Microwave-assisted pyrolysis of microalgae for biofuel production
更新时间:2023-08-20 18:32:01 阅读量: 高等教育 文档下载
Microwave-assistedpyrolysisofmicroalgaeforbiofuelproduction
ZhenyiDua,YecongLia,XiaoquanWanga,YiqinWana,b,QinChena,ChenguangWanga,XiangyangLina,c,YuhuanLiua,b,PaulChena,RogerRuana,b,
a
CenterforBiore ningandDepartmentofBioproductsandBiosystemsEngineering,UniversityofMinnesota,1390EcklesAve.,St.Paul,MN55108,UnitedStatesBiomassEnergyCenterandStateKeyLaboratoryofFoodScience,NanchangUniversity,Nanchang330031,Chinac
CollegeofBiologicalScienceandTechnology,FuzhouUniversity,Fuzhou350002,China
b
articleinfoabstract
ThepyrolysisofChlorellasp.wascarriedoutinamicrowaveovenwithcharasmicrowavereceptionenhancer.Theresultsindicatedthatthemaximumbio-oilyieldof28.6%wasachievedunderthemicro-wavepowerof750W.Thebio-oilpropertieswerecharacterizedwithelemental,GC–MS,GPC,FTIR,andthermogravimetricanalysis.Thealgalbio-oilhadadensityof0.98kg/L,aviscosityof61.2cSt,andahigherheatingvalue(HHV)of30.7MJ/kg.TheGC–MSresultsshowedthatthebio-oilsweremainlycom-posedofaliphatichydrocarbons,aromatichydrocarbons,phenols,longchainfattyacidsandnitrogenatedcompounds,amongwhichaliphaticandaromatichydrocarbons(accountfor22.18%ofthetotalGC–MSspectrumarea)arehighlydesirablecompoundsasthoseincrudeoil,gasolineanddiesel.Theresultsinthisstudyindicatethatfastgrowingalgaeareapromisingsourceoffeedstockforadvancedrenewablefuelproductionviamicrowave-assistedpyrolysis(MAP).
Ó2011ElsevierLtd.Allrightsreserved.
Articlehistory:
Received26October2010
Receivedinrevisedform15January2011Accepted17January2011
Availableonline22January2011Keywords:
Microwave-assistedpyrolysisMicroalgaeChlorellasp.Bio-oil
1.Introduction
Fossilfuelsareproducedfromunsustainableresourcesandtheirusescontributesigni cantlytogreenhousegas(GHG)emis-siontotheenvironment.Biomassisanabundantandpotentiallycarbon-neutralenergysourcewidelyavailableontheearth(Mo-hanetal.,2006;McKendry,2002).Biomassfeedstockcanbecon-vertedintosolid,liquid,andgaseousproductsthroughvariousthermochemicalprocessesincludingpyrolysis(Huberetal.,2006).Inpyrolysis,organicsinbiomassarethermallyconvertedtobio-oil,combustiblegases,andbiochar(BridgwaterandPea-cocke,2000;Yaman,2004).Whilemostoftraditionalslowandfastpyrolysisprocessesuse xedand uidizedbedreactorswhoseheatingisprovidedbyheatedsurface,sands,etc.(MeierandFaix,1999;CzernikandBridgwater,2004;Mohanetal.,2006),otherslookedintoalternativeheatingmethodssuchasmicrowaveheat-ing.Thenewmicrowave-assistedpyrolysis(MAP)processthatwedevelopedoffersseveraladvantagesovertraditionalprocesses,includinguniforminternalheatingoflargebiomassparticles,easeofcontrol,andnoneedforagitationor uidizationandhencelessparticles(ashes)inthebio-oil.StudiesofMAPofwood(Miuraetal.,2004),cornstover(Yuetal.,2007;Wanetal.,2009),riceCorrespondingauthorat:CenterforBiore ningandDepartmentofBioproductsandBiosystemsEngineering,UniversityofMinnesota,1390EcklesAve.,St.Paul,MN55108,UnitedStates.Tel.:+16126251710;fax:+16126243005.
E-mailaddress:ruanx001@umn.edu(R.Ruan).
0960-8524/$-seefrontmatterÓ2011ElsevierLtd.Allrightsreserved.doi:10.1016/j.biortech.2011.01.055
straw(Huangetal.,2010),coffeehulls(Domínguezetal.,2007),pinesawdust(Wangetal.,2009),andwheatstraw(Budarinetal.,2009)havebeenrecentlyreported,andsuggestthatMAPisahighlyscalabletechnologysuitablefordistributedconversionofbulkybiomass.
