Joint Temporal Density Measurements for Two-Photon State Characterization

更新时间:2023-07-17 21:45:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o

JointTemporalDensityMeasurementsforTwo-PhotonStateCharacterization

OnurKuzucu,1FrancoN.C.Wong,1SunaoKurimura,2andSergeyTovstonog2

1

ResearchLaboratoryofElectronics,MassachusettsInstituteofTechnology,Cambridge,Massachusetts02139,USA

2

NationalInstituteforMaterialsScience,1-1Namiki,Tsukuba-shi,Ibaraki305-0044,Japan

(Dated:July10,2008)

Wedemonstrateanewtechniqueforcharacterizingtwo-photonquantumstatesbasedonjointtemporalcorrelationmeasurementsusingtime-resolvedsingle-photondetectionbyfemtosecondup-conversion.Wemeasureforthe rsttimethejointtemporaldensityofatwo-photonentangledstate,showingclearlythetimeanti-correlationofthecoincident-frequencyentangledphotonpairgeneratedbyultrafastspontaneousparametricdown-conversionunderextendedphase-matchingconditions.Thenewtechniqueenablesustomanipulatethefrequencyentanglementbyvaryingthedown-conversionpumpbandwidthtoproduceanearlyunentangledtwo-photonstatethatisexpectedtoyieldaheraldedsingle-photonstatewithapurityof0.88.Thetime-domaincorrela-tiontechniquecomplementsexistingfrequency-domainmeasurementmethodsforamorecompletecharacterizationofphotonicentanglementinquantuminformationprocessing.

PACSnumbers:42.50.Dv,42.79.Nv,42.50.Ar,42.65.Lm

arXiv:0807.1573v1 [quant-ph] 10 Jul 2008

Spontaneousparametricdown-conversion(SPDC)isapowerfulmethodforgeneratingtwo-photonstatesforquantuminformationprocessing(QIP).Thejointquan-tumstatecanbeengineeredforspeci cQIPapplicationsbytailoringitspolarization,momentum,andspectralde-greesoffreedom.Ultrafast-pumpedSPDCisofgreatinterestbecauseawellde nedtimeofemissionisdesir-ableinclockedapplicationssuchaslinearopticsquan-tumcomputing(LOQC)[1].InultrafastSPDC,spectralengineeringofthetwo-photonstatecanbeaccomplishedbymanipulatingthecrystalphase-matchingfunctionandthepumpspectralamplitudetoyielduniqueformsoftwo-photonfrequencyentanglement.Forexample,coincident-frequencyentanglementwithstrongpositivecorrelationbetweensignalandidleremissionfrequenciescanbeusedtoimprovetime-of- ightmeasurementsbe-yondthestandardquantumlimit5].Ontheotherhand,onecanutilizeatwo-photonstatewithnegligiblespectralcorrelationstoimplementaheraldedsourceofpure-statesinglephotons,whichcanbeavaluablere-sourceforLOQC[6,7].

Characterizingthespectralcorrelationsofatwo-photonstatecanbedonebymeasuringthejointspectraldensity(JSD)pro lewithtunablenarrowband lteringofthesignalandidler[6,7,8].Hong-Ou-Mandelquan-tuminterference[9]isalsousefulforquantifyingthetwo-photoncoherencebandwidthandtheindistinguishabil-ityofthephotonpair.However,thetwomeasurementsdonotgivethewholepictureofthetwo-photonstate.Bothmeasurementsareinsensitivetothespectralphaseandthereforecannotcapturethetime-domaindynamicsunlessthejointstateisknowntobetransformlimited.Moreover,JSDmeasurementsinwavelengthregionswithlowdetectore ciencyorhighdetectornoisecanbechal-lengingduetolongacquisitiontimesandlowsignal-to-noiseratios.Frequency-domaintechniquesforestimat-ingthespectralphaseexist,buttheyarenotsimpleto

implementinpracticeInultrafastopticsultrashortpulsesareroutinelyana-lyzedspectrallyandtemporally,buttime-domaincharac-terizationtoolsarenoteasytoimplementforsinglepho-tons.Recentlywehaveintroducedatime-resolvedsingle-photonmeasurementtechniquebyuseoffemtosecondupconversion[11].InthisLetterweutilizethissingle-photontime-domaincharacterizationmethodtomeasureforthe rsttimethejointtemporaldensity(JTD)pro- leofatwo-photonquantumstate.Inparticular,wemeasureddirectlythetimecorrelationsofsignal-idlerar-rivaltimesofultrafastpumpedSPDCunderextendedphasematchingconditionsshowingclearlythatthecoincident-frequencyentangledphotonsweretimeanti-correlated.Furthermore,byvaryingtheSPDCpumpspectrum,wewereabletomanipulatethetemporalcor-relationsofthesignalandidler,andobtainanearlyun-entangled(temporally)two-photonstate.Thisnewtech-niquecanbeusedinconjunctionwithfrequency-domainmethodstoprovideamorecompletecharacterizationofsingleandentangledphotons.

