Feynman motives of banana graphs
更新时间:2023-05-13 04:45:01 阅读量: 实用文档 文档下载
- feynman推荐度:
- 相关推荐
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
FEYNMANMOTIVESOFBANANAGRAPHS
PAOLOALUFFIANDMATILDEMARCOLLI
arXiv:0807.1690v2 [hep-th] 16 Jul 2008Abstract.Weconsiderthein nitefamilyofFeynmangraphsknownasthe“bananagraphs”andcomputeexplicitlytheclassesofthecorrespondinggraphhypersurfacesintheGrothendieckringofvarietiesaswellastheirChern–Schwartz–MacPhersonclasses,usingtheclassicalCremonatransformationandthedualgraph,andablowupformulaforcharacteristicclasses.Weoutlinetheinterestingsimilaritiesbetweentheseoperationsandwegiveformulaeforconesobtainedbysimpleoperationsongraphs.Weformulateapositivityconjectureforcharacteristicclassesofgraphhypersurfacesanddiscussbrie ythee ectofpassingtononcommutativespacetime.1.IntroductionSincetheextensivestudyof[15]revealedthesystematicappearanceofmultiplezetavaluesastheresultofFeynmandiagramcomputationsinperturbativequantum eldthe-ory,thequestionof ndingadirectrelationbetweenFeynmandiagramsandperiodsofmotiveshasbecomearich eldofinvestigation.TheformulationofFeynmanintegralsthatseemsmostsuitableforanalgebro-geometricapproachistheoneinvolvingSchwingerandFeynmanparameters,asinthatformtheintegralacquiresdirectlyaninterpretationasaperiodofanalgebraicvariety,namelythecomplementofahypersurfaceinaprojectivespaceconstructedoutofthecombinatorialinformationofagraph.Thesegraphhyper-surfacesandthecorrespondingperiodshavebeeninvestigatedinthealgebro-geometricperspectiveintherecentworkofBloch–Esnault–Kreimerandmorerecently,fromthepointofviewofHodgetheory,inand[26].Inparticular,thequestionofwhetheronlymotivesofmixedTatetypewouldariseinthequantum eldtheorycontextisstillunsolved.Despitethegeneralresultofwhichshowsthatthegraphhypersur-facesaregeneralenoughfromthemotivicpointofviewtogeneratetheGrothendieckringofvarieties,theparticularresultsof[15]andpointtothefactthat,eventhoughthevarietiesthemselvesareverygeneral,thepartofthecohomologythatsupportstheperiodofinteresttoquantum eldtheorymightstillbeofthemixedTateform.Onecomplicationinvolvedinthealgebro-geometriccomputationswithgraphhyper-
surfacesisthefactthatthesearetypicallysingular,withasingularlocusofsmallcodi-mension.Itbecomesthenaninterestingquestioninitselftoestimatehowsingularthegraphhypersurfacesare,acrosscertainfamiliesofFeynmangraphs(thehalfopenladdergraphs,thewheelswithspokes,thebananagraphsetc.).Sincethemaingoalistode-scribewhathappensatthemotiviclevel,onewantstohaveinvariantsthatdetecthowsingularthehypersurfaceisandthatarealsosomehowadaptedtoitsdecompositionintheGrothendieckringofmotives.Inthispaperweconcentrateonaparticularexampleandillustratesomegeneralmethodsforcomputingsuchinvariantsbasedonthetheoryofcharacteristicclassesofsingularvarieties.
Partofthepurposeofthepresentpaperistofamiliarizephysicistsworkinginpertur-bativequantum eldtheorywithsometechniquesofalgebraicgeometrythatareusefulintheanalysisofgraphhypersurfaces.Thus,wetryasmushaspossibletospellouteverythingindetailandrecallthenecessarybackground.
1
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
2ALUFFIANDMARCOLLI
In§1,webeginbyrecallingthegeneralformoftheparametricFeynmanintegralsforascalar eldtheoryandtheconstructionoftheassociatedprojectivegraphhypersurface.WerecalltherelationbetweenthegraphhypersurfaceofaplanargraphandthatofthedualgraphviathestandardCremonatransformation.Wethenpresentthespeci cexampleofthein nitefamilyof“bananagraphs”.Weformulateapositivityconjectureforthecharacteristicclassesofgraphhypersurfaces.
Fortheconvenienceofthereader,werecallin§2somegeneralfactsandresults,bothabouttheGrothendieckringofvarietiesandmotives,andaboutthetheoryofcharacteristicclassesofsingularalgebraicvarieties.Weoutlinethesimilaritiesanddi erencesbetweentheseconstructions.
In§3wegivetheexplicitcomputationoftheclassesintheGrothendieckringofthehypersurfacesofthebananagraphs.Weconcludewithageneralremarkontherelationbetweentheclassofthehypersurfaceofaplanargraphandthatofadualgraph.
In§4weobtainanexplicitformulafortheChern–Schwartz–MacPhersonclassesofthehypersurfacesofthebananagraphs.We rstproveageneralpullbackformulafortheseclasses,whichisnecessaryinordertocomputethecontributiontotheCSMclassofthecomplementofthealgebraicsimplexinthegraphhypersurface.Theformulaisthenobtainedbyassemblingthecontributionoftheintersectionwiththealgebraicsimplexandofitscomplementviainclusion–exclusion,asinthecaseoftheclassesintheGrothendieckring.
Wegivethen,in§5,aformulafortheCSMclassesofconesonhypersurfacesandusethemtoobtainformulaeforgraphhypersurfacesobtainedfromknownonebysimpleoperationsonthegraphs,suchasdoublingorsplittinganedge,andattachingsingle-edgeloopsortreestovertices.
Finally,in§6,welookatthedeformationsofordinaryφ4theorytoanoncommutativespacetimegivenbyaMoyalspace.Welookattheribbongraphsthatcorrespondtotheoriginalbananagraphsinthisnoncommutativequantum eldtheory.Weexplaintherelationbetweenthegraphhypersurfacesofthenoncommutativetheoryandoftheoriginalcommutativeone.WeshowbyanexplicitcomputationofCSMclassesthatinnoncommutativeQFTthepositivityconjecturefailsfornon-planarribbongraphs.
Acknowledgment.The rstauthorispartiallysupportedbyNSAgrantH98230-07-1-0024.ThesecondauthorispartiallysupportedbyNSFgrantDMS-0651925.WethanktheMax–Planck–InstituteandFloridaStateUniversity,wherepartofthisworkwasdone.WealsothankAbhijnanRejforexchangesofnumericalcomputationsofCSMclassesofgraphhypersurfaces.
1.1.ParametricFeynmanintegrals.Webrie yrecallsomewellknownfacts(cf.§6-2-3of[23],§18of[9],and§6of[27])abouttheparametricformofFeynmanintegrals.
Givenascalar eldtheorywithLagrangianwritteninEuclideansignatureas
2
wheretheinteractionpartisapolynomialfunctionofφ,aone-particle-irreducible(1PI)FeynmangraphofthetheoryisaconnectedgraphΓwhichcannotbedisconnectedbyremovingasingleedge,andwiththefollowingproperties.AllverticesinV(Γ)havevalenceequaltothedegreeofoneofthemonomialsintheLagrangian.ThesetofedgesE(Γ)=Eint(Γ)∪Eext(Γ)consistsofinternaledgeshavingtwoendverticesandexternaloneshavingonlyonevertex.AFeynmangraphwithoutexternaledgesiscalledavacuumbubble.