Microalgaeasanalternativebiofuelsourcehavegainedmuchattentionthesedaysbecausetheyhavenumerousadvantagescom-paredwithlignocellulosicfeedstocks:(1)theyhavehigherbiomassproduction,5–30timesofoilcropsperunitsurfacearea(Schenketal.,2008);(2)theydonotcompetewithtraditionalagriculturalresourcesastheycanbecultivatedonnon-arablelandoronwaste-water(Chenetal.,2009);(3)theyareexceedinglyrichinoil,over60%byweightofdrybiomassinsomespecies(GouveiaandOliveira,2009).Todate,variousthermochemicalconversionroutesofmicro-algaehavebeeninvestigated(Chenetal.,2009).Therearefewre-portsonpyrolysisofmicroalgae.MiaoandWu(2004)performedfastpyrolysisofautotrophicandheterotrophicChlorellaprototheco-idesandreportedbio-oilyieldsof16.6%and57.2%,respectively.Inaddition,thebio-oilsobtainedhadbetterqualitythanthosefromwoodintermsofbio-oilviscosity,densityandheatingvalue.Panetal.(2010)investigatedpyrolysisofNannochloropsissp.residuewithandwithoutthepresenceofHZSM-5catalystandobtainedbio-oilrichinaromatichydrocarbonsfromcatalyticpyrolysis.
Inthisstudy,MAPofChlorellasp.wasconductedunderdifferentmicrowavepowerlevels.Detailedcompositionalcharacterizationandcomparisonswerecarriedoutwithelemental,gaschromatog-raphy–massspectrometry(GC–MS),gelpermeationchromatogra-
Z.Duetal./BioresourceTechnology102(2011)4890–48964891
phy(GPC),Fouriertransforminfrared(FTIR)spectroscopy,andthermogravimetric(TG)analysis.Thecomponentsofthegaseousbyproductswerealsoanalyzedwithgaschromatography(GC).2.Methods2.1.Materials
Chlorellasp.,awild-typealgaestrain,wasscreenedfromlocalfreshwaterinMinnesota,USA,andthencultivatedinapilot-scale1300Lphotobioreactor lledwithTris–Acetate-Phosphorus(TAP)media(Harris,1989).Thephotobioreactorwassetupinthegreen-houselocatedontheSaintPaulcampusattheUniversityofMinne-sota,TwinCities,wheretheaveragesunshinedurationinMayofSaintPaulwas14–15hperdayandthetemperature uctuatedbe-tween22°Cto30°C,andstayedaround25°Cmostofthetime.Whenthebiomassreachedaround1g/L,asemi-continuoushar-vestingregimen,inwhich450Loftheculturevolumewashar-vestedfollowedbysupplementingwiththesamevolumeoftapwaterenrichedwithTAPmedia,wascarriedout.Algaepastewithawatercontentof85–90%wasobtainedafter occulationand l-tration,andthensubjectedtonaturaldryingtoconstantweight.ThemaincharacteristicsofdryChlorellasp.arelistedinTable1.2.2.Pyrolysis
ThepyrolysisofbiomasswascarriedoutinaPanasonicNN-SD787Smicrowaveovenwiththemaximumincidentpowerof1250Watafrequencyof2450MHz.TheschematicdiagramofexperimentalapparatusisshowninFig.1.Asbiomassispoormicrowaveabsorbent,mixingitwithmicrowaveabsorptionenhancersshouldimprovebiomassheating(Menéndezetal.,2002;Domínguezetal.,2007).Sinceahigherabsorber/biomassra-tioleadstohigherenergyconsumptionperunitbiomass,itisimportanttodeterminetheminimumamountofabsorbertocre-atetherequiredpyrolysisconditions.Thecharproducedfrompyrolysisofbiomassfeedstockisanexcellentmicrowaveabsorber.PartialrecyclingofthecharinacontinuousMAPprocessisex-pectedtorecoversomeheatandimprovemicrowaveabsorptionandhenceenergyef ciency.Inourstudy,thelowesteffectiveratioofabsorber(char)tobiomasswas1:5determinedthroughpreli-minaryexperiments.Forconsistentcomparison,eachsamplewaspreparedbyblending30galgaebiomasswith6gsolidcharinthisstudy.Thecharforthe rstexperimentatacertainpowerlevelwasobtainedbymixingChlorellasp.withactivatedcarbon(approximately1.5mmdiameterÂ3mm),whichwaseasilysepa-ratedfromthesolidresidueafterpyrolysis.Thecharforthesubse-quentexperimentswasgleanedfrompreviousexperimentsatthesamepowerlevel.Afterthesamplepreparation,themixturewasplacedina500mLquartz ask,whichwasthensubjectedtomicrowavetreatmentwithnitrogenusedasinertcarriergasata owrateof500mL/mintomaintainanoxicatmospherebeforeandduringtheexperiment.Throughoutthepyrolysisprocess,theevolutionofreactiontemperaturewasmonitoredwithaninfrared
Table1
Characteristicsofdriedalgaebiomass.Proximateanalysisa(wt.%)Elementalanalysisb(wt.%)Moisture13.7C49.70Volatile
68.4H6.98FixedCarbon10.1N10.92Ash
7.8
Oc
24.60
aWetbasis.bDrybasis.
