湖南省永州市2018年中考数学试题含答案解析

更新时间:2023-10-08 01:33:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2018年湖南省永州市中考数学试卷

一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分

1.(4分)﹣2018的相反数是( ) A.2018

B.﹣2018 C.

D.﹣

2.(4分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是( )

A. B. C. D.

3.(4分)函数y=A.x≥3

中自变量x的取值范围是( )

B.x<3 C.x≠3 D.x=3

4.(4分)如图几何体的主视图是( )

A. B. C. D.

5.(4分)下列运算正确的是( ) A.m2+2m3=3m5

B.m2?m3=m6 C.(﹣m)3=﹣m3 D.(mn)3=mn3

6.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为( )

A.45,48 B.44,45 C.45,51 D.52,53 7.(4分)下列命题是真命题的是( ) A.对角线相等的四边形是矩形 B.对角线互相垂直的四边形是菱形 C.任意多边形的内角和为360°

D.三角形的中位线平行于第三边,并且等于第三边的一半

8.(4分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为( )

A.2 B.4 C.6 D.8

9.(4分)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是( )

A. B. C. D.

10.(4分)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为( ) A.商贩A的单价大于商贩B的单价 B.商贩A的单价等于商贩B的单价 C.商版A的单价小于商贩B的单价 D.赔钱与商贩A、商贩B的单价无关

二、填空题(本大题共8个小题,每小题4分,共32分)

11.(4分)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为 . 12.(4分)因式分解:x2﹣1= .

13.(4分)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC= .

14.(4分)化简:(1+)÷= .

15.(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 .

16.(4分)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则

的长为 .

17.(4分)对于任意大于0的实数x、y,满足:log2(x?y)=log2x+log2y,若log22=1,则log216= .

18.(4分)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有 种.

三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程) 19.(8分)计算:2﹣1﹣20.(8分)解不等式组

sin60°+|1﹣

|.

,并把解集在数轴上表示出来.

21.(8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.

(1)参观的学生总人数为 人;

(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为 ;

(3)补全条形统计图;

(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为 .

22.(10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F. (1)求证:四边形BCFD为平行四边形; (2)若AB=6,求平行四边形BCFD的面积.

23.(10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观

数.

24.(10分)如图,线段AB为⊙O的直径,点C,E在⊙O上,垂足为点D,连接BE,弦BE与线段CD相交于点F. (1)求证:CF=BF;

=

,CD⊥AB,

(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.

25.(12分)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3). (1)求抛物线的表达式;

(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.

(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.

26.(12分)如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.

(1)求正方形DFGI的边长;

(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,

本文来源:https://www.bwwdw.com/article/peud.html

Top