Toproperlyde neJTD,we rstexpressthetwo-photonstateintime-domainvariables|Ψ =

dτSdτIA(τS,τI)|τS |τI ,wherethesingle-photonFockstateisde nedas|τj ≡a (τj)|0 ,forj=S,I.Thetem-poralcorrelationsofthesignalandidleraredeterminedbythejointtemporalamplitude,A(τS,τI),andwede-2

netheassociatedprobabilitydensity,(|A(τS,τI)|),asthejointtemporaldensity.Analogoustothefrequency-domainmethods,theJTDcanbemeasuredbyusingnarrowbandtemporal lteringandcoincidencedetection.FortypicalultrafastSPDCexperiments,timingreso-lutionof~100fsisneededformeasuringarrivaltimesofsinglephotons.Currentsingle-photondetectorswithtensofpicosecondstimingresolutionarenotsuitableforthispurpose.Forthetwo-photonJTDmeasurement,weappliedourrecentlydevelopedtime-resolvedsingle-

We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o

FIG.1:(Coloronline)(a)Synchronizedupconversionanddownconversionexperimentdrivenbythesameultrafastpump.(b)Noncollinearphase-matchinggeometryforsingle-photonupconversion.IF:interference lter;DM:dichroicmirror;FPBS: berpolarizingbeamsplitter.

photon

upconversiontechniquewithatemporalresolu-tionof~150fs[11].Anultrafastupconvertingpumppulsewasusedtotime-stampthesignalandidlerar-rivaltimes,andwemappedtheirrelativearrivaltimesbyvaryingtheinputdelaylinesindependentlyandrecordingthecoincidencesbetweenthetwoupconversionchannels.Thecoincidencestatisticsyieldedthetemporalstructureofthetwo-photonstate.

Ourexperimentalsetupforultrafasttype-IIphase-matchedSPDCandsubsequentJTDmeasurementwithtime-resolvedupconversionisshowninFig.1(a).BothSPDCandupconversionwerepumpedsynchronouslywiththesameultrafastsourceat790nmwitha6-nmbandwidthand80MHzrepetitionrate,therebyelimi-natingthepumptimingjitterfortheJTDmeasurement.WeoperatedthePPKTPSPDCcrystalunderextendedphase-matchingconditionstogenerateacoincident-frequencyentangledtwo-photonstate[3,4].ByFourierduality,thispositivefrequencycorrelationcorrespondedtoanti-correlationinthetimedomainwherethesignalandidlerphotonswith~350-fssingle-photoncoherencetimesweresymmetricallylocatedaboutthecenterofa~1.4-pstwo-photoncoherencetimewindow,asmeasuredbyHOMinterference[4].Thesignalandidlerphotonswerecoupledintoapolarization-maintainingsingle-mode berandseparatedata berpolarizingbeamsplitter.Thesignalandidlerdelaylineswereindividuallyad-justedsothattheyarriveattheupconversioncrystalinthesametimeslotasthepumppulse.Finetuningoftherelativetimingcanbeachievedwithtranslationstages.WeusedthesamesetupasinRef.[11]fortime-resolvedsingle-photonupconversion,brie ydescribedhere.AssketchedinFig.1(b),a1-mmlongperiodicallypoledMgO-dopedstoichiometriclithiumtantalate(PP-MgSLT)crystalwitha8.5µmgratingperiodwasusedfornoncollineartype-0phase-matchedsum-frequencygen-eration(1580nm+790nm→526.7nm).Weusedthenoncollineargeometrytoimplementtwoindependentup-

