《电动力学(第二版)》(郭硕鸿)第四章习题
更新时间:2024-06-16 03:50:01 阅读量: 综合文库 文档下载
- 电动力学第二版答案推荐度:
- 相关推荐
第四章 习 题
1. ⑴
E??k?dk?z????d??t?1?E0ei E??k?dk?z????d??t?2?E0ei
E?E1?E?E?2i??k?dk?z????d??t?0e?ei??k?dk?z????d??t???E?ei?dk?z?d??t?0?e?i?dk?z?d??t??ei?kz??t?
?E0?2cos?dk?z?d??t?ei?kz??t? ⑵
令kz??t?常数,得
vdzp?dt??k 令dk?z?d??t?常数,得
vg?dzdt?d?dk 2.
sin?sin?''??2?2sin45?1??2,sin?''??1?122 co?s''?1?sin2?''?32 E'??cos???2?2cos?''E?11?1?1cos???2?2cos?''?cos45??2cos?''cos45??2cos?''1?23
?2212?232?1?31?32R???1?3????2?3?1?3? ?2?3E''2?1?1cos?E??1?1cos???2?2cos?''21?21
2?232?21?32T???2?2?1?3???2?3 3.
⑴
?0?6.28?10?5cm,n?1.33,??60?
设产生全反射的临界入射角为?0,则
sin?sin90?0?n?11.33,?0?48.8??60? 因此入射角为60?时将产生全反射。 ⑵ kx\?kx?ksin?
v?p??kx\?ksin??csin60??32c ??1??1??0n2?sin2??n2212?sin2??n2215?6.28?10?1.332?3.14sin260???11.33?2
?1.75?10?5cm4. ⑴
??E?i?B (4.1) ??H??i?D (4.2) ??D?0 (4.3) ??B?0 (4.4)
E?x,t??Ei?k?x??t?0e,E?x??Eik?x0e
D?x,t??Di?kx??t?0e,D?x??Dik?x0e
H?x,t??Hi?kx??t?0e,H?x??Hk?x0ei
B?x,t??B?kx??t?0ei,B?x??Bik?x0e (公式:????f???????f????f) 由式(4.3)得:
0???D?x?????Dik?x0e??ieik?xk?D0?ik?D?x?
同样方法,由式(4.4)得:0?ik?B?x? 因此:k?B?k?D?0
若D与E不同向,则一般k?E?0 (公式????f???????f????f)
B?x???i???E?x???i????Eik?x0e???iik?x0??iik?x???e??E?eik?E0
?1?k?E?x?D?x??i???H?x??i????Hik?x0e??i??eik?x??iik?x?H0??eik?H0 ??11?k?H?x?????k?B?x?(公式:a??b?c??b??c?a??c??a?b?) 因此:B?D?B?E?0 ⑵
(公式:?a?b??c??c?a?b??c?b?a)
D?x???1??k?B?x?
??1??k???1???k?E?x??? ?12?2??kE??k?E?k?⑶ S_?1*1?2Re?E?H??2Re??E*???1k?????????E??????1
??*2??Re?E?k?E?E2k?因一般k?E?0,所以S_一般与E不同向5. ⑴
E1?exE0eikz
Ei?kz??2?2?eyE0e
Ex?E0cos?kz??t?
Ey?E0cos?kz??t??2??E0sin?kz??t?
因此:E222x?Ey?E0,为圆偏振光 tan??EyE?tan?kz??t?
x上式两边对时间t求导,得
sec2???d?dt???sec2?kz??t?,因此:d?dt?0为右旋圆偏振光。 ⑵
一个圆偏振光可以分解为偏振方向互相垂
直、振幅相等、相位差?2的二个线偏振光 ???Ex?E0co?skz???t??Ey??E0sin?kz???
t “+”为右旋圆偏振光
“-”为左旋圆偏振光 6.
(公式:????f???????f????f ) (公式:?a?b??c??c?a?b??c?b?a )
E?E?zi?z0e?e,其中E0?ez H?1i????E?1???zi???eei?z??E0
????i?i??e??zei?zez?E0 ⑴
S_?12Re?E*?H??1???z??2Re???e?i?i??e??zE*0??ez?E0??????2??e?2?zE20ez
z?0处,S_?0???22??eE0ez
⑵
p1?*?E??1L?ReJRe??E222??1
?E2?z20e?2P?L??1E2?2?z02?0edz?E2
?04?由?2????i???????i??2得:
????2??,??_???2?,因此:S?PL
7.
?r?1,??1S?m?1,?0?8.85?10?12F?m?1?70?4??10?H?m?1
⑴f?50Hz
12???????1?2??2??1??????2?2?1?????? ????2??12??2????2??50?4??10?7?1
?71m ⑵f?106Hz
??12??2????2??106?4??10?7?1
?0.50m ⑶f?109Hz
??1??2????22??109?4??10?7?1
?0.016m8.
z?3k②???①??0?0x1?2k1k' 在真空中:k1???0?0??c,
k1?k1xex?k1zez,k1x?ksin?1,k1z?kcos?1 在导电介质中:k??????i???????',
k?β?iα,α?axex??zez,???xex??zez
在分界面处:k1?x?k?x 得:k1sin?1?i?x??x 因此:?x?0,??x?csin?1
k?β?iα?k1sin?1ex???z?i?z?ez
k2?k2221sin?1???z?i?z???2????i???