Inperturbativequantum eldtheory,theFeynmanintegralsassociatedtotheloopnumberexpansionofthee ectiveactionforascalar eldtheoryarelabeledbythe1PI(1.1)L(φ)=1φ2+Lint(φ),
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES3
Feynmangraphsofthetheory,eachcontributingacorrespondingintegraloftheform(1.2)U(Γ,p)=Γ(n D /2)
ΨΓ(t)D/2VΓ(t,p)n D /2dt1···dtn.
wherethesumisoverallthespanningtreesTofΓ.ThefunctionVΓ(t,p)isarationalfunctionoftheform
PΓ(t,p)(1.4)VΓ(t,p)=Heren=#Eint(Γ)isthenumberofinternaledgesofthegraphΓ,D∈Nisthespacetimedimensioninwhichthescalar eldtheoryisconsidered,and =b1(Γ)isthenumberofloopsinthegraph,i.e.therankofH1(Γ,Z).ThefunctionΨΓisapolynomialofdegree =b1(Γ).ItisgivenbytheKirchho polynomial te,(1.3)ΨΓ(t)=T Γe/∈E(T)
(4π)(n 1)D/2 PΓ(p,t) n+D(n 1)/2ωnσn
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
4ALUFFIANDMARCOLLI
thisassumption.However,forthealgebro-geometricargumentsthatconstitutethemaincontentofthispaper,the1PIconditionisnotstrictlynecessary.
1.2.Feynmangraphs,varieties,andperiods.ThegraphpolynomialΨΓ(t)of(1.3)alsoadmitsadescriptionasdeterminant(1.11)ΨΓ(t)=detMΓ(t)
n i=1ofan × -matrixMΓ(t)associatedtothegraph([27],§3and[9],§18),oftheform(1.12)(MΓ)kr(t)=tiηikηir,
afterchoosinganorientationoftheedges.
NoticehowtheresultisindependentofthechoiceoftheorientationoftheedgesandofthechoiceofthebasisofH1(Γ,Z).Infact,achangeoforientationinagivenedgeresultsinachangeofsigntooneofthecolumnsofthematrixηki,whichiscompensatedbythechangeofsigninthecorrespondingrowofthematrixηir,sothatthedeterminantdetMΓ(t)isuna ected.Similarly,achangeinthechoiceofthebasisofH1(Γ,Z)hasthee ectofchangingMΓ(t)→AMΓ(t)A 1forsomeA∈GL( ,Z)andthedeterminantisagainunchanged.
ThegraphhypersurfaceXΓisbyde nitionthezerolocusoftheKirchho polynomial,(1.14)XΓ={t=(t1:...:tn)∈Pn 1|ΨΓ(t)=0}.
SinceΨΓishomogeneous,itde nesahypersurfaceinprojectivespace.
Thedomainofintegrationσnde nesacycleintherelativehomologyHn 1(Pn 1,Σn),whereΣnisthealgebraicsimplex(theunionofthecoordinatehyperplanes,see(1.16)below).TheFeynmanintegral(1.2),(1.9)thencanbeviewed([11],[10])astheevaluationofanalgebraiccohomologyclassinHn 1(Pn 1 XΓ,Σ Σ∩XΓ)onthecyclede nedbyσn.Inthissense,itcanbeviewedastheevaluationofaperiodofthealgebraicvarietygivenbythecomplementofthegraphhypersurface.Tounderstandthenatureofthisperiod,oneisfacedwithtwomainproblems.Oneiseliminatingdivergences(regularizationandrenormalizationofFeynmanintegrals),andtheotherisunderstandingwhatkindofmotivesareinvolvedinthepartofthehypersurfacecomplementPn 1 XΓthatisinvolvedintheevaluationoftheperiod,hencewhatkindoftranscendentalnumbersoneexpectsto ndintheevaluationofthecorrespondingFeynmanintegrals.Adetailedanalysisoftheseproblemswascarriedoutin[11].Theexamplesweconcentrateoninthispaperarenotespeciallyinterestingfromthemotivicpointofview,sincetheyareexpressibleintermsofpureTatemotives(cf.[10]),buttheyprovideuswithanin nitefamilyofgraphsforwhichallcomputationsarecompletelyexplicit.
1.3.DualgraphsandCremonatransformation.Inthecaseofplanargraphs,thereisaninterestingrelationbetweenthehypersurfaceofthegraphandtheoneofthedualgraph.Thiswillbeespeciallyusefulintheexplicitcalculationweperformbelowinthespecialcaseofthebananagraphs.Werecallithereinthegeneralcaseofarbitraryplanargraphs.wherethen× -matrixηikisde nedintermsoftheedgesei∈E(Γ)andachoiceofabasisforthe rsthomologygroup,lk∈H1(Γ,Z),withk=1,..., =b1(Γ),bysetting +1edgeei∈looplk,sameorientation (1.13)ηik= 1edgeei∈looplk,reverseorientation 0otherwise,
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES5
thoughweseeinLemma1.2belowthatitiswellde nedalsoonthegeneralpointofΣn,itslocusofindeterminaciesbeingonlythesingularitysubschemeofΣn.
LetG(C)denotetheclosureofthegraphofC.ThenG(C)isasubvarietyofPn 1×Pn 1withprojections
(1.17)G(C)????π2 π1 ?? ? CPn 1______Pn 1ThestandardCremonatransformationofPn 1isthemap 1(1.15)C:(t1:···:tn)→.tnThisisaprioride nedawayfromthealgebraicsimplexofcoordinateaxes n 1ti=0} Pn 1,(1.16)Σn={(t1:···:tn)∈P|i
ingcoordinates(s1:···:sn)forthetargetPn 1,thegraphG(C)hasequations
(1.18)t1s1=t2s2=···=tnsn.
Inparticular,thisdescribesG(C)asacompleteintersectionofn 1hypersurfacesinPn 1×Pn 1withequationstisi=tnsn,fori=1,...,n 1.
Proof.Theequations(1.18)clearlycutoutG(C)overtheopensetU Pnwhereallt-coordinatesarenonzero.Sinceeverycomponentofaschemede nedbyn 1equationshascodimension≤n 1,itsu cestoshowthatequations(1.18)de neasetofcodimension>n 1overthecomplementofU.Nowassumethatatleastoneofthet-coordinatesequal0.Withoutlossofgenerality,supposetn=0.Intersectingwiththelocusde nedby(1.18)determinesthesetwithequations
t1s1=···=tn 1sn 1=tn=0,
whichhascodimensionn>n 1,aspromised.
ItisnothardtoseethatthevarietyG(C)hassingularitiesincodimension3.Itisnonsingularforn=2,3,butsingularforn≥4.
TheopensetUasaboveisthecomplementofthedivisorΣnof(1.16).TheinverseimageofΣninG(C)canbedescribedeasily.Itconsistsofthepoints
((t1:···:tn),(s1:···:sn))
suchthat
{i|ti=0}∪{j|sj=0}={1,...,n}.
Thislocusconsistsof2N 2componentsofdimensionn 2:onecomponentforeachnonemptypropersubsetIof{1,...,n}.ThecomponentcorrespondingtoIisthesetofpointswithti=0fori∈Iandsj=0forj∈I.
Thesituationforn=3iswellrepresentedbythefamouspictureofFigure1.Thethreezero-dimensionalstrataofΣ3areblownupinG(C)asweclimbthediagramfromthelowerlefttothetop.Thepropertransformsoftheonedimensionalstrataareblowndownaswedescendtothelowerright.Thehorizontalrationalmapisanisomorphismbetweenthecomplementsofthetriangles.TheinverseimageofΣ3consistsof23 2=6components,asexpected.