c
Calculatedbydifference,O(%)=100–C–H–N–Ash.
opticalpyrometer,andthe naltemperaturewasmeasuredbyinsertingathermocoupleintothesampleimmediatelyattheendofreaction.Meanwhile,thecondensablevolatileswerecontinu-ouslycollectedusing vecondenserswithcoolingwatertempera-turearound0–2°C,andthenon-condensablegasesinagasbag.Thereactiontimewassetfor20minwhennoappreciablevolatileswereobservedlateron.Thesolidandliquidfractionyieldswerecalculatedfromtheweightofeachfraction,whilethegasyieldwascalculatedbydifferencebasedonthemassbalance.Allexper-imentswereperformedintriplicatetodeterminetheuncertaintiesintheexperimentalresults.
2.3.Bio-oilandgaseousproductsanalysis
Thebio-oilpropertieswerecharacterizedwithelemental,GC–MS,GPC,FTIR,andTGanalysis,depictedasfollows:
Theviscosityofthebio-oilwasmeasuredbyaRVASuper4Vis-coAnalyzer(NewportScienti cPtyLtd.,Australia).
Theelementalanalysiswasperformedwithanelementalana-lyzer(CE-440,ExerterAnalyticalInc.,USA).
Thecomponentsoftheliquidproductwerespeci edusinganAgilent7890–5975Cgaschromatography/massspectrometerwithaHP-5MScapillarycolumn.Heliumwasemployedasthecarriergasata owrateof1.2mL/min.Theinjectionsizewas1lLwithasplitratioof1:10.Theinitialoventemperaturewas40°Cheldfor3minandthenincreasedto290°Catarateof5°C/min,andheldat290°Cfor5min,whiletheinjectoranddetectorweremaintainedatconstanttemperatureof250°Cand230°C,respec-tively.Thecompoundswereidenti edbycomparingtheirmassspectrawiththosefromtheNationalInstituteofStandardsandTechnology(NIST)massspectraldatalibrary.
GPCanalysisofbio-oilwasperformedusingaVarianPolarisHPLCsystemequippedwithoneOligo-PoreGPCcolumn(polysty-rene-divinyl-benzenecopolymer,300Â7.5mm)at35°C.Inthissystem,tetrahydrofuran(THF)wasusedastheeluentata owrateof1mL/min,andadifferentialrefractometerwasusedasthedetec-tor.Bio-oilsamplesweredissolvedinTHFataconcentrationof10mg/mLandmolecularweightcalibrationwasperformedbyninepolystyrenestandardsinthemolecularweightrangeof162–2900.TheFTIRspectrawerecollectedinaNicoletSeriesIIMagna-IRSystem750spectrometer,equippedwithaliquidnitrogencooledmercurycadmiumtelluride(MCT)detector.TheoilwasdepositedbetweentwoNaCldisks.Thespectralrangewasselectedat400–650cmÀ1,witharesolutionof4cmÀ1.
TGandDerivativethermogravimetric(DTG)analysiswereper-formedwithaPerkinElmerTG/DTA6300inbothnitrogenandairatmospheres.Sampleswereheatedfrom30°Cto700°Cwithaheatingrateof30°C/min.Thegas owratewas20mL/min.
ThegaseousproductswereanalyzedbyaVarianMicro-GCCP4900/thermalconductivitydetector(TCD)witha5AmolecularsievecolumnandaPPQcolumn.Thetemperaturesofinjectoranddetectorweremaintainedat110°C.Theoventemperaturesof5AmolecularsieveandPPQcolumnwerekeptat80°Cand150°C,respectively.3.ResultsandDiscussion
3.1.Temperaturepro les
Thetemperaturepro lesofpyrolysisdeterminedbytheinfra-redpyrometeratdifferentmicrowavepowerlevelsarepresentedinFig.2.Accuratemeasurementoftheevolutionofthetempera-tureduringtheprocesswasverydif cult(Domínguezetal.,2003),andhencethetemperaturepro lesofthesamplesshowninFig.2onlyservethepurposeofcomparisonsamongdifferent
Table2
The naltemperaturesunderdifferentmicrowavepowersmeasuredbyathermocouple.
