakeintoaccountmultipolarexpan-]sionuptoanarbitrary nitenumberandadditionalkickphterms.Wereduceinitialdynamicalproblemtothe nite-cnumber(equaltothenumberofn-poles)ofstandardalge-cbraicalproblems.Wehavethesolutionasamultiresolutiona(multiscales)expansioninthebaseofcompactlysupported.swaveletbasis.
cisy1INTRODUCTION
hpInthispaperweconsidertheapplicationsofanewnumeri-[cal-analyticaltechniquewhichisbasedonthemethodsof localnonlinearharmonicanalysisorwaveletanalysistothe1orbitalmotionintransverseplaneforasingleparticleinav5circularmagneticlatticeincasewhenwetakeintoaccount4multipolarexpansionuptoanarbitrary nitenumberand0additionalkickterms.Wereduceinitialdynamicalprob-8lemtothe nitenumber(equaltothenumberofn-poles)of0standardalgebraicalproblemsandrepresentalldynamical0variablesasexpansioninthebasesofmaximallylocalized/0inphasespacefunctions(waveletbases).Waveletanalysisscisarelativelynovelsetofmathematicalmethods,whichigivesusapossibilitytoworkwithwell-localizedbasesinsyfunctionalspacesandgivesforthegeneraltypeofopera-htors(differential,integral,pseudodifferential)insuchbasespthemaximumsparseforms.Ourapproachinthispaperis:vbasedonthegeneralizationofvariational-waveletapproachiX
from[1]-[8],whichallowsustoconsidernotonlypolyno-mialbutrationaltypeofnonlinearities[9].Thesolutionr
ahasthefollowingform
z(t)=zslow
N(t)+
zj(ωjt),ωj~2j(1)
j≥N
whichcorrespondstothefullmultiresolutionexpansionin
alltimescales.Formulagivesusexpansionintoaslow
partzslow
NandfastoscillatingpartsforarbitraryN.So,wemaymovefromcoarsescalesofresolutiontothe nestoneforobtainingmoredetailedinformationaboutourdynami-calprocess.The rsttermintheRHSofequation(1)corre-spondsonthegloballeveloffunctionspacedecompositiontoresolutionspaceandthesecondonetodetailspace.Inthiswaywegivecontributiontoourfullsolutionfromeachscaleofresolutionoreachtimescale.Thesameiscorrect
+
2
1
y2
2+k1(s)
(n+1)!
·(x+iy)(n+1)
Thenwemaytakeintoaccountarbitrarybut nitenumberoftermsinexpansionofRHSofHamiltonianandfromourpointofviewthecorrespondingHamiltonianequationsofmotionsarenotmorethannonlinearordinarydifferen-tialequationswithpolynomialnonlinearitiesandvariablecoef cients.Alsowemayaddthetermscorrespondingtokicktypecontributionsofrf-cavity:
Aτ=
L
L
τ
·δ(s s0)
(5)
orlocalizeds0)= cavityV(s)=V=+∞
0·δp(s s0)withδp(s
nn= ∞δ(s (s0+n·L))atpositions0.Fig.1andFig.2present nitekicktermmodelandthecorrespondingmultiresolutionrepresentationoneachlevelofresolution.
We present the applications of variation -- wavelet analysis to polynomial/rational approximations for orbital motion in transverse plane for a single particle in a circular magnetic lattice in case when we take into account multipolar expansion up to an a
Figure1:Finitekickmodel.
Figure2:Multiresolutionrepresentationofkick.
3RATIONALDYNAMICS
The rstmainpartofourconsiderationissomevariational
approachtothisproblem,whichreducesinitialproblemtotheproblemofsolutionoffunctionalequationsatthe rststageandsomealgebraicalproblemsatthesecondstage.Wehavethesolutioninacompactlysupportedwaveletba-sis.Multiresolutionexpansionisthesecondmainpartofourconstruction.Thesolutionisparameterizedbysolu-tionsoftworeducedalgebraicalproblems,oneisnonlin-earandthesecondaresomelinearproblems,whichareobtainedfromoneofthenextwaveletconstructions:themethodofConnectionCoef cients(CC),StationarySub-divisionSchemes(SSS).
3.1VariationalMethod
Ourproblemsmaybeformulatedasthesystemsofordi-narydifferentialequations
Qi(x)
dxi
dt
(Qiyi)+Piyi(7)
andasetoffunctionals
x)= 1
Fi(Φi(t)dt Qixiyi|10,
(8)
whereyi(t)(yi(0)=0)aredual(variational)variables.It
isobviousthattheinitialsystemandthesystem
Fi(x)=0
(9)
areequivalent.Ofcourse,weconsidersuchQi(x)whichdonotleadtothesingularproblemwithQi(x),whent=0ort=1,i.e.Qi(x(0)),Qi(x(1))=∞.