Ofcoursethesituationiscompletelysymmetric:thealgebraicsimplex(1.16)maybe 1 1(Σn)=π2(Σn).embeddedinthetargetPnaswell(withequationisi=0).Onehasπ1
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
6ALUFFIAND
MARCOLLI
Figure1.TheCremonatransformationinthecasen=3.
LetSn Pn 1bethesubschemede nedbytheideal
(1.19)ISn=(t1···tn 1,t1···tn 2tn,...,t1t3···tn,t2···tn).
TheschemeSnisthesingularitysubschemeofthedivisorwithsimplenormalcrossingsΣnof(1.16),givenbytheunionofthecoordinatehyperplanes.WecanplaceSninboththesourceandtargetPn 1.Finally,letLbethehyperplanede nedbytheequation(1.20)L={(t1:···:tn)∈Pn 1|t1+···+tn=0}.
Wethencanmakethefollowingobservations.
Lemma1.2.LetC,G(C),Sn,andLbeasabove.
(1)SnisthesubschemeofindeterminaciesoftheCremonatransformationC.
(2)π1:G(C)→Pn 1istheblow-upalongSn.
(3)LintersectseverycomponentofSntransversely.
(4)ΣncutsoutadivisorwithsimplenormalcrossingsonL.
Proof.(1)Noticethatthede nition(1.15)oftheCremonatransformation,whichisaprioride nedonthecomplementofΣnstillmakessenseonthegeneralpointofΣn.Thus,theindeterminaciesofthemap(1.15)arecontainedinthesingularitylocusSnofΣnde nedby(1.19).ItconsistsinfactofallofSnsinceafter‘clearingdenominators’,thecomponentsofthemapde ningCgivenin(1.15)canberewrittenas:
(1.21)(t1:···:tn)→(t2···tn:t1t3···tn:···:t1···tn 1),
sothatoneseesthattheindeterminaciesarepreciselythosede nedbytheideal(1.19).
(2)Using(1.21),themapπ1:G(C)→Pnmaybeidenti edwiththeblow-upofPnalongthesubschemeSnde nedbytheidealISnof(1.19).Thegeneratorsofthisidealare
thepartialderivativesoftheequationofthealgebraicsimplex.Thus,SnisthesingularitysubschemeofΣn.Itconsistsoftheunionoftheclosureofthedimensionn 2strataofΣn.Again,notethatthesituationisentirelysymmetrical:wecanplaceSninthetargetPnaswell,andviewπ2astheblow-upalongSn.
(3)and(4)areimmediatefromthede nitions.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES
7
dual graph
dual graph
Figure2.Dualgraphsofdi erentplanarembeddingsofthesamegraph.
GivenaconnectedplanargraphΓ,onede nesitsdualgraphΓ∨by xinganembeddingofΓinR2∪{∞}=S2andconstructinganewgraphinS2thathasavertexineachcomponentofS2 ΓandoneedgeconnectingtwosuchverticesforeachedgeofΓthatisinthecommonboundaryofthetworegionscontainingthevertices.Thus,#E(Γ∨)=#E(Γ)and#V(Γ∨)=b0(S2 Γ).Thedualgraphisingeneralnon-unique,sinceitdependsonthechoiceoftheembeddingofΓinS2,seee.g.Figure2.Werecallhereawellknownresult(seee.g.[10],Proposition8.3),whichwillbeveryusefulinthefollowing.
Lemma1.3.SupposegivenaplanargraphΓwith#E(Γ)=n,withdualgraphΓ∨.Thenthegraphpolynomialssatisfy 1 1te)ΨΓ∨(t (1.22)ΨΓ(t1,...,tn)=(1,...,tn),
e∈E(Γ)
hencethegraphhypersurfacesarerelatedbytheCremonatransformationCof(1.15),(1.23)C(XΓ∩(Pn 1 Σn))=XΓ∨∩(Pn 1 Σn).
Proof.Thisfollowsfromthecombinatorialidentity ΨΓ(t1,...,tn)=T Γe/∈E(T)te 1=(e∈E(Γ)te)T Γe∈E(T)t e 1=(e∈E(Γ)te)T′ Γ∨e/∈E(T′)te 1 1,...,tn).=(e∈E(Γ)te)ΨΓ∨(t1
Thethirdequalityusesthefactthat#E(Γ)=#E(Γ∨)and#V(Γ∨)=b0(S2 Γ),sothatdegΨΓ+degΨΓ∨=#E(Γ),andthefactthatthereisabijectionbetweencomplementsofspanningtreeTinΓandspanningtreesT′inΓ∨obtainedbyshrinkingtheedgesofTinΓandtakingthedualgraphoftheresultingconnectedgraph.
Writteninthecoordinates(s1:···:sn)ofthetargetPn 1oftheCremonatransfor-mation,theidentity(1.22)gives 1s ΨΓ(t1,...,tn)=(e)ΨΓ∨(s1,...,sn)
e∈E(Γ∨)
fromwhich(1.23)follows.
Wethenhavethefollowingsimplegeometricobservation,whichfollowsdirectlyfromLemma1.2andLemma1.3above.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
8ALUFFIAND
MARCOLLI
Γ3Γ4
Figure3.ExamplesofbananagraphsΓ5
1Corollary1.4.ThegraphhypersurfaceofthedualgraphisXΓ∨=π2(π1(XΓ)),withn 1πi:G(C)→P,fori=1,2,asin(1.17).TheCremonatransformationCrestrictstoa
(biregular)isomorphism
(1.24)C:XΓ Σn→XΓ∨ Σn.
1π2:π1(XΓ Σn)→XΓ∨ Σn.Themapπ2:G(C)→Pn 1of(1.17)restrictstoanisomorphism(1.25)
Noticethattheformula(1.22)canbeusedasasourceofexamplesofcombinatoriallyinequivalentgraphsthathavethesamegraphhypersurface.Infact,thegraphpolynomialΨΓ∨(s1,...,sn)isthesameindependentlyofthechoiceoftheembeddingoftheplanargraphΓintheplane,whilethedualgraphΓ∨dependsonthechoiceoftheembeddingofΓintheplane.Thus,di erentembeddingsthatgiverisetodi erentgraphsΓ∨pro-videexamplesofcombinatoriallyinequivalentgraphswiththesamegraphhypersurface.Thishasdirectconsequences,forexample,onthequestionofliftingtheConnes–KreimerHopfalgebraofgraphs[17]atthelevelofthegraphhypersurfacesortheirclassesintheGrothendieckringofmotives.Anexplicitexampleofcombinatoriallyinequivalentgraphswiththesamegraphhypersurface,obtainedasdualgraphsofdi erentplanarembeddingsofthesamegraph,isgiveninFigure2.
Weseeadirectapplicationofthisgeneralresultforplanargraphsin§3.1below,wherewederivearelationbetweentheclassesintheGrothendieckring.Ingeneral,thisrelationaloneistooweaktogiveexplicitformulae,buttheexampleweconcentrateoninthenextsectionshowsafamilyofgraphsforwhichacompletedescriptionofboththeclassintheGrothendieckringandtheCSMclassfollowsfromthespecialformthattheresultofCorollary1.4takes.