Microwavepower(W)Finaltemperature(°C)
500
462±29
750
569±42
1000600±27
1250627±17
28.6%at750W,andthendecreasedgradually.Theyieldofgasin-creasedovertherangeofmicrowavepowerstudied,whilethatofthechardecreasedfrom500Wto750W,andthenremainedal-mostconstant.Theunderlyingreasonisthatthesamplewasnotpyrolyzedadequatelybelow750W,anditmightjustreachcompletedecompositionat750Wandthemaximumoilyield
Z.Duetal./BioresourceTechnology102(2011)4890–48964893
wasobtained.Beyond750Wthedecreaseinoilyieldandincreaseingasyieldmaybecausedbythesecondarycrackingofoilvaporsintoincondensablegases.Inaddition,constantcharyieldinthepowerrangeof750W-1250Wispossiblyarisingfromthefactthatthedecompositionofthesamplewascompleteortherewasabal-ancebetweendecompositionofsolidsandformationofchar-likecarbonaceousmaterialthroughrepolymerization.Thewaterphaseyieldremainedvirtuallyconstantatabout21%inthestudiedpowerrange.AsshowninFig.3,therewasatradeoffbetweenheatingrateandpyrolysistemperature.Lowerpowerwithlowerheatingratealwaysledtotheformationofhigheryieldofchar(WilliamsandBesler,1996),whilehigherpowerwithhigherpyro-lysistemperaturefavoredgasi cationreactionswhichthusde-creasedtheyieldofbio-oil.Theseresultsaresimilartothosereportedintheliterature(Sßensözetal.,2006;Panetal.,2010;Is-lametal.,2010).Thevariationsaremainlyduetothecomposi-tionaldifferencesoffeedstockandthespeci ccharacteristicsofthemicrowavepyrolysissystem.Inthisstudy,750Wwastheopti-mumpowertoobtainbio-oilproductfromMAPofChlorellasp.3.3.Analysisofbio-oils
3.3.1.Physicalpropertiesandelementalanalysisofbio-oil
Thecharacteristicsofthealgalbio-oilincomparisonwithwoodbio-oilsanddieselfuelareshowedinTable3.Thebio-oilfromChlorellasp.hadaloweroxygencontent,highercarbon,hydrogencontentandHHVthanbio-oilproducedfromlignocellulosicmate-rials.ThesevaluesareclosetotheresultsofMiaoandWu(2004).Algalbio-oilhasalowerdensitythanlignocellulosicbio-oil,andaviscosityinthetypicalrangeofwoodbio-oil.Thepresenceofnitro-genbases,includingindole,pyridine,amides,ammonia,etc.,ren-deredthealgalbio-oilpHalkaline(9.7),whichisverydifferentfromthatforlignocellulosicbio-oil(typically2–3).However,theelementalcompositionandHHVofthebio-oilfromChlorellasp.arestillnotcomparableto(quitedifferentfrom)thoseoffossiloil.3.3.2.GC–MScharacterizationofbio-oil
Theidenti edcompoundswerecategorizedintothefollowinggroups:aliphatichydrocarbons,aromatichydrocarbons(includingbenzeneandbenzenealkylderivatives),nitrogenatedcompounds(includingnitriles,amidesandN-heterocycliccompounds),phe-nols,polycyclicaromatichydrocarbons(PAHs),andothers(suchasfattyacids,alcoholsandesters).Asemi-quantitativeanalysiswasperformedbycalculatingtherelativepercentageofareaofthechromatographicpeakswithresultsshowninTable4.Among
Table4
Relativeproportions(area%)ofthemaincompoundsofbio-oilobtainedunder750Wmicrowavepower.CategoriesAliphatics
Bicyclo[3.1.1]heptane,2,6,6-trimethyl-,(1.alpha.,2.beta.,5.alpha.)-2-Hexadecene,3,7,11,15-tetramethyl-,[R-[R ,R -(E)]]-Dodecane,2,6,10-trimethyl-1-Tridecene
Aromatics
Toluene
EthylbenzeneStyreneo-XyleneBenzene
Nitrogenatedcompounds
Indole
HexadecanamidePentadecanenitrile1H-Pyrrole,3-methyl-Phenols
Phenol,4-methyl-Phenol
Phenol,2-ethyl-PACs
NaphthaleneAnthracene
Others
n-HexadecanoicacidOleicAcid
Hexadecenoicacid,Z-11-9,12-Octadecadienoicacid,methylester
Unidenti ed
Compounds
Area/%15.192.021.830.550.496.992.341.020.910.720.5228.392.241.811.721.116.202.591.670.553.380.610.4817.905.044.732.090.1121.95
thesecompounds,hydrocarbonsarevaluablecomponentsinbio-oilfromthepointofviewoffuelapplication.Speci cally,aromatichydrocarbonsserveasimportantindustrialchemicalsandtrans-portationfueladditivestoincreaseoctanenumber.Table4showsthatbothaliphaticandaromatichydrocarbonswerehigherthanthoseobtainedfromotherbiomasses(Adametal.,2006;Wangetal.,2009;Zhangetal.,2009).Thismightresultfromthelargeramountoflipidsinmicroalgaebeingcrackedintohydrocarbonsduringpyrolysis.Phenolanditsalkylatedderivatives,whichareofgreatcommercialimportance,represented6.20%ofthebio-oil.N-containingcompoundsformedduringthedecompositionofproteinsinalgaecells,andtheymayaccountforpotentialNOx
Table3
ComparisonamongNo.2dieselfuel,bio-oilfromMAPofChlorellasp.andotherlignocellulosicfeedstocks.Properties
Bio-oilsChlorellasp.
