必修三第一章《算法初步》

更新时间:2023-10-22 08:54:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一章 算法初步

本章教材分析

算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.

本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.

在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.

本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章: (1)知识间的联系; (2)数学思想方法; (3)认知规律.

本章教学时间约需12课时,具体分配如下(仅供参考): 1.1.1 算法的概念 1.1.2 程序框图与算法的基本逻辑结构 1.2.1 输入语句、输出语句和赋值语句 1.2.2 条件语句 1.2.3 循环语句 1.3算法案例 本章复习 1.1 算法与程序框图

1.1.1 算法的概念

整体设计

教学分析

算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标

1.正确理解算法的概念,掌握算法的基本特点.

2.通过例题教学,使学生体会设计算法的基本思路.

3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点

教学重点:算法的含义及应用.

教学难点:写出解决一类问题的算法.

1

约1课时 约4课时 约1课时 约1课时 约1课时 约3课时 约1课时

课时安排 1课时

教学过程

导入新课

思路1(情境导入)

一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)

大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?

答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)

算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课 新知探究 提出问题

(1)解二元一次方程组有几种方法? (2)结合教材实例??x?2y??1,(1)总结用加减消元法解二元一次方程组的步骤.

?2x?y?1,(2)?x?2y??1,(1)总结用代入消元法解二元一次方程组的步骤.

2x?y?1,(2)?(3)结合教材实例?(4)请写出解一般二元一次方程组的步骤.

(5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:

(1)代入消元法和加减消元法. (2)回顾二元一次方程组

?x?2y??1,(1)的求解过程,我们可以归纳出以下步骤: ??2x?y?1,(2)第一步,①+②×2,得5x=1.③ 第二步,解③,得x=

1. 53. 5第三步,②-①×2,得5y=3.④ 第四步,解④,得y=

2

1?x?,??5第五步,得到方程组的解为?

?y?3.?5?(3)用代入消元法解二元一次方程组

?x?2y??1,(1)我们可以归纳出以下步骤: ?2x?y?1,(2)?第一步,由①得x=2y-1.③

第二步,把③代入②,得2(2y-1)+y=1.④ 第三步,解④得y=

3.⑤ 5351. 5第四步,把⑤代入③,得x=2×-1=

1?x?,??5第五步,得到方程组的解为?

3?y?.?5?(4)对于一般的二元一次方程组??a1x?b1y?c1,(1)

?a2x?b2y?c2,(2) 其中a1b2-a2b1≠0,可以写出类似的求解步骤: 第一步,①×b2-②×b1,得 (a1b2-a2b1)x=b2c1-b1c2.③ 第二步,解③,得x=

b2c1?b1c2.

a1b2?a2b1 第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④ 第四步,解④,得y=

a1c2?a2c1.

a1b2?a2b1b2c1?b1c2?x?,?a1b2?a2b1? 第五步,得到方程组的解为?

?y?a1c2?a2c1.?a1b2?a2b1?(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使

用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.

在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.

(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从

3

开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行. (7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例

思路1

例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数. 算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7. 第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.

第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.

(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.

第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.

第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.

点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤. 变式训练

请写出判断n(n>2)是否为质数的算法.

分析:对于任意的整数n(n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.

这个操作一直要进行到i的值等于(n-1)为止. 算法如下:第一步,给定大于2的整数n. 第二步,令i=2.

第三步,用i除n,得到余数r.

第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.

第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.

分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.

“二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)·f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)·f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解. 解:第一步,令f(x)=x2-2,给定精确度d.

4

第二步,确定区间[a,b],满足f(a)·f(b)<0. 第三步,取区间中点m=

a?b. 2第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].

第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.

当d=0.005时,按照以上算法,可以得到下表. a 1 1 1.25 1.375 1.375 1.406 25 1.406 25 1.414 062 5 1.414 062 5 b 2 1.5 1.5 1.5 1.437 5 1.437 5 1.421 875 1.421 875 1.417 968 75 |a-b| 1 0.5 0.25 0.125 0.062 5 0.031 25 0.015 625 0.007 812 5 0.003 906 25 于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求2的近似值的一个算法.

点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续??

思路2

例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法. 分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势. 解:具体算法如下: 算法步骤:

第一步:人带两只狼过河,并自己返回. 第二步:人带一只狼过河,自己返回.

第三步:人带两只羚羊过河,并带两只狼返回. 第四步:人带一只羊过河,自己返回. 第五步:人带两只狼过河. 点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用

5

本文来源:https://www.bwwdw.com/article/pr7f.html

Top