1.4.Anexample:thebananagraphs.Inthispaperweconcentrateonaparticularexample,forwhichwecancarryoutcompleteandexplicitcalculations.Weconsideranin nitefamilyofgraphscalledthe“bananagraphs”.Then-thtermΓninthisfamilyisavacuumbubbleFeynmangraphforascalar eldtheorywithaninteractiontermoftheformLint(φ)=φn.ThegraphΓnhastwoverticesandnparalleledgesbetweenthem,asinFigure3.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES9
AdirectcomputationusingtheMacaulay2program[20]forcharacteristicclassesde-velopedin[4]shows,forthe rstthreeexamplesinthisseriesofgraphsdepictedinFigure3,thefollowinginvariants(see§2forprecisede nitions).
n
t1t2+t2t3+t1t3
t1t3t4+t2t3t4
c(XΓ)
Mil(XΓ)
χ(XΓ)5H3+3H2+3H 4H34t1t2t3t4+t1t2t3t5+5
HereHdenotesthehyperplaneclassandc(XΓ)istheChern–Schwartz–MacPhersonclassofthehypersurfacepushedforwardtotheambientprojectivespace.WealsoshowtheMilnorclass,whichmeasuresthediscrepancybetweentheChern–Schwartz–MacPhersonclassandtheFultonclass,thatis,betweenthecharacteristicclassofthesingularhyper-surfaceXΓ={ΨΓ=0}andtheclassofasmoothdeformation.WealsodisplaythevalueoftheEulercharacteristic,whichonecanreado theCSMclass.ThereadercanpausemomentarilytoconsidertheCSMclassesreportedinthethreeexamplesaboveandnoticethattheysuggestageneralformulaforthisfamilyofgraphs,wherethecoe cientofHkintheCSMclassforthen-thhypersurfaceXΓnisgivenbytheformula nn 1n 1 =ifkiseven k kk 1(1.26) nn 1 +ifkisoddkk
for1<k<n,andn 1fork=1.Thus,forexample,forn≥3theEulercharacteristicχ(XΓn)ofthen-thbananahypersurface tsthepattern
(1.27)χ(XΓn)=n+( 1)n.
ThisisindeedthecorrectformulafortheCSMclassthatwillbeprovedin§4below.Thesamplecasereportedherealreadyexhibitsaninterestingfeature,whichweencounteragaininthegeneralformulaof§4andwhichseemscon rmedbycomputationscarriedoutalgorithmicallyonothersamplegraphsfromdi erentfamiliesofFeynmangraphs,namelytheunexpectedpositivityofthecoe cientsoftheChern–Schwartz–MacPhersonclasses.NoticethatasimilarinstanceofpositivityoftheCSMclassesarisesinanothercaseofvarietieswithastrongcombinatorial avor,namelythecaseoftheSchubertvarietiesconsideredin[7].Atpresentwedonothaveaconceptualexplanationforthispositivityphenomenon,butwecanstatethefollowingtentativeguess,basedonthesparsenumericalandtheoreticalevidencegatheredsofar.
Conjecture1.5.Thecoe cientsofallthepowersHkintheCSMclassofanarbitrarygraphhypersurfaceXΓarenon-negative.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
10ALUFFIANDMARCOLLI
ForthegeneralelementΓninthefamilyofthebananagraphs,thegraphhypersurfaceXΓninPn 1isde nedbythevanishingofthegraphpolynomial
).tn
Thisiseasilyseen,sinceinthiscasespanningtreesconsistofasingleedgeconnectingthetwovertices.Equivalently,onecanseethisintermsofthematrixMΓ(t).
Lemma1.6.Forthen-thbananagraphΓn,thematrixMΓn(t)isoftheform t1+t2 t200···0 t2 t2+t3 t300 0 tt+t t03344 (1.29)MΓn(t)= .00 tt+t0445 ...... ...
0000···tn 1+tn(1.28)ΨΓn=t1···tn(1
Proof.Infact,ifwechooseasabasisofthe rstcohomologyofthegraphΓntheobviousoneconsistingofthe =n 1loopsei∪ ei+1,withi=1,...,n 1,weobtainthatthen×(n 1)-matrixηikisoftheform 10000··· 11000··· .0 1100···ηik= 00 110··· 000 11··· Thus,thematrix(MΓ)rk(t)=itiηriηikhastheform(1.29).Itiseasytocheckthatthisindeedhasdeterminantgivenby(1.28).Infact,from(1.29)oneseesthatthedeterminantsatis es
detMΓn(t)=(tn 1+tn)detMΓn 1(t) t2n 1detMΓn 2(t).
Itthenfollowsbyinductionthatthedeterminantsatis estherecursiverelation
(1.30)detMΓn(t)=tndetMΓn 1(t)+t1···tn 1.
Infact,assumingtheaboveforn 1weobtain
2detMΓn(t)=tndetMΓn 1(t)+t2n 1detMΓn 2(t)+t1···tn 1 tn 1detMΓn 2(t).
ItisthenclearthatdetMΓn(t)=ΨΓn(t),withthelattergivenbytheformula(1.28),
sincethisalsoclearlysatis esthesamerecursion(1.30).
ThedualgraphΓ∨nisjustapolygonwithnverticesandwecanidentifythehypersurfacen 1XΓ∨inPwiththehyperplaneLde nedin(1.20).nWerephraseherethestatementofCorollary1.4inthespecialcaseofthebananagraphs,sinceitwillbeveryusefulinourexplicitcomputationsof§§3and4below.
1Lemma1.7.Then-thbananagraphhypersurfaceisXΓn=π2(π1(L)),withπi:G(C)→n 1P,fori=1,2,asin(1.17).TheCremonatransformationCrestrictstoa(biregular)
isomorphism
(1.31)
(1.32)C:L Σn→XΓn Σn. 1(L Σn)→XΓn Σn.π2:π1Themapπ2:G(C)→Pn 1of(1.17)restrictstoanisomorphism
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES
11
Figure4.Bananagraphswithexternaledges
InordertocomputetheFeynmanintegral(1.9),weviewthebananagraphsΓnnotasvacuumbubbles,butasendowedwithanumberofexternaledges,asinFigure4.Itdoesnotmatterhowmanyexternaledgesweattach.Thiswilldependonwhichscalar eldtheorythegraphbelongsto,buttheresultingintegralisuna ectedbythis,aslongaswehavenonzeroexternalmomenta owingthroughthegraph.
Lemma1.8.TheFeynmanintegral(1.9)forthebananagraphsΓnisoftheform(1.33)U(Γ,p)=Γ((1 D/2)(n 1)+1)C(p)2 1)(n 1) 1
2ωn 1)n,
Proof.Theresultisimmediatefrom(1.9),usingn= +1andthefactthattheonlycut-setforthebananagraphΓnconsistsoftheunionofalltheedges,sothat
PΓ(t,p)=C(p)t1···tn.
Forexample,inthecasewithn=2andD∈2N,D≥4,theintegral(uptoadivergentGammafactorΓ(2 D/2)4π D/2)reducestothecomputationoftheconvergentintegral
((DD/2 2(t(1 t))dt=.(D 3)![0,1]
Ingeneral,apartfrompolesoftheGammafunction,divergencesmayarisefromtheintersectionsofthedomainofintegrationσnwiththegraphhypersurfaceXΓn.
Lemma1.9.TheintersectionofthedomainofintegrationσnwiththegraphhypersurfaceXΓnhappensalongσn∩SninthealgebraicsimplexΣn.
Proof.ThepolynomialΨΓ(t)≥0fort∈Rn+andbytheexplicitform(1.28)ofthepolynomial,onecanseethatzeroswillonlyoccurwhenatleasttwoofthecoordinatesvanish,i.e.alongtheintersectionofσnwiththeschemeofsingularitiesSnofΣn(cf.Lemma3.8below).