Elementalcomposition(wt.%)CHNO
HHV(MJ/kg)fDensity(kg/L)pH
Viscosity,at40°C(cSt)
abcdefg
No.2dieselfueld
Pinechips(slowpyrolysis)a54.766.030.0939.1222.0–––
Wheatstraw(MAP)b58.96.851.1533.224.81.2––
Wood(fastpyrolysis)c56.46.20.137.316–191.22–3
25–1000
86.3113.27––430.83–
2.5–3.2
65.47.8410.2816.48e30.70.98g9.761.2
DerivedfromthereferenceSßensözandCan(2002).DerivedfromthereferenceBudarinetal.(2009).
DerivedfromthereferenceBridgwaterandPeacocke(2000).DerivedfromthereferenceTatandVanGerpen(1999).Calculatedbydifference.
Calculatedusingtheequation(Friedletal.,2005)HHV(MJ/kg)=(3.55ÂC2À232ÂCÀ2230ÂH+51.2ÂCÂH+131ÂN+20600)Â10À3.at30°C.
4894
Table5
FTIRfunctionalgroupsofthebio-oil.Frequencyrange(cmÀ1)3600–32003100–30103000–28002300–20001775–16501680–15751550–14901470–13251300–950
Groups
OAHstretchingNAHstretchingCAHstretchingCAHstretchingC NstretchingC@OstretchingC@CstretchingNAHbendingC@CstretchingCAHbendingCAOstretchingOAHbending
Z.Duetal./BioresourceTechnology102(2011)4890–4896
Classofcompounds
Phenols,AlcoholsAminesAromaticsAlkanesNitriles
Carboxylicacids,esters,ketonesAlkenesAmidesAromaticsAlkanes
Alcohols,phenols,esters
forlignocellulosicmaterial(Mullenetal.,2010;Hassanetal.,2009).Thelowermolecularweightandhigherhomogeneitymightresultfromthefactthatmicroalgaecontainnolignin,whichisthemajorsourceofphenolicoligomericspeciesinbio-oilfromligno-cellulosicbiomass.Thosepyrolyticligninmacromoleculars,whichconstitute25–30%ofthewholebio-oil,havemolecularweightrangefromseveralhundredtoashighas5000orhigher(Mohanetal.,2006).