?k222 ?1sin2?1??z??z??2??? ?2?zz???? 解上方程得
?2z?1?2??????2??22?c2sin?1????
11?2?
22???????2??????2??2sin2???????c21?????2z??1?2??????2??2c2sin2??1????
1
1?22??????2????????22si2???2???c2n?1??????9.
?2E?k2E?0, k????
?2E2x?kEx?0
Ex?x,y,z??X?x?Y?y?Z?z?,代入上式得
YZd2Xd2Yd2Z2dx2?XZdy2?XYdz2?kXYZ?0
d2Xdx2?k2xX?0 d2Ydy2?k2yY?0 d2Zdz?k22zZ?0 k2k2x?y?k2z??2??
Ex???C1coksxx?D1sinkxx??C2coksyy?D2sinkyy??
?C3cokszz?D3sinkzz?依Ex?x,0,z??0,得C2?0 依Ex?x,b,z??0,得sinkyb?0
kn?y?b,n?0,1,2?
依??E?0得,在x?0,a处?Ex?x?0 得D?1?0,kx?ma,m?0,1,2? 依Ex?x,y,0??0,得C3?0 因此
E?x?A1cosmaxsinn?bysinkzz 同样方法
Em?n?y?A2sinaxcosbysinkzz 另
Ez???C4coskxx?D4sinkxx??C5coskyy?D5sinkyy??
?C6coskzz?D6sinkzz?依Ez?0,y,z??0,得C4?0 依Ez?x,0,z??0,得C5?0 依??E?0得,在z?0处
?Ez?z?0,有D6?0Em?z?A3sinaxsinn?bycoskzz k2??2?????m??2?m??2z?a?????b??
依??E?0得:
m?aAn?1?bA2?kzA3?0 10.
??E?i??0H (10.1.1) ??H??i??0E (10.1.2) 由式(10.1)得(见《电》p.342)
?Ez?y??Ey?z?i??0Hx (10.2.1) ?Ex?z??Ez?x?i??0Hy (10.2.2) ?EyEx?x???y?i??0Hz (10.2.3) ?Hz?y??Hy?z??i??0Ex (10.2.4) ?Hx?z??Hz?x??i??0Ey (10.2.5) ?Hy?Hx?x??y??i??0Ez (10.2.6) 依题意分离变量:E?x,y,z??E?x,y?eikzz,因此有
Ex?x,y,z??Ex?x,y?eikzz Ezy?x,y,z??Ey?x,y?eikz Ez?x,y,z??Ez?x,y?eikzz Hx?x,y,z??Hzx?x,y?eikz Hy?x,y,z??Hy?x,y?eikzz Hz?x,y,z??Hz?x,y?eikzz 以上六式代入式(10.2)得
?Ez?y?ikzEy?i??0Hx (10.3.1)
ikzEx??Ez?i??0Hy (10.3.2) ?x?Eyd2Y2?kyY?0 2dy2222??Ex?i??0Hz (10.3.3) ?x?y?Hz?y?ikzHy??i??0Ex (10.3.4) ikzH?Hx?z?x??i??0Ey (10.3.5) ?Hy?Hx?x??y??i??0Ez (10.3.6) 解(10.3.1)、 (10.3.2) 、(10.3.4)和 (10.3.5)得 E1???????Hz?Ez?x?0i????22????y?kz?x??? ?c2?kz?? E1?y?2?????Hz?Ez?0? i?????c2?k2??x?kz?y??z???? H?1???k?Hz?Ezx??z?i????22????x???0?y?? ?c2?kz?? H1?y?2???k?Hz?Ez?z???0?? i????2????y?x??c2?kz??y bazx
TM波,即Hz?0,磁场无纵向分量
?2E?k2E?0, k????
?2Ez?k2Ez?0
Ez?x,y,z??X?x?Y?y?eikzz,代入上式得
d2Xdx2?k2xX?0 kx?ky?kz????
Ez??C3coskxx?D3sink?xx??Ccoskeik
yy?D4sinkyy??zz4依Ez?0,y,z??0,得:C3?0 依Ez?x,0,z??0,得:C4?0
依Em?z?a,y,z??0,得:kx?a,m?0,1,2?依Ex,b,z??0,得:kn?z?y?b,n?0,1,2?
因此:Em?z?E0sinaxsinn?ikzzbye 13.
f?30?109Hz
①a?0.7cm,b?0.4cm
??cf?3?108 30?109?0.01m?1cm 22???m?cmn?????a?????n??b?? 1?22fcmn?2???m??a?????n??b??22
?c?m??n?2??a?????b???ccmn?f?2cmn?m22
???a??n?????b???cc10?f?2cmn?2?1??a?????0?2?b?? ?2a?1.4cm???c01?cf?2cmn??0?22?a??1?????b?? ?2b?0.8cm?? 12.