OneproceduretodealwiththissourceofdivergencesistoworkonblowupsofPn 1alongthissingularlocus(cf.[11],[10]).In[26]anotherpossiblemethodofregularizationforintegralsoftheform(1.33)whichtakescareofthesingularitiesoftheintegralonσn(thepoleoftheGammafunctionneedstobeaddressedseparately)wasproposed,basedonreplacingtheintegralalongσnwithanintegralthatgoesaroundthesingularitiesalongthe bersofacirclebundle.Ingeneral,thistypeofregularizationproceduresrequiresadetailedknowledgeofthesingularitiesofthehypersurfaceXΓtobecarriedout,andthatisoneofthereasonsforintroducinginvariantsofsingularvarietiesinthestudyofgraphhypersurfaces. withthefunctionoftheexternalmomentagivenbyC(p)=(Pv)2,withvbeingeither oneofthetwoverticesofthegraphΓnandPv=e∈Eext(Γn),t(e)=vpe.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
12ALUFFIANDMARCOLLI
2.CharacteristicclassesandtheGrothendieckring
Inordertounderstandthenatureofthepartofthecohomologyofthegraphhy-persurfacecomplementthatsupportstheperiodcorrespondingtotheFeynmanintegral(ignoringdivergenceissuesmomentarily),onewouldliketodecomposePn 1 XΓintosimplerbuildingblocks.Asin§8of[11],thiscanbedonebylookingattheclass[XΓ]ofthegraphhypersurfaceintheGrothendieckringofmotives.Oneknowsbythegeneralre-sultofBelkale–Brosnam[8]thatthegraphhypersurfacesgeneratetheGrothendieckring,hencetheyarequitearbitrarilycomplexasmotives,butonestillneedstounderstandwhetherthepartofthedecompositionthatisrelevanttothecomputationoftheFeynmanintegralmightinfactbeofaveryspecialtype,e.g.amixedTatemotiveastheevidencesuggests.Thefamilyofgraphsweconsiderhereisverysimpleinthatrespect.Infact,onecanseeveryexplicitlythattheirclassesintheGrothendieckringarecombinationsofTatemotives(cf.theformula(3.13)below).OnecanseethisalsobylookingattheHodgestructure.Forthegraphhypersurfacesofthebananagraphsthisisdescribedin§8of[10].
Herewedescribetwowaysofanalyzingthegraphhypersuracesthroughanadditiveinvariant,oneasaboveusingtheclass[XΓ]intheGrothendieckring,andtheotherusingthepushforwardoftheChern–Schwartz–MacPhersonclassofXΓtotheChowgroup(orhomology)oftheambientprojectivespacePn 1.Whilethe rstdoesnotdependonanambientspace,thelatterissensitivetothespeci cembeddingofXΓintheprojectivespacePn 1,henceitmightconceivablycarryalittlemoreinformationthatisusefulinrelationtothecomputationoftheFeynmanintegralonPn 1 XΓ.Werecallherebelowafewbasicfactsaboutbothconstructions.Thereaderfamiliarwiththesegeneralitiescanskipdirectlytothenextsection.
2.1.TheGrothendieckring.LetVKdenotethecategoryofalgebraicvarietiesovera eldK.TheGrothendieckringK0(VK)istheabeliangroupgeneratedbyisomorphismclasses[X]ofvarieties,withtherelation
(2.1)[X]=[Y]+[X Y],
forY Xclosed.Itismadeintoaringbytheproduct[X×Y]=[X][Y].
Anadditiveinvariantisamapχ:VK→R,withvaluesinacommutativeringR,satisfyingχ(X)=χ(Y)ifX~=Yareisomorphic,χ(X)=χ(Y)+χ(X Y)forY Xclosed,andχ(X×Y)=χ(X)χ(Y).TheEulercharacteristicistheprototypeexampleofsuchaninvariant.AssigninganadditiveinvariantwithvaluesinRisequivalenttoassigningaringhomomorphismχ:K0(VK)→R.
LetMKbethepseudo-abeliancategoryof(Chow)motivesoverK.WewritetheobjectsofMKintheform(X,p,m),withXasmoothprojectivevarietyoverK,p=p2∈End(X)aprojector,andm∈ZaccountingforthetwistbypowersoftheTatemotiveQ(1).LetK0(MK)denotetheGrothendieckringofthecategoryMKofmotives.Theresultsof[19]showthat,forKofcharacteristiczero,thereexistsanadditiveinvariantχ:VK→K0(MK).ThisassignstoasmoothprojectivevarietyXtheclassχ(X)=
[(X,id,0)]∈K0(MK),whileforXageneralvarietyitassignsacomplexW(X)inthecategoryofcomplexesoverMK,whichishomotopyequivalenttoaboundedcomplexwhoseclassinK0(MK)de nesthevalueχ(X).Thisde nesaringhomomorphism(2.2)χ:K0(VK)→K0(MK).
IfLdenotestheclassL=[A1]∈K0(VK)thenitsimageinK0(MK)istheLefschetzmotiveL=Q( 1)=[(Spec(K),id, 1)].SincetheLefschetzmotiveisinvertibleinK0(MK),itsinversebeingtheTatemotiveQ(1),theringhomomorphism(2.2)inducesa
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES13
ringhomomorphism
(2.3)χ:K0(VK)[L 1]→K0(MK).
Thus,inthefollowingwecaneitherregardtheclasses[XΓ]ofthegraphhypersurfacesintheGrothendieckringofvarietiesK0(VK)or,underthehomomorphism(2.2),aselementsintheGrothendieckringofmotivesK0(MK).Wewillnolongermakethisdistinctionexplicitinthefollowing.
2.2.CSMclassesasameasureofsingularities.TheChernclassofanonsingularcompletevarietyVisthe‘totalhomologyChernclass’ofitstangentbundle.Wewritec(V):=c(TV)∩[V] toindicatetheresultofapplyingtheChernclassofthetangentbundleofVtothefundamentalclass[V] ofV.(Weusethenotation[V] ratherthanthemorecommon[V]inordertoavoidanyconfusionwiththeclassofVintheGrothendieckgroup.)
Theclassc(V)residesnaturallyintheChowgroupA V.Forthepurposeofthispaper,thereaderwillmissnothingbyreplacingA Vwithordinaryhomology.
TheChernclassofavarietyVisaclassofevidentgeometricsigni cance:forex-ample,thedegreeofitszero-dimensionalcomponentagreeswiththetopologicalEulercharacteristicofV.ThisfollowsessentiallyfromthePoincar´e-Hopftheorem: c(TV)∩[V] =χ(V).
ItisnaturaltoaskwhetherthereareanalogsoftheChernclassde nedforpossiblysingularvarieties,forwhichatangentbundleisnotnecessarilyavailable.
Somewhatsurprisingly,one ndsthatthereareseveralpossiblede nitions,each‘natu-ral’fordi erentreasons,andallagreeingwitheachotherinthenonsingularcase.IfXisacompleteintersectioninanonsingularvarietyV,itisreasonabletoconsidertheFultonclassc(TV)cvir(X):=
behavesastheclassofa‘virtualtangent
bundle’toX.Itsde nitioncaninfactbeextended(andinmorethanoneway)toarbitraryvarieties,see§4.2.6in[18].
Theclasscvir(X)isinasenseuna ectedbythesingularitiesofX:forahypersurfaceXinanonsingularvarietyV,itisdeterminedbytheclassofXasadivisorinV.