2

converterswithasinglecrystal.Thesingle-photonbeamswerealignedparalleltothepumpbeamwith~3mmlat-eraland~1.5mmverticalseparationfromthepumpaxis,andtheywerefocusedintothePPMgSLTcrystal.Thenon-planarfocusingcon gurationallowedustoavoidthesimultaneousdetectionofthenon-phase-matchedpara-metricphotonpairsthatwerebothgeneratedandupcon-vertedbythepumpatthePPMgSLTcrystal.Therefore,evenwitha nitebackgroundforsingles,thecoincidencepro leshowsnegligibleaccidentals[11].Theupconvertedoutputswere lteredbydichroicmirrorsand10-nmpass-bandinterference lters,coupledintosingle-mode bersanddetectedwith ber-coupledSiAPDs.Werecordedthesinglescountsandalsothecoincidencecountsbe-tweenthetwoSiAPDswithina1.8nscoincidencewin-dow.

s

tnuoC dezialmroN-2000-1000010002000

Pump Delay [fs]

s

tnuoC dezialmroN-2000-1000010002000

Pump Delay [fs]

FIG.2:(Coloronline)Normalizedsingles(a)andcoincidence

(b)histogramsbytime-resolvedupconversion.Thepumppulsewasscannedthroughcollocatedsignalandidlerarrivalwindows.SolidlinesareGaussian tstothedata.

Wemeasuredthesinglesandcoincidencesbyscan-ningtheupconversionpumppulsedelayrelativetothesignalandidlerarrivalwindows,andeachdatapointwasaveragedfor60seconds.ThenormalizedhistogramsareplottedinFig.2withoutanybackgroundsubtrac-tion.Fortheoptimalpumppowerratio(~360mWfordownconversion,~580mWforupconversion)themaxi-mumsingles(coincidence)rateatthecenterofthedistri-butionwas~5300/s(~17/s),includingthebackground.Thebackgroundlevelinsinglescountswere~1900/sfortheoptimalpumppower-ratio,correspondingtoaback-groundprobabilityperpulseof~2.4×10 5.Thetem-poralwidthforsinglesdistributionwas~1.3ps,consis-tentwiththetwo-photoncoherencetimeof~1.4ps[4].Duetothetimeanti-correlatedgenerationofsignalandidler,thecoincidencepro leexhibiteda~165fsFWHMwidth,whichissigni cantlynarrowerthanthesingles

We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o

histograms.Astheupconversionpulsewasscannedthroughthearrivalwindowsofbothphotons,theonlyin-stancewherethetwoupconverterscouldsimultaneouslydetectphotonswasaroundthetimeorigin.Foranup-conversionpumppowerof580mW,the

internalconver-sione ciencywasestimatedtobe25%[11].However,theupconversionprobabilityperpumppulsewasactu-allylowerbecausethepumppulsewasmuchshorterthanthee ectivepulsewidthofthesignalandidler.Inordertomanipulatethejointtemporalamplitudewithouta ectingtheupconversiontimingperformance,wemodi edonlytheSPDCpumpbandwidthbyin-sertinga lterfromasetofinterference lters(3-dBbandwidths:3.6nm,2.1nm,and1.1nm)beforethePP-KTPcrystal.Themeasurednormalizedcoincidencehis-togramsfordi erentSPDCpumpbandwidthsareplot-tedinFig.3.AstheSPDCpumpbandwidthwasre-duced,thesingle-photoncoherencetimeincreasedandconsequentlythecoincidencepeaksbecamewider.Inthesame gure,wealsoshowthetheoreticalpredictionsforthecoincidencehistogramsthatwecalculatebasedonthejointtemporalamplitudewitha nite-durationupconversionpumppulse.Theparametersforthecalcu-lationaretheupconversionanddownconversionpumpbandwidthsandthetwo-photoncoherencebandwidththatwemeasuredwiththeHOMinterference[4].Weassumea atspectralphasepro leinourjointtempo-ralamplitudecalculationleadingtopredictedtemporalcoincidencepro lesthatsuggesttransform-limitedtwo-photonstates.ThegoodagreementinFig.3betweendataandtheoryindicatesthattheSPDCoutputpho-tonpairswereindeedclosetothetransformlimit.Thisobservationisonlypossiblewithtime-domainmeasure-mentsbecausefrequency-domainmethodswouldbein-sensitivetodispersivebroadeningofthephotons.

s

tnuoC dezilamroN-2000-1000010002000

Pump Delay [fs]

FIG.3:(Coloronline)NormalizedcoincidencehistogramsforvariousSPDCpump3-dBbandwidths:(6-,3.6-,2.2-,and1.1-nm).Theoreticalcoincidencepro lesareplottedasdashedlines.