?cc20?f?2cmn??2?22?a??0?????b?? ?a?0.7cm??因此可传输TE10模 ②a?0.7cm,b?0.6cm
?ccmn?f?2cmn?22
?m??n??a?????b???c2c10?f?cmn?2?1?2?a??0?????b?? ?2a?1.4cm???c01?f?2ccmn?22?0??1?a??????b?? ?2b?1.2cm???c20?f?2ccmn?22?2??0?a??????b?? ?a?0.7cm???c02?cf?2cmn?22?0??2??a?????b?? ?b?0.6cm?? 因此可传输TE10和TE01模 14.
yb xz
?2E?k2E?0, k????
?2Ex?k2Ex?0
Ex?x,y,z??Y?y?eikzz,代入上式得
d2Ydy2??k2?k2z?Y?0 令:k2?k2222z?ky ,即:ky?kz??2??
Y?C1sinkyy?D1coksyy,因此
Ex?x,y,z???C1sinkyy?D1cosk?zyyeikz
依Ex?x,0,z??0得:D1?0 依Ex?x,b,z??0得:kn?y?b,n?0,1,2,3? 因此:En?x?A1sinbyeikzz 同理:Ey?x,y,z???C2sinkyy?D2coskyy?eikzz依??E?0得,在y?0,b处?Ey?y?0,因此
Cn?2?0,ky?b,n?0,1,2,3? 因此:En?y?A2cosbyeikzz 同理:Ez?x,y,z???C3sinkyy?D3coskyy?eikzz 依Ez?x,0,z??0得:D3?0 依Ez?x,b,z??0得:kn?y?b,n?0,1,2,3? 因此:En?ikzzz?A3sinbye 依??E?0得,?n?bA2?ikzA3?0,A1独立 2 依k2k2?n??y?k2z??2??,得z??2?????b??
要能传导模,kz必须为实数。因此截止(角)
2频率?2?n??c满足:?c?????b???0
?1n?c???b 另:14.
Ex???Hz??? ???0??2?y???2???i??kz??c2??1??Ez? ???kz??2?y???2???i??kz??c2??1Ey?A2sinkxxcoskyysinkzz Ez?A3sinkxxsinkyycoskzz kxA1?kyA2?kzA3?0 依??E?i??H得H?1??E
Ey? H1x???Ez???2????0i??y?? ??c2?k2????z?? H1??Hzy?2???k?z i?????c2?k2?z????y??? ? TM波:Hz?0 依En?z?A3sinbyeikzz可知,若n?0,则Ez?0,波导中无电磁波。因此不存在TM0模 TE波:Ez?0
Hz?x,y,z???C4sinkyy?D4coskyy?eikzz
E????0?C4kycoskyy?D4kysinkyy?xeikzzi????22??c2?kz???依Ex?x,0,z??0得:C4?0 依Ex?x,b,z??0得:ky?n?b,n?0,1,2,3? 因此:Hn?z?x,y,z??D4cosbyeikzz,n取0时有电磁场存在
TM波:TM1、TM2、TM3、 TE波:TE0、TE1、TE2、TE3、
截止(角)频率:?1?c?n??b 15.
Ex?A1coskxxsinkyysinkzz
i??H1?x?i?????Ez?Ey???y??z????1i???A3kysinkxxcoksyycokszz? A2kzsinkxxcoksyycokszz??A3ky?A2kzi??sinkxxcoksyycokszzHy?1?i????Ex??z??Ez??x???1i???A1kzcoskxxsinkyycoskzz? A3kxcoskxxsinkyycoskzz?A1kz?A3kxi??coskxxsinkyycoskzzH1?z?i????E?y??x??Ex??y????1i???A2kxcoskxxcoskyysinkzz?A1kycoskxxcoskyysinkzz??A2kx?A1kyi??coskxxcoskyysinkzzwe?12E?x,y,z,t??D?x,y,z,t?
?12?E?x,y,z,t??E?x,y,z,t?we?14Re???E*?x,y,z??E?x,y,z??? We????wedV?132?LL222 1L23?A1?A2?A3? wm?1H?x,y,z,t??B?x,y,z,t?2
1??H?x,y,z,t??H?x,y,z,t?21Re???H*?x,y,z??H?x,y,z??? 4wm?Wm????wmdV2?L1L2L3??A3ky?A2kz??32????2??A1kz?A3kx???A2kx?A1ky?22?
????L1L2L3222222 A?A?Ak?k?k???123xyz?32????2?L1L2L32222A?A?A?????123232????12?L1L2L3?A12?A2?A32?32 因此:We?Wm
正在阅读:
快乐的成长礼作文400字06-24
著作权法目的与利益平衡论07-08
打野鸭的游戏作文600字06-23
我的老师不是伟人作文500字06-28
2014-2015学年江苏省扬州中学高二上学期期中考试数学试卷(带解07-10
维稳、信访工作组领导小组11-14
Hlsmelt熔融还原炼铁工艺03-17
ppm和ppb区别01-27
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 电动力学
- 第四章
- 习题
- 郭硕鸿