Amuchmorere nedinvariantistheChern-Schwartz-MacPherson(CSM)classofX,whichdependsmorecruciallyonthesingularitiesofX,andwhichwewilluseasameasureofthesingularitiesbycomparisonwithcvir(X).
Thenameoftheclassretainssomeofitshistory.Inthemid-60s,M.-H.Schwartz([29],[30])introducedaclassextendingtosingularvarietiesPoincar´e-Hopf-typeresults,bystudyingtangentframesemanatingradiallyfromthesingularities.IndependentlyofSchwartz’work,GrothendieckandDeligneconjecturedatheoryofcharacteristicclasses ttingatightfunctorialprescription,andintheearly70sR.MacPhersonconstructedaclasssatisfyingthisrequirement([25]).ItwaslaterprovedbyJ.-P.BrasseletandM.-H.Schwartz([14])thattheclassesagree.
InthispaperwedenotetheChern-Schwartz-MacPhersonclassofasingularvarietyXsimplybyc(X)(thenotationcSM(X)isfrequentlyusedintheliterature).c(NXV)
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
14ALUFFIANDMARCOLLI
Thepropertiessatis edbyCSMclassesmaybesummarizedasfollows.Firstofall,c(X)mustagreewithitsnamesakewhenXisacompletenonsingularvariety:thatis,c(X)=c(TX)∩[X] inthiscase.Secondly,associatewitheveryvarietyXanabeliangroupF(X)of‘constructiblefunctions’:elementsofF(X)are niteintegerlinearcombinationsoffunctions1Z(de nedby1Z(p)=1ifp∈Z,1Z(p)=0ifp∈Z),forsubvarietiesZofX.TheassignmentX→F(X)iscovariantlyfunctorial:foreverypropermapY→Zthereisapush-forwardf :F(Y)→F(X),de nedbytakingtopologicalEulercharacteristicof bers.Moreprecisely,forW Yaclosedsubvariety,onede nesf (1W)=χ(W∩f 1(p)),andextendsthisde nitiontoF(Y)bylinearity.
GrothendieckandDeligneconjecturedtheexistenceofauniquenaturaltransformationc fromthefunctorFtothehomologyfunctorsuchthatc (1X)=c(TX)∩[X] ifXisnonsingular.MacPhersonconstructedsuchatransformationin[25].TheCSMclassofXisthende nedtobec(X):=c (1X).Resolutionofsingularitiesincharacteristiczeroimpliesthatthetransformationisunique,andinfactdeterminesc(X)foranyX.
AsanillustrationofthefactthattheCSMclassassemblesinterestinginvariantsofavariety,applythepropertyjustreviewedtotheconstantmapf:X→{pt}.Inthiscase,thenaturalitypropertyreadsf c (1X)=c f (1X),thatis,
f c(X)=c (χ(X)1pt)
(usingthede nitionofpush-forwardofconstructiblefunction).Takingdegrees,thisshowsthat c(X)=χ(X),
preciselyasinthenonsingularcase:thedegreeoftheCSMclassofa(possibly)singularvarietyequalsitstopologicalEulercharacteristic.
Itfollowsthat,ifXisahypersurfacewithoneisolatedsingularity,thenthedegreeoftheclass
Mil(X):=c(X) cvir(X)
equals(uptoasign)theMilnornumberofthesingularity.
Forhypersurfaceswitharbitrarysingularities,asthegraphhypersurfacesweconsiderinthepresentpapertypicallyare,thedegreeoftheCSMclassequalsParusi´nski’sgener-alizationoftheMilnornumber,[28].TheclassMil(X)iscalled‘Milnorclass’,andhasbeenstudiedrathercarefullyforXacompleteintersection,[13].
Forahypersurface,theMilnorclasscarriesessentiallythesameinformationastheSegreclassofthesingularitysubschemeofX(see[5]).Inthissense,itisameasureofthesingularitiesofthehypersurface.Forexample,thelargestdimensionofanonzerotermintheMilnorclassequalsthedimensionofthesingularlocusofX.
Thegraphhypersurfacesinthispaperarehypersurfacesofprojectivespace,henceitisconvenienttoviewtheCSMclassandtheMilnorclassofXasclassesinprojectivespace.Thispushforwardisunderstoodinthetablein§1.4,andwillbeoftenunderstoodintheexplicitcomputationsof§4.
2.3.CSMclassesversusclassesintheGrothendieckring.CSMclassesarede nedin[25]byrelatingthemtoadi erentclass,called‘Chern-Matherclass’,bymeansofalocalinvariantofsingularitiesknownasthe‘localEulerobstruction’.Asnotedabove,oncetheexistenceoftheclasseshasbeenestablished,thentheircomputationmaybeperformedbysystematicuseofresolutionofsingularitiesandcomputationsofEulercharacteristicsof bers.
Thefollowingdirectconstructionstreamlinessuchcomputations,byavoidinganycom-putationoflocalinvariantsorofEulercharacteristics.Thisisobservedin[1]and[2],whereitisusedtoprovideanalternativeproofoftheGrothendieck-Deligneconjecture,andas
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES15
HerethebundleTWi( logEi)isthedualofthebundle 1Wi(logEi)ofdi erentialformsonWiwithlogarithmicpolesalongEi.Eachterm
(2.4)νi c(TWi( logEi))∩[Wi] thebasisofageneralizationofthefunctorialityofCSMclassestopossiblynon-propermorphisms.GivenavarietyX,letZibea nitecollectionoflocallyclosed,nonsingularsubvarietiessuchthatX= iZi.Foreachi,letνi:Wi→Zi ZipullsbacktoadivisorwithnormalcrossingsEionWi.Then νi c(TWi( logEi))∩[Wi] .c(X)=i
computesthecontributionc(1Zi)totheCSMclassofXduetothe(possibly)non-compact
subvarietyZi.
Wewillusethisformulationintermsofdualsofsheavesofformswithlogarithmicpolestoobtaintheresultsof§4below.
Byabuseofnotation,wedenotebyc(Z)∈A Vtheclasssode ned,foranylocallyclosedsubsetZofalargeambientvarietyV.Withthisnotioninhand,notethatifY Xare(closed)subvarietiesofV,then
c(X)=c(Y)+c(X Y),
wherepush-forwardsare,asusual,understood.Thisrelationisveryreminiscentofthebasicrelation(2.1)thatholdsintheGrothendieckgroupofvarieties(see§2.1).Atthesametime,CSMclassessatisfya‘productformula’analogoustothede nitionofproductintheGrothendieckring([24],[1]).
Moreover,CSMclassessatisfyan‘embeddedinclusion-exclusion’ly,ifX1andX2aresubvarietiesofavarietyV,then
c(X1∪X2)=c(X1)+c(X2) c(X1∩X2).
Thisisclearbothfromtheconstructionpresentedaboveandfromthebasicfunctorialityproperty.
Inshort,thereisanintriguingparallelbetweenoperationsintheGrothendieckgroupofvarietiesandmanipulationsofCSMclasses.Thisparallelcannotbetakentoofar,sincethe‘embedded’Chern-Schwartz-MacPhersontreatedhereisnotaninvariantofisomorphismclasses.
Example2.1.LetZ1andZ2be,respectively,alinearlyembeddedP1andanonsingularconicinP2.DenotingbyHthehyperplaneclassinP2,we nd
c(Z1)=(H+2H2)·[P2] andc(Z2)=(2H+2H2)·[P2]
whileofcourse[Z1]=[Z2]asclassesintheGrothendieckgroup.