Nowweconsiderformalexpansionsforxi,yi:
xi(t)=xi(0)+ λki k(t)yj(t)=
ηr
j r(t),(10)
k
r
where k(t)areusefulbasisfunctionsofsomefunctionalspace(L2,Lp,Sobolev,etc)correspondingtoconcreteproblemandbecauseofinitialconditionsweneedonly k(0)=0,r=1,...,N,i=1,...,n,
λ={λi}={λri}=(λ1i,λ2i,...,λN
i),
(11)
wherethelowerindexicorrespondstoexpansionofdy-namicalvariablewithindexi,i.e.xiandtheupperindexrcorrespondstothenumbersoftermsintheexpansionofdynamicalvariablesintheformalseries.Thenweput(10)intothefunctionalequations(9)andasresultwehavethefollowingreducedalgebraicalsystemofequationsonthesetofunknowncoef cientsλkiofexpansions(10):
L(Qij,λ,αI)=M(Pij,λ,βJ),
(12)
whereoperatorsLandMarealgebraizationofRHSandLHSofinitialproblem(6),whereλ(11)areunknownsofreducedsystemofalgebraicalequations(RSAE)(12).
Qijarecoef cients(withpossibletimedependence)ofLHSofinitialsystemofdifferentialequations(6)andasconsequencearecoef cientsofRSAE.
Pijarecoef cients(withpossibletimedependence)ofRHSofinitialsystemofdifferentialequations(6)andasconsequencearecoef cientsofRSAE.
I=(i1,...,iq+2),J=(j1,...,jp+1)aremultiindexes,bywhicharelabelledαIandβI—othercoef cientsofRSAE(12):
βJ={βj1...jp+1}=
jk,(13)1≤jk≤p+1
wherepisthedegreeofpolinomialoperatorP(6)
αI={αi1...αiq+2}=
i1,...,i q+2
i1... ˙is... iq+2,(14)
We present the applications of variation -- wavelet analysis to polynomial/rational approximations for orbital motion in transverse plane for a single particle in a circular magnetic lattice in case when we take into account multipolar expansion up to an a
whereqisthedegreeofpolynomialoperatorQ(6),i =(1,...,q+2), ˙is=d is/dt.
Now,whenwesolveRSAE(12)anddetermineunknowncoef cientsfromformalexpansion(10)wethereforeob-tainthesolutionofourinitialproblem.Itshouldbenotedifweconsideronlytruncatedexpansion(10)withNtermsthenwehavefrom(12)thesystemofN×nalgebraicalequationswithdegree =max{p,q}andthedegreeofthisalgebraicalsystemcoincideswithdegreeofinitialdif-ferentialsystem.So,wehavethesolutionoftheinitialnonlinear(rational)problemintheform
xi(t)=xi(0)+
N
λkiXk(t),
(15)
k=1
wherecoef cientsλkiarerootsofthecorrespondingre-ducedalgebraical(polynomial)problemRSAE(12).Con-sequently,wehaveaparametrizationofsolutionofinitial
problembysolutionofreducedalgebraicalproblem(12).The rstmainproblemisaproblemofcomputationsofcoef cientsαI(14),βJ(13)ofreducedalgebraicalsys-tem.Theseproblemsmaybeexplicitlysolvedinwaveletapproach.
Nextweconsidertheconstructionofexplicittimesolu-tionforourproblem.Theobtainedsolutionsaregivenintheform(15),whereXk(t)arebasisfunctionsandλikarerootsofreducedsystemofequations.InourcaseXk(t)areobtainedviamultiresolutionexpansionsandrepresentedbycompactlysupportedwaveletsandλikaretherootsofcorre-spondinggeneralpolynomialsystem(12)withcoef cients,whicharegivenbyCCorSSSconstructions.Accordingtothevariationalmethodtogivethereductionfromdifferen-tialtoalgebraicalsystemofequationsweneedcomputetheobjectsαIandβJ[1],[9].
Ourconstructionsarebasedonmultiresolutionappro-ach.Becauseaf negroupoftranslationanddilationsisinsidetheapproach,thismethodresemblestheactionofamicroscope.Wehavecontributionto nalresultfromeachscaleofresolutionfromthewholein nitescaleofspaces.Moreexactly,theclosedsubspaceVj(j∈Z)correspondstoleveljofresolution,ortoscalej.Weconsideramul-tiresolutionanalysisofL2(Rn)(ofcourse,wemaycon-sideranydifferentfunctionalspace)whichisasequenceofincreasingclosedsubspacesVj:
...V 2 V 1 V0 V1 V2 ...
satisfyingthefollowingproperties:
Vj=0
,
(16)
j∈Z
正在阅读:
Multiresolution Representation for Orbital Dynamics in Multipolar Fields06-06
宿舍楼毕业设计 - 图文05-28
学校访客登记制度02-25
区粮食局上半年工作总结和下半年工作安排08-01
胸外科诊疗指南和操作规范10-23
语体文记述体04-22
假如我是蜘蛛侠作文500字07-11
基础会计 期末考试试卷B卷07-04
温度上下限报警电路 文档09-25
- 1Rotation-invariant multiresolution texture analysis using ra
- 2Origin of Galactic and Extragalactic Magnetic Fields
- 3Modeling the Kinematics and Dynamics of Compliant Contact
- 4Thermo Field Dynamics and quantum algebras
- 5【19】Heterophilious dynamics enhances consensus
- 6Structure and dynamics of the ‘protein folding code’ inferred
- 7A microscopic approach to spin dynamics about the meaning of
- 8Spin-orbital physics in the optical conductivity of quarter-filled manganites
- 9SAP物料主数据增加字段( ADD Customer Fields)
- 10Exchange interaction and stability diagram of coupled quantum dots in magnetic fields
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Multiresolution
- Representation
- Multipolar
- Dynamics
- Orbital
- Fields