3

Thetime-resolvedupconversionmethodenabledustomeasurethejointtemporaldensitybyvaryingthesig-nalandidlerrelativedelaysindependently.Wesettheupconversionpumpbandwidthto~6nm,andwemadetheJTDmeasurementsusingoneofthefourSPDCpumpbandwidths.Thecoincidencecountswererecordedoveratwo-dimensionaltimegridwith60-saveragingforeachdatapoint.ForallSPDCpumpbandwidthsex-cept1.1nm,thegridsizeforthetimedelayswassetto2ps×2ps(witha133fsstepsize).Weincreasedthegridsizeto4ps×4ps(266fsstepsize)forthe1.1nmpumpbandwidth.ThenormalizedcoincidencedataforallSPDCpumpbandwidthsareshownassurfaceplotsoverthetwo-dimensionaltimegridsinFig.4(a)-(d).WeseedramaticchangesintheJTDpro lewithachangeoftheSPDCpumpbandwidth.Witha6nmSPDCpumpbandwidththeJTDcoincidencepro leclearlyexhibitstimeanti-correlationthatisindicativeoftwo-photoncoincident-frequencyentanglement[4].Withsmallerpumpbandwidths,theJTDdistributionsbecomemoresymmetric,whichcorrespondstoreducedtemporalandspectralcorrelations.

.

1

st

nu

o.

C ec

n.

ed0

]

ics

fn[ 0i

-

oy

C

ale-D

r15

-

-0

e

l5

d

Sig

Ina

l

D

ela

y

1

[

fs

]

.

.

1

1

s t

nst

u

nou

C.

o.

eC c

enc

e0

n0

dei0

]

c0

]

ds

is

nffc0

[i

[ o n00i

-

-y

y

C

a

oallC

e

eD

-D

-

r0

r0

1

5

-

e

2

-

-

e

l0

l1

5

-

d

S0

d

ig

ISn

ig

1

Ia

l

n

D

1

a

el

D

2

la

ey

la

[

fy

s

]

[

fs

]

FIG.4:(Coloronline)Experimentaljointtemporaldensitiesforvariousdownconversionpump3-dBbandwidths:(a)6nm,(b)3.6nm,(c)2.2nm,(d)1.1nm.

Wecanquantifythetwo-photonfrequencyentangle-mentasafunctionofthepumpbandwidthbasedonthemeasuredJTDdistributionsandbyusingSchmidtde-compositionforcontinuousvariables[12].Inthisformal-ism,thejointtemporalamplitude,A(τs,τi),isexpressedasadiscretesumofthetemporaleigenmodeswitheigen-valuesλn,throughwhichtheentanglemententropybecomputedasS= n

cank=1λklog2λk[12].Figure5showsthecomputedentanglemententropyfromtheex-perimentalJTDdistributionsinFig.4assumingthatthejointstateistransformlimited.Forcomparison,wehave

We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o

alsocalculatedthetheoreticalentropycurvesasafunc-tionoftheSPDCpumpbandwidth,wherethepumpspectrumis

assumedtobeGaussian.TwocurvesareplottedinFig.5,onerepresentingaGaussianandtheotherasincphase-matchingfunction.ForaGaussianphase-matchingfunction,afullyfactorizabletwo-photonstateispredictedwithapumpbandwidthof~1.2nm,andyieldinganentropyofzero.Forthemorerealis-ticsincfunctionforthephasematching,ahighlybutnotcompletelyfactorizabletwo-photonstateisachiev-able.Sincethesinc-typespectralresponsecorrespondstoaboxcarshapeinthetimedomain,itnecessitatestheinclusionofhigherorderSchmidtmodesandhenceincreasestheentanglemententropy.