Thus,inparticular,theCSMclassc(X)doesnotde neanadditiveinvariantinthesenseof§2.1anddoesnotfactorthroughtheGrothendieckgroup,astheexampleaboveshows.
IncertainsituationsitishoweverpossibletoestablishasharpcorrespondencebetweenCSMclassesandclassesintheGrothendieckgroup.Forthenextresult,weadopttheratherunorthodoxnotationH rfortheclass[Pr] ofalinearsubspaceofagivenprojectivespace.Thus,1standsfortheclassofapoint,[P0] ,andthenegativeexponentsareconsistentwiththefactthatifHdenotesthehyperplaneclassthenHr·[Pr] =[P0] .
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
16ALUFFIANDMARCOLLI
whereT=[Gm]istheclassofthemultiplicativegroup,see§
3.ThentheclassofXintheGrothendieckgroupofvarietiesequals [X]=aiTi,Proposition2.2.LetXbeasubsetofprojectivespaceobtainedbyunions,intersections,di erencesoflinearlyembeddedsubspaces.Withnotationasabove,assume c(X)=aiH i.
Thus,adoptingavariableT=H 1intheCSMenvironment,andT=TintheGrothendieckgroupenvironment,theclassescorrespondingtosubsetsasspeci edinthestatementwouldmatchprecisely.
Proof.TheformulaholdsforalinearlyembeddedX=Pr,since
c(P)=((1+H)rr+1 Hr+1)·[P] =((1+H)rr+1 Hr+1)·H r=(1+H 1)r+1 1
.T
SinceembeddedCSMclassesandclassesintheGrothendieckgroupbothsatisfyinclusion-exclusion,thisrelationextendtoallsetsobtainedbyordinaryset-theoreticoperationsperformedonlinearlyembeddedsubspaces,andthestatementfollows.
Proposition2.2applies,forexample,tothecaseofhyperplanearrangementsinPN:forahyperplanearrangement,theinformationcarriedbytheclassintheGrothendieckgroupofvarietiesispreciselythesameastheinformationcarriedbytheembeddedCSMclass.Theseclassesre ectinasubtlewaythecombinatoricsofthearrangement.
Inamoregeneralsetting,itisstillpossibletoenhancetheinformationcarriedbytheCSMclassinsuchawayastoestablishatightconnectionbetweenthetwoenvironments.Forexample,CSMclassescanbetreatedwithinaframeworkwithstrongsimilaritieswithmotivicintegration,[3].
Inanycase,oneshouldexpectthat,inmanyexamples,theworkneededtocomputeaCSMclassshouldalsoleadtoacomputationofaclassintheGrothendieckgroup.Thecomputationsin§3and§4inthispaperwillcon rmthisexpectationforthehypersurfacescorrespondingtobananagraphs.
3.Bananagraphsandtheirmotives
Inthissectionwegiveanexplicitformulafortheclasses[XΓn]ofthebananagraph
hypersurfacesXΓnintheGrothendieckring.Theprocedureweadopttocarryoutthe
computationisthefollowing.WeusetheCremonatransformationof(1.17).ConsiderthealgebraicsimplexΣnplacedinthePn 1ontheright-hand-sideofthediagram(1.17).ThecomplementofthisΣninthegraphhypersurfaceXΓnisisomorphictothecomplementof
thesameunionΣninthecorrespondinghyperplaneLinthePn 1ontheleft-hand-sideof(1.17),byLemma1.7above.Sothisprovidestheeasypartofthecomputation,andonethenhastogiveexplicitlytheclassesoftheintersectionsofthetwohypersurfaceswiththeunionofthecoordinatehyperplanes.The nalformulafortheclass[XΓn]hasa
simpleexpressionintermsoftheclassesoftoriTk,withT:=[A1] [A0]theclassofthemultiplicativegroupGm.ThenTn 1istheclassofthecomplementofΣninsidePn 1.
Inthefollowingwelet1denotetheclassofapoint[A0].WeusethestandardnotationLfortheclass[A1]ofthea neline(theLefschetzmotive).Wealsodenote,asabove,byΣntheunionofcoordinatehyperplanesinPn 1andbySnitssingularitylocus.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES17
ThisexpressioncanbethoughtofastakingplaceinalocalizationoftheGrothendieckring,butinfactthisisnotreallynecessaryifwetakethesefractionsasjustshorthandfortheirunambiguousexpansions.
Weintroducethefollowingnotation.SupposegivenaclassCintheGrothendieckringwhichcanbewrittenintheform
(3.2)
(3.3)C=a0[P0]+a1[P1]+a2[P2]+···f(P)=a0+a1P+a2P2+···Tosuchaclassweassignapolynomial
Remark3.1.NoticethattheformalvariablePdoesnotde neanelementintheGrothendieckring,sinceoneseeseasilythatPiPj=Pi+j.Infact,thevariablesPisatisfyadi erentmultiplicationrule,whichwedenoteby andwhichisgivenby(3.4)Pi Pj=Pi+j+Pi+j 1+···+Pj Pi 1 ··· 1
andwhichrecoversinthiswaytheclass[Pi×Pj].ThisfollowsfromLemma3.2,by
converting
each
of
the
twofactorsintothecorrespondingexpressionsinT,multiplyingtheseasclassesintheGrothendieckring,andthenconvertingtheresultbackintermsofthevariablesPi.
Lemma3.2.LetCbeaclassintheGrothendieckringthatcanbewrittenintermsofclassesofprojectivespacesintheform(3.2).OnecanconvertitintoafunctionoftheclassToftheform
(3.5)C=(1+T)f(1+T) f(1)FirstnoticethefollowingsimpleidentityintheGrothendieckring.r 1 Lr+1rrL=(3.1)[P]=.Ti=0
P
andthenreplacingPbytheclass[P]intheexpansionof(3.6)asapolynomialintheformalvariableP.rr
Proof.Theresultisobtainedbysolvingforfin(3.5),whichyieldstheformula(3.6).
Nextwede neanoperationonclassesoftheformC=g(T),whichonecanthinkofas“takingahyperplanesection”.Noticethatliterallytakingahyperplanesectionisnotawellde nedoperationattheleveloftheGrothendieckring,butitdoesmakesenseonclassesthatareconstructedfromlinearlyembeddedsubspacesofaprojectivespace,asisthecaseweareconsidering.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
18ALUFFIANDMARCOLLI
Lemma3.4.Thetransformation
(3.7)H:g(T)→g(T) g( 1)
T,wehave
g(T) g( 1)T 1 1
T=[Pr],
or0ifr=0,sothattheoperation(3.7)indeedcorrespondstotakingahyperplanesection.Theoperationislinearing,viewedasalinearcombinationofclassesofprojectivespaces,soitworksforarbitraryg.
Wethenhavethefollowingpreliminaryresult.
Lemma3.5.TheclassofΣr+1 PrintheGrothendieckringisoftheform
+1
(3.8)[Σ 1 Tr+1
r+1]=(1+T)r
1
T Tr +Tr 2 Tr 3+···±1.
Proof.TheclassofthecomplementofΣr+1inPristhetorusclassTr.Infact,thecomplementofΣr+1consistsofall(r+1)-tuples(1: :···: ),whereeach isanonzeroelementoftheground eld.ItthenfollowsdirectlythattheclassofΣr+1hastheform(3.8),usingtheexpression(3.1)fortheclass[Pr].OnethenappliesthetransformationHof(3.7)toobtain
[L∩Σ (1+T)r+1 1 Tr+1
r+1]= 1
1 /(T+1)=(1+T)r
T+1
fromwhich(3.9)follows. De nition3.6.ThetraceΣ′r 1ofthealgebraicsimplexΣr+1
Σr+1 P Pristhein-
tersectionofr+1withageneralhyperplane.Itisaunionofr+1hyperplanesinPr 1meetingwithnormalcrossings.