FunctionalgroupcompositionalanalysiswascarriedoutusingFTIRspectrometry.Thefunctionalgroupsidenti edfromFTIRspectraareshowninTable5.AccordingtotheinterpretationofthemainbandsbySocrates(1994),FTIRfunctionalgroupsindi-catedthepresenceofalkanes,aromaticcompounds,nitriles,amides,phenol,andetc.Theseresultsarecomplementaryto
102(2011)4890–48964895
51%between200–350°C,whicharesimilartotheboilingpointrangeoflightnaphtha,heavynaphthaandmiddledistillate,respectively(Laresgoitietal.,2004).Theexistenceofhighamountofmiddledistillateindicatesthatbio-oilfrommicroalgaeisverypromisingaskeroseneanddieselfuels.Theresultalsoshowsthattherewasabout50%ofthebio-oilwithaboilingpoint<250°C.ThisfurtherdemonstratesthatcompoundsanalyzedbyGC–MSrepresentedafractionofthebio-oilsincehighmolecularweightcompoundscouldnotbegasi edandidenti edwithGC–MS.3.4.Analysisofgaseousproducts
ThepermanentgascollectedwascomprisedofH2,CO,CO2andgaseoushydrocarbons.Thequantitativeresultsofthefourmaincomponents(H2,CO,CO2andCH4)arepresentedinFig.5.Withtheincreaseofmicrowavepower,theCO2concentrationdecreasedsigni cantly,whiletheH2andCOconcentrationsincreasedgradu-ally.ThehighestconcentrationofH2+CO(syngas)was49.8%.Thetrendsofthecomponentswereinagreementwiththeliteratureandindicatedthatthefollowingreactionswerefavoredathighertemperatures(Wangetal.,2009;Domínguezetal.,2007):
CðsÞþCO2ðgÞ$2CODH298k¼173kJ=molCðsÞþH2O$COþH2DH298k¼132kJ=mol
4.Conclusions
Chlorellasp.waspyrolyzedinamicrowavecavity.Themicro-wavepowerof750Wwasfoundtobetheoptimummicrowavepowerasthemaximumbio-oilyieldof28.6%wasobtained.Severalanalysesindicatethatthealgalbio-oilexhibitabetterqualitythanlignocellulosicbio-oilsintermsofphysicalandchemicalproper-ties.Thealgalbio-oilwascharacterizedbylowoxygencontentwithaliphaticandaromatichydrocarbonsconstituting22.18%ofthetotalionchromatogramofGC–MS.However,furtherupgradingtoremoveNandOfrombio-oilisnecessarytomakeitsuitableasenginefuels.Acknowledgements
TheauthorsaregratefultoDOT/SunGrant,USDA/DOE,andUniversityofMinnesotaIREEandCenterforBiore ning,aswell
asChinaMOSTInternationalCooperationFund2009DFA61680,fortheir nancialsupportforthiswork.PartsofthisworkwerecarriedoutintheCharacterizationFacility,UniversityofMinne-sota,whichreceivespartialsupportfromNSFthroughtheMRSECprogram.
References
Adam,J.,Antonakou,E.,Lappas,A.,Stöcker,M.,Nilsen,M.H.,Bouzga,A.,Hustad,J.E.,
Øye,G.,2006.In-situcatalyticupgradingofbiomassderivedfastpyrolysisvapoursina xedbedreactorusingmesoporousmaterials.Micropor.Mesopor.Mater.96,93–101.
Bridgwater,A.V.,Peacocke,G.V.C.,2000.Fastpyrolysisprocessesforbiomass.
Renew.Sust.EnergyRev.4(1),1–73.
Budarin,V.L.,Clark,J.H.,Lanigan,B.A.,Shuttleworth,P.,Breeden,S.W.,Wilson,
A.J.,Macquarrie,D.J.,Milkowski,K.,Jones,J.,Bridgeman,T.,Ross,A.,2009.Thepreparationofhigh-gradebio-oilsthroughthecontrolled,lowtemperaturemicrowaveactivationofwheatstraw.Bioresour.Technol.100,6064–6068.
Chen,P.,Min,M.,Chen,Y.,Wang,L.,Li,Y.,Chen,Q.,Wang,C.,Wan,Y.,Wang,X.,
Cheng,Y.,Deng,S.,Hennesy,K.,Lin,X.,Liu,Y.,Wang,Y.,Martinez,B.,Ruan,R.,2009.Reviewofthebiologicalandengineeringaspectsofalgaetofuelsapproach.Int.J.Agric.Biol.Eng.2(4),1–30.
Czernik,S.,Bridgwater,A.V.,2004.Overviewofapplicationsofbiomassfast
pyrolysisoil.EnergyFuels18,590–598.
Domínguez,A.,Menéndez,J.A.,Fernández,Y.,Pis,J.J.,Nabais,J.M.,Carrott,P.J.M.,
Carrott,M.M.L.,2007.Conventionalandmicrowaveinducedpyrolysisofcoffeehullsfortheproductionofahydrogenrichfuelgas.J.Anal.Appl.Pyrol.79,128–135.
Domínguez,A.,Menéndez,J.A.,Inguanzo,M.,Bernad,P.L.,Pis,J.J.,2003.Gas
chromatographic-Massspectrometricstudyoftheoilfractionsproducedbymicrowave-assistedpyrolysisofdifferentsewagesludges.J.Chromatogr.,A1012,193–206.
Domínguez,A.,Menéndez,J.A.,Inguanzo,M.,Pis,J.J.,2006.Productionofbio-fuels
byhightemperaturepyrolysisofsewagesludgeusingconventionalandmicrowaveheating.Bioresour.Technol.97,1185–1193.