Figure5showsagoodqualitativeagreementbetweenthetheoreticalentropycurvesandtheentropyvaluesobtainedfromtheJTDdistributions.Theentangle-mententropycorrespondingtotheexperimentalJTDpro lesarelowerthanthetheoreticalcurveforthesincphase-matchingfunction.Thisisreasonableifwetakeintoaccountthattheactualtime-domainpro leofthephase-matchingfunctionissmootherthanaboxcarshapebecauseofgratinginhomogeneity,ascon rmedbythesingleshistogrammeasurementsofFig.2.Therefore,theexperimentalJTDdistributionscanbeexpressedwithasmallernumberofSchmidtmodes,resultinginalowerentanglemententropythanthatofthetheo-reticalofasincfunction.Fora1.1-nmSPDCpumpbandwidth,whichyieldsanoutputthatisnearlyfac-torizable,wehavecomputedthepurityoftheheraldedsingle-photonstate=Tr( ρS)= ∞as~0.88,wherepurityisde nedasp2

2

n=0λn[6,12].Thispurityvaluecom-pareswellwiththatofthepure-statesinglephotonsgen-eratedunderSPDCusingadi erentspectralengineeringmethod[7].Webelievethatthepuritycanbefurtherimprovedby nercontroloverthepumpbandwidthandadditionalspectral ltering.Incomparison,theoutputforthecaseofa6-nmSPDCpumpbandwidthyieldsapurityof~0.38,whichisaconsequenceofthehighdegreeofcoincident-frequencyentanglement.

Inconclusion,wehavedevelopedatime-domainmeasurementtechniqueforsinglephotonswithsub-picosecondresolutionthatweusedtomeasurethetwo-photonjointtemporaldensityforthe rsttime.Weappliedthetechniquetoverifyanti-correlationinthearrivaltimesofthesignalandidlerphotonsthatwerecoincident-frequencyentangled.Finally,thenewtoolal-lowedustomonitorthee ectofvaryingtheSPDCpumpbandwidths,leadingtothegenerationofanearlyfactor-izabletwo-photonstate,whichshouldbeofinteresttomanyquantuminformationprocessingapplications.WebelievethattheJTDmeasurementtechniqueisapow-erfultoolforengineeringtemporalandspectralcorrela-tionsofultrafastSPDCphotons.Suchacharacteriza-tiontechniquewouldcomplementthefrequency-domain

4

counterpartstoquantifyandmanipulatemulti-photon

y

portnE tnem

elgnatnE012345678

Pump bandwidth [nm]

FIG.5:(Coloronline)Entanglemententropyvaluescalcu-latedfromexperimentalJTDdistributionsforvariousSPDCpumpbandwidthsofFig.4.Thetheoreticalentropyvaria-tionsforGaussian(black)andsinc-type(red)phase-matchingfunctionsaregiveninsolidcurves.

entanglementforquantuminformationprocessingappli-cations.

ThisworkwassupportedinpartbytheHewlett-PackardLaboratoriesandbytheNationalInstituteofInformationandCommunicationsTechnology,Japan.

[1]E.Knill, amme,andG.J.Milburn,Nature(Lon-don)409,46(2001).

[2]W.P.GriceandI.A.Walmsley,Phys.Rev.A56,1627

(1997);W.P.Grice,A.B.U’Ren,andI.A.Walmsleyibid.64,063815(2001).

[3]V.Giovannetti,L.Maccone,J.H.Shapiro,andF.N.C.

Wong,Phys.Rev.Lett.88,183602(2002);Phys.Rev.A66,043813(2002).

[4]O.Kuzucuetal.,Phys.Rev.Lett.94,083601(2005).[5]V.Giovannetti,S.Lloyd,andL.Maccone,Nature(Lon-don)413,417(2001);Science306,1330(2004).[6]A.B.U’Renetal.,LaserPhys.15,146(2005).

[7]P.J.Mosleyetal.,Phys.Rev.Lett.100,133601(2008).[8]M.Hendrych,M.Micuda,andJ.P.Torres,Opt.Lett.

32,2339(2007);A.Valenciaetal.,Phys.Rev.Lett.99,243601(2007).

[9]C.K.Hong,Z.Y.Ou,andL.Mandel,Phys.Rev.Lett.

59,2044(1987).

[10]W.Wasilewski,P.Kolenderski,andR.Frankowski,Phys.

Rev.Lett.99,123601(2007).

[11]O.Kuzucu,F.N.C.Wong,S.Kurimura,andS.

Tovstonog,submittedtoOpt.Lett.

[12]w,I.A.Walmsley,andJ.H.Eberly,Phys.Rev.

Lett.84,5304(2000);S.Parker,S.Bose,M.B.Plenio,Phys.Rev.A61,032305(2000);mataandJ.Le´on,J.Opt.B7,224(2005).

本文来源:https://www.bwwdw.com/article/ph81.html

Top