Forinstance,Σ′4consistsofthetransversalunionoffourlinesasinFigure5andby(3.9)itsclassis
[Σ′(1+T)3 1
4]=
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES
19
23Figure5.ThetraceΣ′4 PofthealgebraicsimplexΣ4 P
Proof.WeknowbyLemma1.7that
X
Γn Σn~=L ΣnviatheCremonatransformation,withL=Pn 2thehyperplane(1.20).ThishyperplaneintersectsΣntransversely,sothat(3.9)appliesandgives
[L Σn]=[L] [L∩Σn]=Tn 1 ( 1)n 1
T
Thisgivestheformula(3.11).
Wethenhavethefollowingresult..
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
20ALUFFIANDMARCOLLI
Theorem3.10.TheclassintheGrothendieckringofthegraphhypersurfaceXΓnofthebananagraphΓnisgivenby
(3.12)[XΓn]=(1+T)n 1T+1 nTn 2.
Proof.Wewritetheclass[XΓn]intheform
[XΓn]=[XΓn Σn]+[Sn].
UsingtheresultsofLemma3.9andProposition3.7wewritethisas
=Tn 1 ( 1)n 1
T,
fromwhich(3.12)follows.
Theformula(3.12)expressestheclass[XΓn]as
n 2,[XΓn]=[Σ′n] nT
i.e.astheclassoftheunionΣ′nofnhyperplanesmeetingwithnormalcrossings(asinDe nition3.6),correctedbyntimestheclassofann 2-dimensionaltorus.
Example3.11.Inthecasen=3ofFigure3,(3.12)showsthattheclassofthehyper-surfaceXΓ3 P2isequaltotheclassoftheunionoffourtransversallines,minusthree
timesa1-dimensionaltorus,i.e.thatwehave
[XΓ3]=4T+2 3T=T+2=[P1].
Thiscanalsobeseendirectlyfromthefactthattheequation
ΨΓ3=t1t2+t2t3+t1t3=0
de nesanonsingularconicintheplane.
Example3.12.Inthecasen=4ofFigure3,thehypersurfaceXΓ4isacubicsurfacein
P3withfoursingularpoints.TheclassintheGrothendieckringis
[XΓ4]=T2+5T+5.
IntermsoftheLefschetzmotiveL,theformula(3.12)readsequivalentlyas
(3.13)L
InthecontextofparametricFeynmanintegrals,itisthecomplementofthegraphhypersurfaceinPn 1thatsupportstheperiodcomputedbytheFeynmanintegral.Thus,ingeneral,oneisinterestedintheexplicitexpressionforthemotiveofthecomplement.Itsohappensthatintheparticularcaseofthebananagraphstheexpressionfortheclassofthehypersurfacecomplementisinfactsimplerthanthatofthehypersurfaceitself.Corollary3.13.TheclassofthehypersurfacecomplementPn 1 XΓnisgivenby
(3.14)[Pn 1 XΓn]=Tn ( 1)n[XΓn]=Ln 1 n(L 1)n 2.
We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES21
Proof.TheEulercharacteristicisanadditiveinvariant,henceitdeterminesaringho-momorphismfromtheGrothendieckringofvarietiestotheintegers.Moreover,torihavezeroEulercharacteristic,sothatχ(Tr)=0forallr≥1.Thentheformula(3.14)fortheclassofthehypersurfacecomplementshowsthat
χ(Pn 1 XΓ 1
n)=χ(Tn)+(n 1)χ(Tn 2)+χ(Tn 3) ···±1=( 1)n 1.
Sinceχ(Pn 1)=nweobtain
χ(XΓ1
n)=χ(Pn ) χ(Pn 1 XΓn)=n+( 1)n
asin(1.27).
In§4below,wederivethesameEulercharacteristicformulainadi erentway,fromthecalculationoftheCSMclassofXΓn.
Remark3.15.Noticethat,ifweexpandin(3.12)the rsttermintheform[Pn 1]=Tn 1+nTn 2+...,weseethatthedominanttermin[XΓ2n]isTn .Thisisnotsurprising,
sinceforthebananagraphsthehypersurfacesXΓnarerational.
Remark3.16.ThepreviousremarkexplainstheappearanceofatermnTn 2intheexpression(3.14).Theremainingtermsareanalternatingsumoftori.Thistermcanbeviewedas
(3.15)Tn ( 1)n
T+1,
forg(T)=Tn.AccordingtoLemma3.4,thisistheclassofthehyperplanesectionofthecomplementofthealgebraicsimplexΣn+1inPn.However,howgeometricallyonecanassociateaPntoagraphhypersurfaceXΓn Pn 1isunclear,sothatasatisfactory
conceptualexplanationoftheoccurrenceof(3.15)in(3.14)isstillmissing.
Forcompletenesswealsogivetheexplicitformulaoftheclass(3.14)writtenintermsofclasses[Pr].
Corollary3.17.Intermsofclassesofprojectivespacestheclass[Pn 1 XΓn]isgiven
by
n 1
(3.16)[Pn 1 XΓ
k=0 n+1+2 nn 1 kPk
n]=( 1)[]+n 2
k=0 n 1k+1 ( 1)n 2 k
k[Pk].
Proof.Theformula(3.16)isobtainedeasilyusingthetransformationrulesofLemma3.3togofromexpressionsinTtoexpressionsin[Pr],sothat
(Tn ( 1)n)/(T+1)→ (P 1)(P 1)n ( 1)n
- 1unit 7 how do you make a banana milk shake基础知识分类整理及考点典型例句精讲精析
- 2八年级英语上册-Unit8-How-do-you-make-a-banana-milk-shake-B2练习题
- 32014年秋八年级英语上册 Unit 8 How do you make a banana milk shake?单元综合评价检测
- 4八年级英语上册 Unit 8 How do you make a banana milk shake Section B 3a-self check2导学案
- 5最新人教版初中英语八年级上册Unit 8 How do you make a banana milk shake公开课教学设计
- 6(押题密卷)新八年级英语上册 Unit 8 How do you make a banana milk shake P3学案(无答案)(新版)人教
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Feynman
- motives
- banana
- graphs
- 赛盛技术培训案例精选之摄像头传导发射案例
- A characterization of Dirac morphisms
- 新人教版八年级数学下册知识点归纳总结
- 2012高考作文分析
- 实验报告:混沌同步控制与图像加密
- 90-1B磁力搅拌器和磁力搅拌器价格
- 荆各庄矿电气焊工安全技术措施
- 种子贮藏与加工复习资料
- 【2018最新】201X鸡年公司元旦晚会主持稿-word范文 (2页)
- 高一历史必修二第四课农耕时代的手工业
- 黄冈八模理综(三)答题卷
- ch01 Web开发技术概述
- 老年男性原发性高血压患者体内维生_省略_D与骨代谢指标的水平及相关性分析_马燕
- 2010全球500强中文名单及中国上榜企业名单
- 浅谈宝宝一岁到一岁半发育养育指标
- 急性腰扭伤&183;幻灯片(稿)
- 2016年上海市地方志网络知识竞赛试题库
- 浅谈礼仪在人们日常生活中的重要性
- ER2100n企业级高性能无线路由器
- 2015高等代数习题库