Friedl,A.,Padouvas,E.,Rotter,H.,Varmuza,K.,2005.Predictionofheatingvaluesof
biomassfuelfromelementalcomposition.Anal.Chem.554,191–198.
Gouveia,L.,Oliveira,A.C.,2009.Microalgaeasarawmaterialforbiofuels
production.J.Ind.Microbiol.Biotechnol.36(2),269–274.
Harris,E.H.,1989.TheChlamydomonasSourcebook.AcademicPressInc.SanDiego,
California.
Hassan,E.M.,Yu,F.,Ingram,L.,Steele,P.,2009.Thepotentialuseofwhole-tree
biomassforbio-oilfuels.Energ.Source.,PartA31,1829–1839.
Huang,Y.F.,Kuan,W.H.,Lo,S.L.,Lin,C.F.,2010.Hydrogen-richfuelgasfrom
ricestrawviamicrowave-inducedpyrolysis.Bioresour.Technol.101,1968–1973.
Huber,G.W.,Iborra,S.,Corma,A.,2006.Synthesisoftransportationfuels
frombiomass:chemistry,catalysts,andengineering.Chem.Rev.106,4044–4098.
Islam,M.R.,Parveen,M.,Haniu,H.,2010.Propertiesofsugarcanewaste-derivedbio-oilsobtainedby xed-bed re-tubeheatingpyrolysis.Bioresour.Technol.101,4162–4168.
Laresgoiti,M.F.,Caballero,B.M.,DeMarco,J.,Torres,A.,Cabrero,M.A.,Chomón,M.J.,
2004.Characterizationoftheliquidproductsobtainedintyrepyrolysis.J.Anal.Appl.Pyrol.71,917–934.
McKendry,P.,2002.Energyproductionfrombiomass(part1):overviewofbiomass.
Bioresour.Technol.83,37–46.
Meier,D.,Faix,O.,1999.Stateoftheartofappliedfastpyrolysisoflignocellulosic
materials–areview.Bioresour.Technol.68(1),71–77.
Menéndez,J.A.,Inguanzo,M.,Pis,J.J.,2002.Microwave-inducedpyrolysisofsewage
sludge.WaterRes.36,3261–3264.
Miao,X.,Wu,Q.,2004.Highyieldbio-oilproductionfromfastpyrolysisby
metaboliccontrollingofChlorellaprotothecoide.J.Biotechnol.110,85–93.
Miura,M.,Kaga,H.,Sakurai,A.,Kakuchi,T.,Takahashi,K.,2004.Rapidpyrolysisof
woodblockbymicrowaveheating.J.Anal.Appl.Pyrol.71,187–199.
Mohan,D.,Pittman,C.U.,Steele,P.H.,2006.Pyrolysisofwood/biomassforbio-oil:a
criticalreview.EnergyFuels20,848–889.
Mullen,C.A.,Boateng,A.A.,Hicks,K.B.,Goldberg,N.M.,Moreau,R.A.,2010.Analysis
andcomparisonofbio-oilproducedbyfastpyrolysisfromthreebarleybiomass/byproductsstreams.EnergyFuels24,699–706.
Pan,P.,Hu,C.,Yang,W.,Li,Y.,Dong,L.,Zhu,L.,Tong,D.,Qing,R.,Fan,Y.,2010.The
directpyrolysisandcatalyticpyrolysisofNannochloropsisspResidueforrenewablebio-oils.Bioresour.Technol.101,4593–4599.
Schenk,P.M.,Thomas-Hall,S.R.,Stephens,E.,Marx,U.C.,Mussgnug,J.H.,Posten,C.,
Kruse,O.,Hankamer,B.,2008.Secondgenerationbiofuels:high-ef ciencymicroalgaeforbiodieselproduction.BioenergyRes.1,20–43.Sßensöz,S.,Can,M.,2002.Pyrolysisofpine(PinusbrutiaTen.)chips:2.Structural
analysisofbio-oil.Sßensöz,S.,Demiral,_EnergySource24(4),357–364.
I.,
FerdiGerçel,H.,2006.Olivebagasse(OleaeuropeaL.)pyrolysis.Bioresour.Technol.97,429–436.
Socrates,G.,1994.InfraredCharacteristicGroupFrequencies,seconded.JohnWiley
andSons,Hoboken,
NJ.
4896Z.Duetal./BioresourceTechnology102(2011)4890–4896
Yu,F.,Deng,S.,Chen,P.,Liu,Y.,Wan,Y.,Olson,A.,Kittelson,D.,Ruan,R.,2007.
Physicalandchemicalpropertiesofbio-oilsfrommicrowavepyrolysisofcornstover.Appl.Biochem.Biotechnol.136–140,957–970.
Zhang,H.,Xiao,R.,Huang,H.,Xiao,G.,parisonofnon-catalyticand
catalyticfastpyrolysisofcorncobina uidizedbedreactor.Bioresour.Technol.100,1428–1434.
Tat,M.E.,VanGerpen,J.H.,1999.Thekinematicviscosityofbiodieselanditsblends
withdieselfuel.J.Am.Oil.Chem.Soc.76,1511–1513.
Wan,Y.,Chen,P.,Zhang,B.,Yang,C.,Liu,Y.,Lin,X.,Ruan,R.,2009.Microwave-assistedpyrolysisofbiomass:catalysttoimproveproductselectivity.J.Anal.Appl.Pyrol.86,161–167.
Wang,X.H.,Chen,H.P.,Ding,X.J.,Yang,H.P.,Zhang,S.H.,Shen,Y.Q.,2009.Propertiesof
gasandcharfrommicrowavepyrolysisofpinesawdust.BioRes.4(3),946–959.Williams,P.T.,Besler,S.,1996.Thein uenceoftemperatureandheatingrateonthe
slowpyrolysisofbiomass.Renew.Energ7(3),233–250.
Yaman,S.,2004.Pyrolysisofbiomasstoproducefuelsandchemicalfeedstocks.
Energ.Convers.Manage.45,651–671.
正在阅读:
Microwave-assisted pyrolysis of microalgae for biofuel production08-20
投资公司综合部职能明细01-21
六年级英语下册作业11-04
专家推荐书02-19
商业发票(填写说明中英文对照客户参考版)01-23
读书是一种享受作文600字06-17
Axure快速原型设计06-01
- 1A joint model of production scheduling and predictive
- 2Enhanced production of dihydroxyacetone from glycerol by overexpression
- 3Amplitude-Phase Analysis of Cosmic Microwave Background maps
- 4Anomalous Single Production of the Fourth Generation Quarks at the LHC
- 5Introducing CAVASS a Computer Assisted Visualization and Analysis Software System
- 6Stop-Stop-Higgs Production at future Linear Collider
- 7Low-Microwave Loss Coplanar Waveguides Fabricated on High-Re
- 8Clinical Microwave Breast Imaging – 2D Results and th
- 9Quark Pair Production in the Chiral Phase Transition
- 10D-Lab Lentivirus Production Protocol
- 2012诗歌鉴赏讲座 师大附中张海波
- 2012-2013学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一)
- 市政基础设施工程竣工验收资料
- 小方坯连铸机专用超越离合器(引锭杆存放用)
- 荀子的学术性质之我见
- 氩弧焊管轧纹生产线操作说明
- 小学科学六年级上册教案
- (商务)英语专业大全
- 外汇储备的快速增长对我国经济发展的影响
- 幼儿园中班优秀语言教案《小猴的出租车》
- 第七章 仪表与显示系统
- 身份证号码前6位行政区划与籍贯对应表
- 单位(子单位)工程验收通知书
- 浅谈地铁工程施工的项目成本管理
- 沉积学知识点整理
- 前期物业管理中物业服务企业的法律地位
- 2014微量养分营养试卷
- 地质专业校内实习报告范文(通用版)
- 内部审计视角下我国高校教育经费支出绩效审计研究
- 高次插值龙格现象并作图数值分析实验1
- microalgae
- production
- Microwave
- pyrolysis
- assisted
- biofuel
- 小脑扁桃体下疝畸形1例误诊分析
- 住院医师临床能力(换药)评分表(样表)
- 交通银行股票价格
- 我省政治生态存在的问题等问题 讨论发言提纲
- 二级建造师辅导城镇燃气管道27个数字考点_0
- 劳动关系案例分析
- 水利水电工程1F420100水力发电工程验收章节练习(2015-7-20)
- 信阳农林学院毕业论文任务书范文模板
- 井论的总结终极版
- 2010年山东省潍坊市中考真题——语文
- 国内外房地产金融体系比较研究
- 小魔怪要上学
- 淘气堡都检查哪些方面呢?
- 基于虚拟仪表的汽车ABS综合检测平台的研究与实现
- 毕业论文—水果损伤红外检测系统设计
- 全国烟草专卖管理员中级考试(证件管理部分)
- 上网记录清除技巧
- 第四单元《万以内的加法和减法(二)》3-减法1
- android发送邮件的方法
- 喷射砼根据工艺流程